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A i-factor of a graph G is a i-regular spanning subgraph of G. A 
i-factorization of G is a decomposition of the edge set E(G) into 
edge-disjoint i-factors. A set S of edge-disjoint i-factors in G is 
said to be maximal if there is no i-factor of G which is edge-disjoint 
from S, and if the union of S is not all of G. A set F of 
edge-disjoint i-factors is premature if F, the complement in G of th~ 

union of members of F, is non-empty and has no i-factorization. If F 
has at least one i-factor, then F is called a proper premature set of 
one-factors. Maximal sets of i-factors in ~2n have been investigated. 

In this paper we investigate the existence of proper premature sets of 
i-factors in K2n In particular, we establish that the existence of a 

proper premature set of k i-factors in K2n implies the existence of a 

proper premature set of (2n + k - 2t) i-factors in K,n-2t for a s t s 
1 LZkJ. We apply this result to construct proper premature sets' of 

aspecific size. 

1. INTRODUCTION 

We consider graphs which are undirected, finite, loopless and have 

no mul t iple edges. For the most part our notation and terminology 

follows that of Bondy and Murty [2]. Thus G is a graph with vertex set 

V(G), edge set E(G), v(G) vertices and c(G) edges. K denotes the 
n 

complete graph on n vertices and K denotes the complete bipartite n,m 

graph with bipartitioning sets of size nand m. 

A k-factor of a graph G is a k-regular spanning subgraph of G. A 

k-factorization of G is a set of (pairwise) edge-disjoint k-factors 

which between them contain every edge of G. 
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Graph factors have been studied for well over one hundred years (see 

Biggs et al [3J). Much of the work has focussed on i-factorizations of 

graphs; for a comprehensive survey on i-factorizations we refer to the 

paper of Mendelsohn and Rosa [8J. In 1891, Petersen proved that every 

even-regular graph has a 2-factorization. Over the past twenty years 

or so there has been considerable interest in the problem of 

partitioning the edge set of a graph into disjoint Hamilton cycles (ie. 

a 2-factorization in which each two factor is a Hamilton cycle. A 

recent survey of results is the paper by Alspach et al [1]. For the 

general problem of k-factors, some results have been obtained for 

bipartite graphs (see Enomoto et al [5]). In this paper we shall focus 

on a specific problem concerning i-factors of K2n 

A set S of edge-disjoint i-factors in a graph G is said to be 

maximal if there is no i-factor which is edge-disjoint from 5 and the 

union of 5 is not all of G. Thus if we write 5 for the complement in G 

of the union of members of 5, then 5 is maximal if and only if S is a 

non-empty graph with no i-factor. A set F of edge-disjoint i-factors 

in G is premature if F, the complement of F in G, is non-empty and has 

no i-factorization. If F has at least one i-factor, then F is called a 

proper premature set of i-factors. We call F the leave of F. Observe 

that if G is regular, then F is also regular. 

Maximal sets of i-factors exist in K 2n For example, for odd n, K2n 

has a maximal set 5 whose leave consist of two odd components, each a 

Kn. Maximal sets of i-factors have been studied by many authors (see 

Caccetta and Mardiyono [4J and Rees and Wallis [9]). The problem of 

determining the spectrum of maximal sets of i-factors in K has 
2n 

recently been completely solved by Rees and Wallis [9] . The 



corresponding question for 2-factors has also been resolved (Hoffman et 

al [7]). 

Premature sets of 1-factors were first considered by Rosa and Wallis 

[10] who established the existence of large premature sets in K
2n

. In 

particular, they proved by construction, that there is a premature set 

of k 1-factors in K
2n 

whenever k is even and n < k < 2n - 4, and 

for k = 2n - 4 when n is odd, n ~ 5. The non-existence of premature 

sets of three 1-factors was also shown. 

Wallis [13] introduced the idea of what we. call proper premature 

sets. He established the existence of a proper premature set of (2n -

4) 1-factors in K2n for every 2n ~ 10. His method was to reduce the 

problem to one of finding proper premature sets of (2n - 4) 1-factors 

in K
2n 

for 10 s 2n s 16, and then exhibiting the required sets. The 

reduction was achieved by establishing that if K2n contains a proper 

premature set of k 1-factors then K and K 4n 4n-2 contain proper 

premature sets of (2n + k) and (2n + k - 2) 1-factors, respectively. 

