

than approximations to them. With this modified goal, our measure of effectiveness will be

based on the running time of the algorithm and the strike rate for obtaining optimal solutions.

However, it would be unreasonable to expect such running times to be polynomially bounded.

Although the hill-climbing method has been applied to existence and enumeration problems

in combinatorics (see, for example, Stinson [16]), it appears that simulated annealing has not

been widely used. Mathon [12] has used the method successfully to construct balanced

incomplete block designs, and in this paper we adapt his method to the construction of

subsquare free Latin squares.

Gibbons and Mendelsohn [61 observed that applying the N 2 condition provides a useful

screening check in the search for sub square free Latin squares - the check is easily applied and

there is a high chance that an N2LS will in fact be a SFLS. The goal of a simulated annealing

algorithm will therefore be to start with an initial random Latin square, and then perform

elementary changes in an attempt to reduce the number of 2 x 2 subsquares. That is, our state

will be a Latin square, and our cost function will be the number of 2 x 2 subsquares contained

in it. We apply an elementary change which maintains the Latin square property, but which

hopefully destroys 2 x 2 subsquares. This elementary change is described as follows.

Suppose x and yare elements, and, a row, of a Latin square L of side n. Define the (r, a,

b)-cycle of L as the sequence «'1' c1), ('2' c2),···, ('nt em»' where'l = " '2" .. , 'mare rows

of L, cl ' c2"'" cm are columns of L, and

(1) If i is even,

(2) If i is odd,

For example, suppose L is the following Latin square of side 8:

8 2 3 4 5 6 7 1

2 3 1 5 6 7 8 4

3 5 4 8 7 1 6 2

4 6 8 3 1 5 2 7

5 8 7 1 3 2 4 6

6 7 5 2 8 4 1 3
7 1 2 6 4 3 5 8

1 4 6 7 2 8 3 5

In this square the elements of the (1,1, 8)-cycle, «(1,8), (7,8), (7,2), (5, 2), (5,4), (3,4), (3, 6),

214

(8, 6), (8, V, (I, V), have been highlighted. There is only one other cycle involving the

elements 1 and 8, and that is the (2, 1, 8)-cycle «2,3), (4,3), (4, 5), (6,5), (6, 7), (2, 7».

From the properties of a Latin square, it is clear that such cycles are well defined. More

importantly, if the elements making up a cycle in a Latin square are rotated, then a new (in

general non-isomorphic) Latin square will be obtained. Such a rotation can therefore be used

as a transition operation in a simulated annealing algorithm. Since our goal is to alter the

number of subsquares (hopefully downwards), we should choose cycles which pass through an

element of a 2 x 2 subsquare. For example, the above square contains exactly 1 2 x 2

subsquare, viz. the subsquare with (R, C, E) ::: «4,5), (4, 5), (1,3». The (1, I, 8)-cycle passes

through the element 1 at position (5, 4) in this square (and no other elements). Therefore, if

we rotate this cycle, the subsquare will be destroyed. In general other subsquares may be

created by this transformation. Also, if the cycle passes through more than one element of

the subsquare, a new subsquare in the same position will be created.

Applying a rotation to the (1, 1, 8)-cycle we produce the following Latin square which is N 2

(and also sub square free):

1 2 3 4 5 6 7 8

2 3 1 5 6 7 8 4

3 5 4 1 7 8 6 2

4 6 8 3 1 5 2 7

5 1 7 8 3 2 4 6

6 7 5 2 8 4 1 3

7 8 2 6 4 3 5 1

8 4 6 7 2 1 3 5

We now have the basis for a simulated annealing algorithm in which the state corresponds to

a Latin square and the energy level corresponds to the number of subsquares of side 2. For our

transition operation we select a random subsquare 5 = «r1,r2)' (c1,c2)' (el,e2» of side 2. We

then select a random element x # el,e2' a random element y E (e1,e2J and perform a rotation

on the ('1' x, y)-cycle.

