










than approximations to them. With this modified goal, our measure of effectiveness will be 

based on the running time of the algorithm and the strike rate for obtaining optimal solutions. 

However, it would be unreasonable to expect such running times to be polynomially bounded. 

Although the hill-climbing method has been applied to existence and enumeration problems 

in combinatorics (see, for example, Stinson [16]), it appears that simulated annealing has not 

been widely used. Mathon [12] has used the method successfully to construct balanced 

incomplete block designs, and in this paper we adapt his method to the construction of 

subsquare free Latin squares. 

Gibbons and Mendelsohn [61 observed that applying the N 2 condition provides a useful 

screening check in the search for sub square free Latin squares - the check is easily applied and 

there is a high chance that an N2LS will in fact be a SFLS. The goal of a simulated annealing 

algorithm will therefore be to start with an initial random Latin square, and then perform 

elementary changes in an attempt to reduce the number of 2 x 2 subsquares. That is, our state 

will be a Latin square, and our cost function will be the number of 2 x 2 subsquares contained 

in it. We apply an elementary change which maintains the Latin square property, but which 

hopefully destroys 2 x 2 subsquares. This elementary change is described as follows. 

Suppose x and yare elements, and, a row, of a Latin square L of side n. Define the (r, a, 

b)-cycle of L as the sequence «'1' c1), ('2' c2),···, ('nt em»' where'l = " '2" .. , 'mare rows 

of L, cl ' c2"'" cm are columns of L, and 

(1 ) If i is even, 

(2) If i is odd, 

For example, suppose L is the following Latin square of side 8: 

8 2 3 4 5 6 7 1 

2 3 1 5 6 7 8 4 

3 5 4 8 7 1 6 2 

4 6 8 3 1 5 2 7 

5 8 7 1 3 2 4 6 

6 7 5 2 8 4 1 3 
7 1 2 6 4 3 5 8 

1 4 6 7 2 8 3 5 

In this square the elements of the (1,1, 8)-cycle, «(1,8), (7,8), (7,2), (5, 2), (5,4), (3,4), (3, 6), 
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(8, 6), (8, V, (I, V), have been highlighted. There is only one other cycle involving the 

elements 1 and 8, and that is the (2, 1, 8)-cycle «2,3), (4,3), (4, 5), (6,5), (6, 7), (2, 7». 

From the properties of a Latin square, it is clear that such cycles are well defined. More 

importantly, if the elements making up a cycle in a Latin square are rotated, then a new (in 

general non-isomorphic) Latin square will be obtained. Such a rotation can therefore be used 

as a transition operation in a simulated annealing algorithm. Since our goal is to alter the 

number of subsquares (hopefully downwards), we should choose cycles which pass through an 

element of a 2 x 2 subsquare. For example, the above square contains exactly 1 2 x 2 

subsquare, viz. the subsquare with (R, C, E) ::: «4,5), (4, 5), (1,3». The (1, I, 8)-cycle passes 

through the element 1 at position (5, 4) in this square (and no other elements). Therefore, if 

we rotate this cycle, the subsquare will be destroyed. In general other subsquares may be 

created by this transformation. Also, if the cycle passes through more than one element of 

the subsquare, a new subsquare in the same position will be created. 

Applying a rotation to the (1, 1, 8)-cycle we produce the following Latin square which is N 2 

(and also sub square free): 

1 2 3 4 5 6 7 8 

2 3 1 5 6 7 8 4 

3 5 4 1 7 8 6 2 

4 6 8 3 1 5 2 7 

5 1 7 8 3 2 4 6 

6 7 5 2 8 4 1 3 

7 8 2 6 4 3 5 1 

8 4 6 7 2 1 3 5 

We now have the basis for a simulated annealing algorithm in which the state corresponds to 

a Latin square and the energy level corresponds to the number of subsquares of side 2. For our 

transition operation we select a random subsquare 5 = «r1,r2)' (c1,c2)' (el,e2» of side 2. We 

then select a random element x # el,e2' a random element y E (e1,e2J and perform a rotation 

on the ('1' x, y)-cycle. 