In this paper we will generalize this result by proving that the 

existence of a proper premature set of k 1-factors in K2n implies the 

existence of a proper premature set (2n + k - 2t) 1-factors in K
4n

-
2t 

for a s t s We will apply this result to construct proper 

premature sets of a specific size. 

2. PRELIMINARIES 

In this section, we state previsely a number of results which we 

make use of in subsequent sections. We begin with the important 

theorem of Tutte 



Theorem 2.1: A n~ntrivial graph G has a one-factor if and only if for 

every proper subset S of V(G), the number of odd components of G-S does 

not exceed I S I· o 

In the study of one-factors, it is useful to know the order of the 

smallest graph without a one-factor. The next result, due to Wallis 

[12], provides this information for regular graphs. 

Theorem 2. 2 : A d-regular graph G wi th no one-factor and no odd 

component satisfies : 

v(G) == 

No such G exists for d 

{

3d + 7, 

3d + 4, 

22, 

1 or 2. 

for odd d == 3 

for even d == 6 

for d = 4 

o 

A matching M in a graph G is a subset of E(G) in which no two edges 

have a common vertex. The following result was proved by Rees and 

Wallis [9]. 

Theorem 2.3: Let K be the complete bipartite graph with bipartition 
m,n 

(X,Y) where IXI = m. IYI = nand m :5 n. Let Y
1

.Y
2 
•..•• Y

n 
be any 

collection of m-subsets of Y such that each vertex y E Y is contained 

in exactly m of the Yj's. Then there is an edge-decomposition of K 
m.n 

into matchings M
1

.M
2

, ...• Mn where for each j = 1,2 •...• n M
j 

is a 

matching with m edges from X to Y .. 
J 

o 

The edge-chromatic number ~/(G) of a graph G is the minimum number 

of colours needed to colour the edges of G. Our next resul tis a 
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special case of a theorem of Folkman and Fulkerson [6]; a proof of this 

was given in [4]. 

Theorem 2. 4: If G is a graph with c. k edges and c 2!: X' (G), then the 

edge set of G admits a decomposition into c matchings, each with k 

edges. o 

3. MAIN mEOREM 

Our main theorem provides us with a recursive construction of proper 

premature sets of l-factors in K2n . The method of proof is analogous 

to that used in Caccetta and Mardiyono [4] to establish a result on 

maximal sets of l-factors. 

Theorem 3.1: If there exists a proper premature set of k l-factors in 

K2n • then there exists a proper premature set of (2n + k - 2t) 

l-factors in K4n- 2t for every integer t, 0 ~ t ~ L~kJ. 

Proof: Using the join operation, we can write 

Let X and Y denote the graphs K and K respectively. Let 2n-2t 2n' 

F = {F1 ,F2,· .. ,Fk } be a proper premature set of 1-factors in Y. Then F 

has a l-factor but no 1-factorization. We obtain the required proper 

premature set of l-factors in K4n- 2t by extending the proper premature 

set F to a proper premature set F' of l-factors in K v K . F' 
2n-2t 2n' 

will contain F as a component. 

Take 2t members of F and let H be the graph formed by the union of 

these l-factors. Note that since t ~ L~kJ we can always do this. H is 
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a 2t-regular graph on 2n vertices. Applying Theorem 2.4 (with c = 2n 

and k t) we decompose the edge-set of H into 2n matchings 

H
i

,H
2
,· .. ,H2n , each with t edges. 

which are not saturated by Hi' 

Let Y. denote the vertices of H 
1 

Each vertex of H (and hence Y) is 

contained in exactly 2n - 2t of the Vi's and IYil = 2n - 2t for each i. 

Now consider the graph K t . 2n-2 ,2n Applying Theorem 2.3 we can 

decompose the edge-set of this graph into 2n disjoint matchings 

N
i

,N
2

, ... ,N2n , such that Ni joins the vertices of Yi to the vertices of 

X. Let 

H. v N. 
1 1 

i 1,2,.". ,2n. 

Observe that each Li is a 1-factor of K2n-2t v K2n" 

There remains in Y a set S of (k - 2t) 1-factors from the original 

premature set F. Construct (k - 2t) 1-factors on X (such a set exists, 

since K2n- 2t has a 1-factorization) and pair these off with the 

1-factors of S to form a set of (k - 2t) 1-factors L ,L .. ". ,Lk t' 
1 2 -2 

Then the set 

the leave F' of F' consists of two components one of which is F the 

leave of the premature set F of 1-factors in K2n 

proof of the theorem. 