For our temperature decrement function we chose to multiply the temperature by a constant

a< I, i.e. Tk+1 = aTk' We shall call a the control decrement. Also, we kept the length of

the Markov chain the same for each new value of the control temperature. For our stopping

condition we chose to terminate the algorithm once the cost function of the best solution

215

obtained in the last Markov chain remains unchanged for a number of consecutive chains. The

number of such chains we shall call the freezing factor.

4. Results

The above described simulated annealing algorithm was first implemented in the language C

on Apple Macintosh computers, and then later on faster DecStation 2100's running under the

UNIX operating system. Initially we tested the algorithm with Latin squares of orders 8

and 12 in an attempt to get a feel for the best type of cooling schedule to employ. We also

wished to see how effective the N2 condition is in producing completely subsquare free Latin

squares.

Although Aarts & Korst [1] and others have shown that it is possible in theory to set a cooling

schedule which guarantees production of an optimal solution (in this case an N2LS), such a

schedule in practice usually requires a number of transitions that is typically larger than the

size of the solution space, leading to an expected exponential-time execution of the

algorithm. Instead we therefore ran a number of iterations of a cooling schedule which

requires a polynomial number of transitions, and recorded the number of N2LS's generated.

Building on Mathon's experience with annealing algorithms for building block designs, we

used the following cooling schedule:

Initial temperature:

Control decrement:

Markov chain length:

Freezing factor:

1.0

0.9995

350

12

Order 8 N2LS's were constructed very easily. In the order 12 case, on a DecStation 2100 we

were able to generate 33 N2LS's over a 12 hour period1, Of these 33 squares, one was found

to contain a subsquare of order 3. The remaining 32 were found to be completely subsquare

free.

The success of this method with the order 12 case encouraged us to go after the order 16 and

order 18 cases. Although N2LS's of these orders are known to exist, the existence of SFLS's of

these orders had not yet been established. Running the algorithm on a DecStation 2100 with

the above cooling schedule, we were able to generate 2 N2LS's of order 16 over a 48 hour

period. Both of these squares were found to be completely subsquare free. In the order 18 case

we were able to generate 1 N2LS, which turned out to be subsquare free, over a 7-day period.

This order 18 SFLS is displayed and analysed in the Appendix, along with one of the order

1 All times mentioned are processing times rather than elapsed times

216

16 SFLS's.

The next unknown case is of order 24 (= 2331). Currently we have been unable to obtain an

N2LS of this order, the best square produced containing 3 subsquares of order 2. In order to

fine tune the algorithm to have the best chance of finding an N2LS we decided to investigate

the effect of varying the cooling schedule in the search for N2LS's of order 12. The following

results were obtained.

We began by studying the effect of changing the initial value of the control parameter

(temperature), while holding the control decrement, Markov chain length, and freezing

factor constant at 0.9995, 350, and 12 respectively. The results in this and most of the

following experiments were obtained from runs over a 12 hour period:

Initial Initial # trials N2LS's Strike Rate Average Drop

Ratio Generated Out Temp

1.0 13% 124 29 23% 0.6957

2.0 48% 45 13 29% 0.7287

3.0 56% 33 14 42% 0.8034

4.0 78% 27 14 52% 0.7633

5.0 82% 24 13 54% 0.7796

6.0 85% 21 9 43% 0.7117

7.0 89% 20 7 35% 0.7289

From this table it can be seen that, with the other parameters in the cooling schedule held

constant at the given values, it does not appear to pay to start at a high temperature both in

terms of the number of N2LS's generated in a set period, and the strike rate «number of

N2LS's generated) I (number of trials». This is surprising given the recommendation, for

example in [1], to begin with a temperature which results in an acceptance ratio of close to 1.

It may be, of course, that altering some of the other parameter values would improve the

algorithm's performance with the higher starting temperatures. This needs to be the subject

of a further investigation. In the meantime we decided to use a starting temperature of 1.0 for

the remaining experiments.