For our temperature decrement function we chose to multiply the temperature by a constant 

a< I, i.e. Tk+1 = aTk' We shall call a the control decrement. Also, we kept the length of 

the Markov chain the same for each new value of the control temperature. For our stopping 

condition we chose to terminate the algorithm once the cost function of the best solution 
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obtained in the last Markov chain remains unchanged for a number of consecutive chains. The 

number of such chains we shall call the freezing factor. 

4. Results 

The above described simulated annealing algorithm was first implemented in the language C 

on Apple Macintosh computers, and then later on faster DecStation 2100's running under the 

UNIX operating system. Initially we tested the algorithm with Latin squares of orders 8 

and 12 in an attempt to get a feel for the best type of cooling schedule to employ. We also 

wished to see how effective the N2 condition is in producing completely subsquare free Latin 

squares. 

Although Aarts & Korst [1] and others have shown that it is possible in theory to set a cooling 

schedule which guarantees production of an optimal solution (in this case an N2LS), such a 

schedule in practice usually requires a number of transitions that is typically larger than the 

size of the solution space, leading to an expected exponential-time execution of the 

algorithm. Instead we therefore ran a number of iterations of a cooling schedule which 

requires a polynomial number of transitions, and recorded the number of N2LS's generated. 

Building on Mathon's experience with annealing algorithms for building block designs, we 

used the following cooling schedule: 

Initial temperature: 

Control decrement: 

Markov chain length: 

Freezing factor: 

1.0 

0.9995 

350 

12 

Order 8 N2LS's were constructed very easily. In the order 12 case, on a DecStation 2100 we 

were able to generate 33 N2LS's over a 12 hour period1, Of these 33 squares, one was found 

to contain a subsquare of order 3. The remaining 32 were found to be completely subsquare 

free. 

The success of this method with the order 12 case encouraged us to go after the order 16 and 

order 18 cases. Although N2LS's of these orders are known to exist, the existence of SFLS's of 

these orders had not yet been established. Running the algorithm on a DecStation 2100 with 

the above cooling schedule, we were able to generate 2 N2LS's of order 16 over a 48 hour 

period. Both of these squares were found to be completely subsquare free. In the order 18 case 

we were able to generate 1 N2LS, which turned out to be subsquare free, over a 7-day period. 

This order 18 SFLS is displayed and analysed in the Appendix, along with one of the order 

1 All times mentioned are processing times rather than elapsed times 
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16 SFLS's. 

The next unknown case is of order 24 (= 2331). Currently we have been unable to obtain an 

N2LS of this order, the best square produced containing 3 subsquares of order 2. In order to 

fine tune the algorithm to have the best chance of finding an N2LS we decided to investigate 

the effect of varying the cooling schedule in the search for N2LS's of order 12. The following 

results were obtained. 

We began by studying the effect of changing the initial value of the control parameter 

(temperature), while holding the control decrement, Markov chain length, and freezing 

factor constant at 0.9995, 350, and 12 respectively. The results in this and most of the 

following experiments were obtained from runs over a 12 hour period: 

Initial Initial # trials N2LS's Strike Rate Average Drop 

Ratio Generated Out Temp 

1.0 13% 124 29 23% 0.6957 

2.0 48% 45 13 29% 0.7287 

3.0 56% 33 14 42% 0.8034 

4.0 78% 27 14 52% 0.7633 

5.0 82% 24 13 54% 0.7796 

6.0 85% 21 9 43% 0.7117 

7.0 89% 20 7 35% 0.7289 

From this table it can be seen that, with the other parameters in the cooling schedule held 

constant at the given values, it does not appear to pay to start at a high temperature both in 

terms of the number of N2LS's generated in a set period, and the strike rate «number of 

N2LS's generated) I (number of trials». This is surprising given the recommendation, for 

example in [1], to begin with a temperature which results in an acceptance ratio of close to 1. 

It may be, of course, that altering some of the other parameter values would improve the 

algorithm's performance with the higher starting temperatures. This needs to be the subject 

of a further investigation. In the meantime we decided to use a starting temperature of 1.0 for 

the remaining experiments. 