As a corollary we have 
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Corollary: If K2n has a proper premature set of k 1-factors, then 

(a) for even k ~ n - 1, Km has a proper premature set of 

(m - 2n + k) 1-factors for every even integer m ~ 4n - k; 

(b) for odd k ~ n, Km has a proper premature set of (m - 2n + k) 

I-factors for every even integer m ~ 4n - k + 1. 

Proof: The corollary is established by repeatedly applying Theorem 

3.1. We illustrate the argument for the case when k is even; the case 

when k is odd is analogous. 

Suppose K
2n 

has a premature set of k I-factors and k is even. Then 

Theorem 3.1 implies that K4n- 2t has a premature set of (2n + k - 2t) 

1 1-factors for every 0 s t S zk. Thus the assertion is true for even m, 

4n - k S m :s 4n. Now consider the graph K4n- k which has a proper 

premature set of 2n I-factors. Applying Theorem 3.1 we can conclude 

that Ksn-2k-2t' has a proper premature set of (6n - k - 2t') 1-factors 

for every 0 S t' S n. Observe that k ~ n - 1 implies 6n - 2k S 4n + 2. 

Consequently, repeated applications of Theorem 3.1 will indeed 

establish the Corollary. o 

4. APPLICATION OF THEOREM 3.1 

In this section we demonstrate the use of Theorem 3.1 for the 

construction of proper premature sets of I-factors of specific size. 

In particular, we establish the existence of a proper premature set of 

(2n - 4) I-factors in K for 2n ~ 10 and the existence of a proper 2n 

premature set of (2n 6) 1-factors in K for 2n ~ 14. 
2n 



Observe that if K2n contains a proper premature set F of k 

l-factors, then the leave F of this set is a (2n - k - l)-regular graph 

with at least one l-factor but no l-factorization. To apply Theorem 

3. lone needs to determine the smallest n for which such a graph 

exists. We need an extension of Theorem 2.2 

We say a Graph G has exactly t I-factors if the maximum 

cardinality of a set of edge-disjoint l-factors in G is t. The problem 

that arises is that of determining the minimum order of a graph having 

exactly t l-factors. For the results of this section we need to 

resolve this problem for the cases t = 1 and t = 3. We do this in the 

following two lemmas; the general problem remains open. 

Lemma 4.1 : Let G be a d-regular graph on 2n vertices having 

exactly one one-factor. Then 

{ 
d + 2 , if d is odd, 

n ?; 

~ d + 2 , if d is even 
2 

Proof: Let F be the one-factor of G and G' the subgraph obtained from 

G by deleting the edges of F. G' is a (d-l)-regular graph without a 

one-factor. If G' has no odd component, then Theorem 2.2 implies that 

d-1 ?; 3 and 

1 

3(d-1) + 7 for odd d-1 ?; 3. 

2n ?; 3(d-1) + 4 , for even d-1 ?; 6. 

22 , d-l 4. 



Thus the assertion clearly holds. So we may assume that G' has odd 

components. As G' is (d-l) -regular, each of its components must 

have at least d vertices. We need only consider the case when d is 

odd as d-l is odd when d is even. So suppose d is odd. 

A simple argument establishes that n > d+2 if G' has more than 

2 components. Hence we can assume that G' consists of exactly two 

odd components, 

2n = n + n. Note 
1 2 

G' and 
1 

that 

G1 

2 

n 
1 

say. Let n = IV(G')I so that 
1 i' 

~ d and n
2 

~ d. Suppose without 

n :S n 
1 2 

any loss of generality, that Then the only case we need 

consider is that when n
l
= d. In this case G~= Kd' 

If n 
2 

d, then G; = Kd and thus, in G, the edges of F join 

vertices in different components of G'. But then G would be 

Hamiltonian and hence have more than one 1-factor. Therefore n ~ 
2 

d+2. If n
2 

= d+2. then o (G ) = d-l ~ ~ n for d ~ 5. 
2 2 2 

Thus for d ~ 

5, G
2 

has a Hamiltonian cycle. But then, since G = K 
1 d 

and in G 

there are d ~ 2 edges going from V(G
1

) to V(G
2

), G is also 

Hamiltonian. This contradiction establishes the lemma for the case 

d ~ 5. For d=3. the only possibility is that G is the graph in Figure 

4.1. 