We next studied the effect of varying the value of the control decrement, while holding the

chain length and freezing factor constant at 350 and 12 respectively.

217

Control # trials N2LS's Strike Rate Average Drop

Decrement Out Temp

0.95 2939 32 1% 0.2518

0.995 707 47 7% 0.5266

0.9995 124 33 27% 0.6929

0.99995 43 40 93% 0.9039

In terms of strike rate, the above results illustrate the tradeoff between the value of the

decrement of the control parameter and the length of the Markov chain. Large decrements in

the control parameter will require longer Markov chain lengths in order to restore quasi

equilibrium at the next value of the control parameter. It is clear that with the chain length

held constant we have a better chance of reaching equilibrium with a smaller decrement

value, and hence a better chance of obtaining an optimal solution. However, in terms of the

number of N2LS's generated, the results are less conclusive. The 47 N2LS's generated with a

control decrement of 0.995 goes against the trend of more squares generated for higher values

of the control decrement. The low strike rate achieved for this value lead us to reject it in

favour of 0.99995 for the remaining experiments.

The next parameter to be varied was the Markov chain length, with the control decrement

and freezing factor held constant at 0.99995 and 12 respectively.

Chain

Length

100

200

300

400

500

trials

138

56

39

28

39

N2LS's

35

27

32

24

37

Strike Rate

25%

48%

82%

86%

95%

Average Drop

Out Temp

0;8921

0.8665

0.8726

0.8687

0.9239

These results again illustrate the fact that longer Markov chain lengths will give the

algorithm a better chance of reaching equilibrium at each new value of the control parameter.

However, as with the previous table, the results are less conclusive in suggesting the best

chain length to use to maximise the numbers of squares obtained in a set time period. In [1] it

suggested that the length should be chosen so as to give the algorithm a sufficiently large

probability of visiting at least a major part of the neighbourhood of a given feasible solution.

This is quantified by taking the length equal to the size of the neighbourhood of a given

218

feasible solution. In our case the neighbourhood depends on the number of 2 x 2 subsquares in

the current square, and this number decreases as the algorithm progresses. The initial random

Latin square contains 32 2 x 2 subsquares on average, resulting in a neighbourhood size of (12-

2)*2*32 = 640. However, the number of subsquares rapidly decreases to less than 10 after the

start of the algorithm, resulting in a typical neighbourhood size of 200. In the interests of

achieving a reasonably high strike rate we opted to continue with a chain length of 350 for

the remaining experiment. However it is dear that more tests are required here, including

the option of varying the chain length at each new value of the control parameter depending

on the size of the neighbourhood of the first feasible solution in the chain.

Our final experiment tested the effect of varying the freezing factor with the control

decrement and chain length held constant at 0.99995 and 500 respectively. The results,

obtained over a 24 hour period, were as follows:

Freezing

Factor

4

6

8

10

12

trials

468

105

59

63

55

N2LS's

41

56

46

56

53

Strike Rate Average Drop

Generated Out Temp

9% 0.9865

53% 0.9414

78% 0.8985

89% 0.9056

96% 0.8921

It is dear that as the freezing factor increases (Le. we continue the annealing process longer)

the strike rate should increase and the number of trials per unit time should decrease. The

average drop-out temperature should also decrease with increasing freezing factor values.

The above results conform to this expectation. In terms of the number of optimal solutions per

unit time the best results were for freezing factors of 6 and 10. Certainly there would be no

point in continuing beyond 12 since the strike rate is very close to 100% and the number of

trials will decrease. Because of the high strike rate we favoured a freezing factor of 10 or

12.

What is interesting about this table, and others in this section, is the fact that we are getting

good results at high drop-out temperatures. The results in this latest experiment were

obtained within a relatively narrow temperature interval of around 0.11. However, we must

remember that we have begun at a temperature which results in an initial acceptance ratio of

around 13%, already well below the recommended value of around 90%. The resulting

probability of accepting uphill moves must be enough both to provide a good chance of getting

out of local minima and of directing the search toward global optima.