We next studied the effect of varying the value of the control decrement, while holding the 

chain length and freezing factor constant at 350 and 12 respectively. 
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Control # trials N2LS's Strike Rate Average Drop 

Decrement Out Temp 

0.95 2939 32 1% 0.2518 

0.995 707 47 7% 0.5266 

0.9995 124 33 27% 0.6929 

0.99995 43 40 93% 0.9039 

In terms of strike rate, the above results illustrate the tradeoff between the value of the 

decrement of the control parameter and the length of the Markov chain. Large decrements in 

the control parameter will require longer Markov chain lengths in order to restore quasi 

equilibrium at the next value of the control parameter. It is clear that with the chain length 

held constant we have a better chance of reaching equilibrium with a smaller decrement 

value, and hence a better chance of obtaining an optimal solution. However, in terms of the 

number of N2LS's generated, the results are less conclusive. The 47 N2LS's generated with a 

control decrement of 0.995 goes against the trend of more squares generated for higher values 

of the control decrement. The low strike rate achieved for this value lead us to reject it in 

favour of 0.99995 for the remaining experiments. 

The next parameter to be varied was the Markov chain length, with the control decrement 

and freezing factor held constant at 0.99995 and 12 respectively. 

Chain 

Length 

100 

200 

300 

400 

500 

# trials 

138 

56 

39 

28 

39 

N2LS's 

35 

27 

32 

24 

37 

Strike Rate 

25% 

48% 

82% 

86% 

95% 

Average Drop 

Out Temp 

0;8921 

0.8665 

0.8726 

0.8687 

0.9239 

These results again illustrate the fact that longer Markov chain lengths will give the 

algorithm a better chance of reaching equilibrium at each new value of the control parameter. 

However, as with the previous table, the results are less conclusive in suggesting the best 

chain length to use to maximise the numbers of squares obtained in a set time period. In [1] it 

suggested that the length should be chosen so as to give the algorithm a sufficiently large 

probability of visiting at least a major part of the neighbourhood of a given feasible solution. 

This is quantified by taking the length equal to the size of the neighbourhood of a given 
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feasible solution. In our case the neighbourhood depends on the number of 2 x 2 subsquares in 

the current square, and this number decreases as the algorithm progresses. The initial random 

Latin square contains 32 2 x 2 subsquares on average, resulting in a neighbourhood size of (12-

2)*2*32 = 640. However, the number of subsquares rapidly decreases to less than 10 after the 

start of the algorithm, resulting in a typical neighbourhood size of 200. In the interests of 

achieving a reasonably high strike rate we opted to continue with a chain length of 350 for 

the remaining experiment. However it is dear that more tests are required here, including 

the option of varying the chain length at each new value of the control parameter depending 

on the size of the neighbourhood of the first feasible solution in the chain. 

Our final experiment tested the effect of varying the freezing factor with the control 

decrement and chain length held constant at 0.99995 and 500 respectively. The results, 

obtained over a 24 hour period, were as follows: 

Freezing 

Factor 

4 

6 

8 

10 

12 

# trials 

468 

105 

59 

63 

55 

N2LS's 

41 

56 

46 

56 

53 

Strike Rate Average Drop 

Generated Out Temp 

9% 0.9865 

53% 0.9414 

78% 0.8985 

89% 0.9056 

96% 0.8921 

It is dear that as the freezing factor increases (Le. we continue the annealing process longer) 

the strike rate should increase and the number of trials per unit time should decrease. The 

average drop-out temperature should also decrease with increasing freezing factor values. 

The above results conform to this expectation. In terms of the number of optimal solutions per 

unit time the best results were for freezing factors of 6 and 10. Certainly there would be no 

point in continuing beyond 12 since the strike rate is very close to 100% and the number of 

trials will decrease. Because of the high strike rate we favoured a freezing factor of 10 or 

12. 