Figure 4.1 



The edges drawn in solid lines indicate the edges of F. Clearly 

the graph has a one-factorization, again a 

completes the proof of the lemma. 

contradiction. This 

o 

We demonstrate that the bounds on n given in the above lemma are 

best possible. For d=3 the graph displayed in Figure 4.2 is a 

3-regular graph on 10 vertices having exactly one 1-factor (the edges 

on a 1-factor are drawn in solid lines). 

Figure 4.2 

For odd d ~ 5 the graph displayed in Figure 4.3 is a d-regular graph on 

2(d + 2) vertices having exactly one one-factor. 

I I 
Figure 4.3 
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For even d ~ 4 the construction is a little more complicated and we 

describe it as follows. Our building block is the graph: 

H(d+l,x) (Kx ' {a maximum matching}) v Kd+
1

-
X 

on d + 1 vertices. Observe that for odd x this graph has 

d + 2 - x vertices of degree d and x - 1 vertices of degree d - 1. 

Now consider three such graphs H
1

(d + l,x), 

H3 (d + 1. z). where x, y and z are odd positive integers whose sum 

is d - 1. Identify a pair of adjacent vertices of degree d in each 

graph; call tnese- pairs u,u'; V,V'j and w.w'. Consider the graph G on 

3d + 4 formed by taking the union of the graphs H
1

(d + l,x), 

H
2

(d + l,y) and H3(d + 1,z) and then adding a new vertex, « say and 

Joining « to every vertex that has degree d - 1. Now form G' from G by 

deleting the edges uu', vv'. ww' and adding the edges u' Wi and Vi «. 

The graph G' is displayed in Figure 4.4. 

Figure 4.4 



Note that the edge u'w' is the only edge between two vertices in 

different H's. It is easy to exhibit a one-factor F in G and as this 
i 

one-factor must contain the edge u'w', the graph G\{F} has no 

one-factor. As G is d-regular this establishes the sharpness of the 

bound for even d. Figure 4.5 gives G when d = 4. 

Figure 4.5 

Lemma 4.2 : Let G be a 5-regular graph on 2n vertices containing 

exactly three l-factors. Then 2n ~ 14. 

Proof: Suppose not and 2n::s 12. Let F 1 ,F 2 and F be 
3 

the 

three l-factors of G. Then the subgraph H = G \ {F
1 

,F
2 

,F
3

} is 

2-regular and hence is the union of cycles. 

l-factor it must have at least two odd cycles. 

Since H cannot have a 

Since H v F., 1 ::s i 
1 

::s 3, is a 3-regular graph with exactly one l-factor, Lemma 4.1 implies 

that 2n ~ 10. Hence either 2n = 10 or 2n = 12. 

If 2n = 10, then H consists of either two 3-cycles and a 4-cycle or 

of exactly two odd cycles, Cland C
2 

say. Consider H v F
i

, ::s i :s 3. 

If H consists of two 3-cycles and a 4-cycle then it is easy to 
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establish that H v Fi is Hamiltonion. So suppose H consists of two odd 

If 2 or more edges of Fi join vertices in C
1 

to 

vertices in C
2

, then H v Fi is Hamiltonian and hence has two l-factors. 

As this is not possible, each H v Fi has a cut edge (which necessarily 

belongs to F
i
). Consequently C

1 
and C

2 
are each cycles of length 5. 

Further, C has 
1 

two edges of F., 
1 

1 :s; i :s; 3. Hence G [C] has 5 
1 

vertices and 11 edges, an impossibility. Hence 2n * 10. 

Suppose 2n 12. Then H contains ei ther 2 or 4 odd cycles. IfH 

contains 2 odd cycles it may contain an even cycle. We consider 

several cases separately. 

Case 1 Suppose H contains 4 odd cycles, C
l

, C
2

, C
3 

and C
4

" 

As there are only 12 vertices each C must be a 3-cycle. Consider H 

V F
l

, 1 :s; i :s; 3. If H v F has two edges between a pair of Cl's then 

it must be Hamiltonian (see Figure 4.6), a contradiction. Hence H v F 

is connected and there is exactly one edge between every pair of C.'s. 
1 

But then the only possibi li ty is the graph of Figure 4.7 which is 

Hamil tonian. 

Figure 4.6 

7U1 



Figure 4.7 

Case 2: H contains 2 odd cycles, C
1 

and C
2 

and one even cycle C
3

• 

Consider H v F
I

, 1 ~ i ~ 3. If there are 2 or more edges of Fi 

joining vertices in C to vertices in C., j:;ti, then 
J 

H v F is 

Hamil tonian as the only possibili ties are the graphs displayed in 

Figure 4.8. But this is not possible. 