219

5. Conclusions

In this paper we have applied the well-known simulated annealing method to an

optimisation problem where we require optimal solutions rather than close approximations to

them. We are assisted by the fact that we can easily detect an optimal solution when we

have found one.

The problem in question is that of generating subsquare free Latin squares, and the method

was successful in generating such squares of orders 16 and 18, the smallest orders for which

existence of such squares was previously in doubt. The algorithm has so far been unsuccessful

in generating a SFLS of order 24, the next order for which existence has not yet been decided.

Some experimentation was carried out with the generation of SFLS's of order 12 in order to

try to determine the combination of parameter values most likely to generate a solution in a

set period of time. While giving some pointers to likely parameter values, it is clear that a

more elaborate statistical experiment is required for us to more accurately predict the

combination of cooling schedule parameters most likely to product optimal solutions in a set

period of time. Such an analysis would be valuable since the method holds some promise of

solving other combinatorial existence problems of this type.

6. Acknowledgements

The authors are grateful to R.A. Mathon for allowing us to experiment with his simulated

annealing algorithm for the construction of block designs: Many of his ideas were

incorporated into our Latin square algorithm. The authors would also like to thank c.J.
Colboum for helpful discussions relating to the choice of transition operation.

220

Appendix

In this appendix we list SFLS's of orders 16 and 18, along with an analysis which helps

display the fact that these squares are subsquare free. A similar analysis was used in [6] to

show that a Latin square of side 12 was subsquare free. In this analysis we use the fact that

in a Latin square L of order n any pair of rows defines a permutation of the n elements - we

shall call this a row permutation. The Latin square property prescribes that there is no row

permutation containing fixed elements, Le. cycles of length 1. In addition, for L to be N 2, a

necessary and sufficient condition is that there is no row permutation containing a 2-cycle.

Unfortunately this doesn't generalize for L to be p x p (2 < P ::; n) subsquare free (N p)'

However the cycle structure of row permutations can be very useful in checking for possible

subsquares of a Latin square.

We note the following points in checking for subsquares of a given Nz Latin square L of side

n:

(a) The largest possible subsquare is of side n12.

(b) The existence of a 3 x 3 subsquare implies the existence of a set of 3 rows each pair of

which has a 3-cycle in its row permutation (and on the same set of elements).

(c) Since a SFLS of order 4 does not exist, L cannot contain any subsquares of side 4 (since

there are no 2 x 2 subsquares in L).

(d) The existence of a 5 x 5 subsquare implies the existence of a set of 5 rows each pair of

which has a 5-cycle in its row permutation (and on the same set of elements). Note

that the cycle type (2,3) cannot occur in any row permutation involving this square

since L is Nz.

(e) Since a SFLS of order 6 does not exist, the existence of a 6 x 6 subsquare in L implies

the existence of a 3 x 3 subsquare in L.

(f) In checking for possible subsquares of orders 7, 8, and 9, we note that the only

allowable cycle types of row permutations associated with such subsquares are as

follows:

7: (7), (4,3)

8: (8), (5, 3), (4, 4)

9: (9), (6,3), (5, 4), (3,3,3)

221

The above observations lead to the following necessity check for an N 2 Latin square L of

order 16 or 18 to contain subsquares. Construct a series of graphs Gi , i = 3, 5, 7, 8 (and 9 in

the case of order 18) in which the vertices of Gi represent the rows of L, and in which two

vertices hand k are adjacent if and only if rows hand k form a permutation containing an

allowable cycle type associated with i, where the allowable cycle types are as follows:

Allowable cycle types

3 (3)

5 (5)

7 (7), (4,3)

8 (8), (5,3), (4, 4)

9 (9), (6,3), (5, 4), (3,3, 3)

A clique analysis can be performed on each such graph Gi to determine that it contains no i -

cliques, and therefore that the square contains no i xi subsquares.

This may not be the most efficient way to determine that Lis subsquare free. However, it is

useful in displaying subsquare free property of L.

As a final check we subjected each square to a dedicated subsquare checking algorithm which

works as follows. Choose any pair of cells in the same row and generate the smallest square

containing them. This involves 8(n2) amount of work for each pair. There are 8(n3) pairs

which means that the subsquare checker has complexity 8(nS) .

222

1. Subs quare free Latin square of order 16

The following is one of the SFLS's of order 16 produced by our algorithm:

8 7 14 5 11 2 9 16 1 6 12 10 13 4 3 15

11 10 5 12 2 9 15 14 16 8 4 3 1 7 13 6

9 13 12 15 7 1 3 4 6 2 10 5 14 11 16 8

111 4 2 10 14 8 5 7 12 3 13 15 6 9 -16

5 2 9 10 1 8 11 3 12 15 13 7 16 14 6 4

12 4 7 1 13 6 5 15 11 9 16 8 3 2 14 10

3 14 16 7 5 10 6 13 8 1 9 4 11 15 2 12

10 3 1 13 14 11 12 9 5 4 6 16 2 8 15 7

13 16 11 4 9 7 14 6 2 5 8 15 10 3 12 1

4 1 8 9 6 15 10 11 13 16 2 14 7 12 5 3

6 8 13 14 12 16 7 1 3 11 15 2 4 5 10 9

2 6 3 8 15 12 16 10 14 13 7 11 9 1 4 5

15 9 10 6 3 13 2 8 4 7 11 12 5 16 1 14

7 12 15 16 4 5 1 2 10 3 14 6 8 9 11 13

16 5 2 3 8 4 13 12 15 14 1 9 6 10 7 11

14 15 6 11 16 3 4 7 9 10 5 1 12 13 8 2

Permutation types in above square:

1: (6,10)

2: (3,13)

3: (16)

4: (5,11)

5: (3,6,7)

6: (3,3,10)

7: (4,5,7)

8: (4,12)

9: (3,3,5,5)

10: (3,4,9)

11: (4,6,6)

12: (7,9)

13: (5,5,6)

14: (3,5,8)

15: (8,8)

16: (4,4,8)

17: (3,3,4,6)

223

Inter-row permutation cycle type structure:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1: 1 2 3 4 4 1 5 2 6 7 8 1 5 5 3

2: 1 - 8 5 9 1 8 10 1 11 3 12 4 6 3 3

3: 2 8 - 3 8 1 12 3 4 3 5 4 2 3 3 10

4: 3 5 3 3 5 3 12 3 8 2 3 3 1 12 1

5: 4 9 8 3 - 2 4 3 4 3 10 8 12 3 13 14

6: 4 1 1 5 2 8 3 4 11 3 15 2 3 3 3

7: 1 8 12 3 4 8 - 14 1 3 7 1 8 3 16 3

8: 5 10 3 12 3 3 14 - 14 4 17 6 6 2 2 4

9: 2 1 4 3 4 4 1 14 - 7 3 8 2 3 11 7

10: 6 11 3 8 3 11 3 4 7 - 1 7 10 12 1 4

11: 7 3 5 2 10 3 7 17 3 1 - 7 3 17 2 15

12: 8 12 4 3 8 15 1 6 8 7 7 - 8 16 7 3

13: 1 4 2 3 12 2 8 6 2 10 3 8 - 7 11 14

14: 5 6 3 1 3 3 3 2 3 12 17 16 7 - 12 15

15: 5 3 3 12 13 3 16 2 11 1 2 7 11 12 - 8

16: 3 3 10 1 14 3 3 4 7 4 15 3 14 15 8

Cycle structure clique analysis:

Clique size Allowable cycle Allowable row # cliques

types permutation numbers

3 (3) 2,5,6,9, 10, 14, 17 8

5 (5) 4,7,9, 13, 14 ° 7 (7), (4,3) 5,7, 10, 12, 17 ° 8 (8), (5, 3), (4, 4) 10, 14, 15,16, 17 °
The 8 3-cliques are:

{l,8,9}, {l,8,14}, (l,8,lS}, {2,8,14}, {3,13,16}, {8,9,13}, {8,ll,14}, {S,ll,lS}

It can be quickly confirmed that none of these cliques are associated with a 3-cyc1e on a common

set of elements.