Case 3: H consists of exactly 2 odd cycles, C and C. 
1 1 

Consider H v F i ' ~ i ~ 3. If there is 2 or more edges of F 
i 

joining vertices in C
1 

to vertices in C
2

' then using a case analysis 

similar to that used above we can conclude that H v F is 
i 

Hamil tonian. As this is not possible, each H v F i has a cut edge 

(which necessarily belongs to F
i
). Consequently C

1
and C

2 
are cycles of 

length 5 and 7 repectively. Suppose C
1 

has length 5. Then C has two 
1 

edges of F., 1 ~ i ~ 3. 
1 

Hence G[C
1

] has 5 vertices and 11 edges, an 

impossibility. Hence 2n :;t 12. This completes the proof of the lemma. 

D 
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Figure 4.8 

We now establish the existence of a proper premature set of (2n - 4) 

l-factors in K
2n 

for 2n ~ 10. Our proof which makes use of Theorem 3.1 

is shorter than that given by Wallis [13] which explicitly constructed 

(2n - 4) i-factors in KlO,K12,K14 and K16 ; application of Theorem 3.1 

avoids the need to look at K and K . 
14 16 



Theorem 4. 1 : There exists a proper premature 

l-factors in K whenever 2n ~ 10 . 
2n 

Proof: If F is a proper premature set of (2n-4) 

then F is 3-regular and contains exactly one 

set of (2n - 4) 

l-factors in K , 
2n 

l-factor. Lemma 4.1 

implies that 2n ~ 10. We now construct proper premature sets of 

(2n-4) l-factors in K and K 
10 12 

Theorem 3.1 then guarantees 

the existence of a proper premature set of (2n-4) l-factors in 

all the larger graphs of even order. 

Consider the Petersen graph, P
10 

(see Figure 4.9) and the graph 

P
12 

drawn in Figure 4.10. It is well known that P has a 
10 

but no l-factorization. The set F
1

,F
2

, ... ,F
6 

of l-factors 

vertices 1,2, ... , 9,A defined by 

F 14 26 35 78 9A 
1 

F lA 24 36 57 89 
2 

F 13 28 4A 59 67 
3 

F 18 2A 39 56 74 
4 

F 17 29 3A 46 58 

F 19 25 37 48 6A 
6 

l-factor 

in K on 
10 

has as a leave the graph shown in Figure 4.9. Hence it forms a proper 

premature set of six l-factors in K
10 
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5 2 

3 

p 
10 

Figure 4.9 

Wallis [13] proved that the graph P has a one-factor but no 
12 

one-factorization. Its complement, P 
12 ' 

is a proper premature set of 

8 one-factors in K A complete i-factorization F
1

,F
2

, ,F8 
12 

of P is 
12 

F 12 59 36 48 7B AC 
1 

F 15 24 39 7C 8B 6A 
2 

F 14 2B 35 9A 78 6C 
3 

F lA 26 3C 4B 57 89 
4 

F 13 28 4A 5C 9B 67 
5 

F 18 2A 3B 56 9C 47 
6 

F 17 29 3A 4C 58 6B 
7 

F 19 25 37 46 8C AB 8 

Hence, F
1

,F
2
,··· ,F8 form a proper premature set in K 

12 

This completes the proof of the theorem. 0 



5 

4 

b c 

P12 

Figure 4.10 

Next we apply Theorem 3.1 to establish 

proper 

2 

3 

the existence of a 

premature set of C2n-6) I-factors in K
2n

. There cannot be any 

such sets for 2n ~ 12 (Theorem 2.2 and Lemma 4.2). In view of the 

Corollary to Theorem 3.1 we need to exhibit proper premature sets 

of (2n-6) I-factors in K
14

, K
16 

and K 
18 

Consider the graph in K14 on vertices 1,2, ... ,9,A, ... ,E. If we take 

the I-factors: 
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F 13 2E 4C 59 6B 7D 8A 
1 

F lA 2C 3E 48 5B 6D 79 
2 

F lE 24 3C 57 6A 8D 9B 
3 

F lC 29 3B 4D 58 6E 7A 
4 

F IB 2A 38 49 5D 6C 7E 
5 

F 19 2B 3D 4A 5E 68 7C 
6 

F ID 28 3A 4E 5C 69 7B 
7 

F 16 2D 39 4B 5A 78 CE 
8 

then the leave of this set is the graph in Figure 4.1I. 