224

2. Subsquare free Latin square of order 18

The following is the SFLS of order 18 produced by our algorithm:

14 9 16 6 17 15 1 13 4 11 10 18 5 2 8 3 12 7

16 4 8 10 2 18 9 14 15 13 11 17 3 5 7 12 6 1

13 18 4 5 8 11 7 16 10 9 15 12 17 3 6 1 14 2

11 16 1 13 15 9 12 7 18 2 6 8 4 17 10 5 3 14

2 14 17 12 3 1 18 11 13 6 9 10 15 7 16 4 5 8

9 3 18 2 12 7 13 4 8 5 17 1 6 14 11 15 10 16

5 8 14 1 11 16 17 18 9 15 12 4 2 10 3 6 7 13

18 5 7 17 14 10 8 15 2 12 1 6 16 11 4 9 13 3

10 2 3 14 6 5 11 9 16 4 8 13 7 1 18 17 15 12

8 13 11 3 7 17 4 12 6 10 16 14 9 18 15 2 1 5

4 7 12 8 10 2 3 6 5 17 13 9 1 16 14 11 18 15

17 15 13 9 5 14 6 1 7 3 4 2 10 8 12 18 16 11

6 11 2 15 4 13 5 10 14 8 3 7 18 12 1 16 9 17

12 17 5 7 1 6 15 3 11 14 18 16 8 13 2 10 4 9

7 12 10 16 9 4 14 17 3 1 5 15 11 6 13 8 2 18

15 1 9 11 18 3 10 2 12 16 7 5 13 4 17 14 8 6

3 10 6 18 16 8 2 5 1 7 14 11 12 15 9 13 17 4

1 6 15 4 13 12 16 8 17 18 2 3 14 9 5 7 11 10

Permutation types in above square:

1: (18)

2: (4,4,10)

3: (3,15)

4: (4,5,9)

5: (4,14)

6: (7,11)

7: (4,6,8)

8: (3,7,8)

9: (6,12)

10: (5,13)

11: (8,10)

12: (3,5,10)

13: (3,3,5,7)

14: (9,9)

15: (3,6,9)

225

16: (3,4,4,7)

17: (3,4,11)

18: (3,3,12)

19: (5,6,7)

20: (5,5,8)

21 : (3, 4, 5, 6)

Inter-row permutation cycle type structure:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1: 1 2 1 1 3 1 4 5 3 6 1 1 7 1 8 1 1

2: 1 9 10 11 1 9 3 1 12 1 11 13 10 14 11 6 10

3: 2 9 - 11 11 1 5 5 1 1 15 5 10 5 3 5 10 10

4: 1 10 11 16 12 3 10 1 1 8 5 10 6 14 11 11 6

5: 1 11 11 16 - 1 6 6 2 17 15 11 5 5 5 10 5 9

6: 3 1 1 12 1 1 1 6 3 16 12 1 4 2 1 1 4

7: 1 9 5 3 6 1 6 8 18 15 6 10 14 5 6 10 5

8: 4 3 5 10 6 1 6 - 15 1 1 3 5 16 13 3 9 11

9: 5 1 1 1 2 6 8 15 - 3 10 1 1 1 19 1 12 1

10: 3 12 1 1 17 3 18 1 3 - 3 12 1 1 19 20 1 1

11: 6 1 15 8 15 16 15 1 10 3 - 1 18 1 7 18 2 12

12: 1 11 5 5 11 12 6 3 1 12 1 - 5 3 5 10 9 14

13: 1 13 10 10 5 1 10 5 1 1 18 5 3 3 10 3 10

14: 7 10 5 6 5 4 14 1~ 1 1 1 3 3 - 5 3 13 11

15: 1 14 3 14 5 2 5 13 19 19 7 5 3 5 - 3 21 11

16: 8 11 5 11 10 1 6 3 1 20 18 10 10 3 3 6 5

17: 1 6 10 11 5 1 10 9 12 1 2 9 3 13 21 6 5

18: 1 10 10 6 9 4 5 11 1 1 12 14 10 11 11 5 5

Cycle structure clique analysis:

Clique size Allowable cycle

types

Allowable row

permutation numbers

cliques

3

5

7

8

9

(3)

(5)

3,8, 12, 13, 15, 16, 17, 18,21

4, 10, 12, 13, 19, 20, 21

(7), (4, 3) 6,8, 13, 16, 17, 19, 21

(8), (5, 3), (4,4) 2,7,8, 11, 12, 13, 16, 20,21

(9), (6, 3), (5,4), (3, 3, 3) 4, 14, IS, 21

226

14

°
° o

°

The 14 3-cliques are:

(1,6, IO}, (4,5, II}, {4, 6, II}, (4, 7, II}, (5, 10, II}, {6, 10, II}, (6, 10, 12}, (7,9, IO), {7, 10, II},

(8, 12, 14), (8, 14, 16), {8, 15, 16}, {13, 14, 17l, (13, 15, 17}

It can be quickly confirmed that none of these cliques are associated with a 3-cycle on a common

set of elements.

References

[1] Emile Aarts, Jan Korst, Simulated annealing and Boltzmann machines - A stochastic

approach to combinatorial optimization and neural computing (Wiley, 1989).

[2] L. D. Andersen, E. Mendelsohn, A direct construction for Latin squares without proper

subsquares, Ann. Discrete Math. 15 (1982), 27-53.

[3] V. Cerny, Thermodynamical approach to the traveling salesman problem: an efficient

simulation algorithm, J. Optimization Theory and Applications 45 (1985), 41-51.

[4] J. Denes, A.D. Keedwell, Latin squares and their applications(Academic Press, 1974).

[5] R.H.F. Denniston, Remarks on Latin Squares with no subsquares of order two,

Utilitas Math. 13 (1978), 299-302.

[6] P.B. Gibbons, E. Mendelsohn, The existence of a subsquare free Latin square of side 12,

Siam J. Alg. Disc. Meth. 8,1(1987), 93 - 99.

[7] K. Heinrich, Latin squares with no proper subsquares, J. Combin. Theory Ser. A

(1980), 346-353.

[8] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing,

Science 220 (1983), 671-680.

[9J A. Kotzig, c.c. Lindner, A. Rosa, Latin squares with no subsquares of order two and

disjoint Steiner triple systems, Utilitas Math 7 (1975), 287-294.

227

[10] A. Kotzig, J. Turgeon, On certain constructions for Latin squares with no subsquares

of order two, Discrete Math. 16 (1976), 263-270.

[11] P.J.M. van Laarhoven, Theoretical and computational aspects of simulated annealing,

Erasmus University, Rotterdam, Ph.D. thesis (available as a CWI Tract, 1988).

[12] R.A. Mathon, Private communication.

[13] M. McLeish, On the existence of Latin squares with no subsquares of order two,

Utilitas Math. 8 (1975), 41-53.

[14] E. Mendelsohn, A. Rosa, One-factorizations of the complete graph A survey,

J. Graph Theory 9 (1985), 43-65.

[15] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state

calculations by fast computing machines, J. Chern. Physics 21 (1953), 1087-1092.

[16] D.R. Stinson, Hill-climbing algorithms for the construction of combinatorial designs,

Annals of Discrete Maths., 26 (1985), 321 - 334.

228