This graph contains exactly one I-factor, and this I-factor 

contains the edge 18. 

c 

B 

Figure 4.11 

71.1.7 



Consider the graph K on vertices 1,2, ... ,9,A, ... ,G. If we take 
16 

the 1-factors: 

F 24 3G 5B 6D 7E 1F 8A 9C 
1 

F 2C 3E 4F 5D 6G 7A 19 8B 
2 

F 2D 13 4B 59 6C 7F 8E AG 
3 

F 2B 39 48 5F 6E 7D 1G AC 
4 

F 2A 3C 4E 5G 69 7B 1D 8F 
5 

F 2F 3A 4D 5C 16 78 EG 9B 
6 

F 2E 3B 4A 57 68 1C 9F DG 
7 

F 29 38 4C 5E 6B 7G 1A DF 
8 

F 2G 3F 49 58 6A 7C 1E BD 
9 

F 28 3D 4G SA 6F 79 1B CE 
10 

then the leave of this set is shown in Figure 4.12. This graph has 

exactly one 1-factor. Hence the set F l' F 2' ... ,FlO forms a proper 

premature set of I-factors in K 
16 

A 6 

Figure 4.12 



Consider the graph K on vertices 1,2, ... ,9,A, ... ,1. If we take the 
18 

i-factors: 

F 24 31 5E 6G 7B 8D 9H iF AC 
1 

F 25 3H 4B 61 7F 8C 9A lD EG 
2 

F 28 35 4F 6E 7C 9G 11 AD BH 
3 

2A 3D 4E 5H 6C 17 8F 9B G1 

F 2B 39 41 5C 68 7E lG AH DF 
5 

F 2C 3G 4H 5F 6D 7A 18 91 BE 
6 

F 2F 3A 14 5G 69 7H 81 BD CE 
7 

F 2D 3B 4G 5A 6H 79 8E lC F1 
8 

F 2E 3F 4D 5B 6A 71 8G 9C lH 
9 

F 2G 3E 46 57 9D lB C1 8A FH 
10 

F 21 3C 4A 5D 6B 7G 8H 9F lE 
11 

F 2H 13 4C 51 6F 7D 8B 9E AG 
12 

then the leave of this set is shown in Figure 4.13. This graph has 

exactly one i-factor. Hence the above set forms a proper premature set 

of i-factors in K 
18 

H. 

F 
5 

E 
6 

C 8 7 

Figure 4.13 
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We have proved: 

Theorem 4.2: There exists a proper premature set of (2n-6) 

one-factors in K whenever 2n ~ 14. o 
2n 

5. SOME OPEN PROBLEMS 

We conslude this paper by mentioning some open problems. The 

first problem concerns the order of a graph having exactly t l-factors. 

Problem 1: Let G be a d-regular graph with exactly t l-factors, but no 

l-factorization. Determine the minimum number of vertices of G. 

Lemmas 4.1 and 4.2 resolve this problem for t = 1 and for t = 3 when 

d 5, respectively. Solution of Problem 1 would assist in determining 

the spectrum of proper premature sets of l-factors in K
2n 

We mentioned in the introduction that recently Hoffman, Rodger and 

Rosa [7] completely determined the spectrum of maximal sets of 

2-factors and Hamiltonian cycles of Kn' Their approach is complicated 

and involves the application of Tutte's f-factor theorem [11]. It is 

natural to ask whether the approach adopted by Caccetta and Mardiyono 

[4] to maximal sets of l-factors could be extended to maximal sets of 

Hamiltonian cycles. We can make progress on this provided the following 

is true. 

Problem 2: Let G be a graph on 2n vertices formed by the union of k 

edge-disjoint Hamiltonian cycles C
1

,C
2
,··· ,C

k
. Suppose the edges of 

cycle C
i 

are coloured wi th colour i, 1 :$ i :$ k. Does G contain a 

maximum matching consisting of k edges, each of a different colour. 
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Problem 2 is, of course, of interest in its own right. We 

conjecture that the answer to the question is yes. 

Our final problem concerns maximal sets of i-factors in graphs which 

are not complete. 

Problem 3: Let G be a k-regular graph (k < 2n - 1) on 2n vertices 

having a i-factorization. Determine the spectrum of maximal sets of 

i-factors of G. 
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