What is interesting about this table, and others in this section, is the fact that we are getting 

good results at high drop-out temperatures. The results in this latest experiment were 

obtained within a relatively narrow temperature interval of around 0.11. However, we must 

remember that we have begun at a temperature which results in an initial acceptance ratio of 

around 13%, already well below the recommended value of around 90%. The resulting 

probability of accepting uphill moves must be enough both to provide a good chance of getting 

out of local minima and of directing the search toward global optima. 
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5. Conclusions 

In this paper we have applied the well-known simulated annealing method to an 

optimisation problem where we require optimal solutions rather than close approximations to 

them. We are assisted by the fact that we can easily detect an optimal solution when we 

have found one. 

The problem in question is that of generating subsquare free Latin squares, and the method 

was successful in generating such squares of orders 16 and 18, the smallest orders for which 

existence of such squares was previously in doubt. The algorithm has so far been unsuccessful 

in generating a SFLS of order 24, the next order for which existence has not yet been decided. 

Some experimentation was carried out with the generation of SFLS's of order 12 in order to 

try to determine the combination of parameter values most likely to generate a solution in a 

set period of time. While giving some pointers to likely parameter values, it is clear that a 

more elaborate statistical experiment is required for us to more accurately predict the 

combination of cooling schedule parameters most likely to product optimal solutions in a set 

period of time. Such an analysis would be valuable since the method holds some promise of 

solving other combinatorial existence problems of this type. 

6. Acknowledgements 

The authors are grateful to R.A. Mathon for allowing us to experiment with his simulated 

annealing algorithm for the construction of block designs: Many of his ideas were 

incorporated into our Latin square algorithm. The authors would also like to thank c.J. 
Colboum for helpful discussions relating to the choice of transition operation. 

220 



Appendix 

In this appendix we list SFLS's of orders 16 and 18, along with an analysis which helps 

display the fact that these squares are subsquare free. A similar analysis was used in [6] to 

show that a Latin square of side 12 was subsquare free. In this analysis we use the fact that 

in a Latin square L of order n any pair of rows defines a permutation of the n elements - we 

shall call this a row permutation. The Latin square property prescribes that there is no row 

permutation containing fixed elements, Le. cycles of length 1. In addition, for L to be N 2, a 

necessary and sufficient condition is that there is no row permutation containing a 2-cycle. 

Unfortunately this doesn't generalize for L to be p x p (2 < P ::; n ) subsquare free (N p)' 

However the cycle structure of row permutations can be very useful in checking for possible 

subsquares of a Latin square. 

We note the following points in checking for subsquares of a given Nz Latin square L of side 

n: 

(a) The largest possible subsquare is of side n12. 

(b) The existence of a 3 x 3 subsquare implies the existence of a set of 3 rows each pair of 

which has a 3-cycle in its row permutation (and on the same set of elements). 

(c) Since a SFLS of order 4 does not exist, L cannot contain any subsquares of side 4 (since 

there are no 2 x 2 subsquares in L). 

(d) The existence of a 5 x 5 subsquare implies the existence of a set of 5 rows each pair of 

which has a 5-cycle in its row permutation (and on the same set of elements). Note 

that the cycle type (2,3) cannot occur in any row permutation involving this square 

since L is Nz. 

(e) Since a SFLS of order 6 does not exist, the existence of a 6 x 6 subsquare in L implies 

the existence of a 3 x 3 subsquare in L. 

(f) In checking for possible subsquares of orders 7, 8, and 9, we note that the only 

allowable cycle types of row permutations associated with such subsquares are as 

follows: 

7: (7), (4,3) 

8: (8), (5, 3), (4, 4) 

9: (9), (6,3), (5, 4), (3,3,3) 
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The above observations lead to the following necessity check for an N 2 Latin square L of 

order 16 or 18 to contain subsquares. Construct a series of graphs Gi , i = 3, 5, 7, 8 (and 9 in 

the case of order 18) in which the vertices of Gi represent the rows of L, and in which two 

vertices hand k are adjacent if and only if rows hand k form a permutation containing an 

allowable cycle type associated with i, where the allowable cycle types are as follows: 

Allowable cycle types 

3 (3) 

5 (5) 

7 (7), (4,3) 

8 (8), (5,3), (4, 4) 

9 (9), (6,3), (5, 4), (3,3, 3) 

A clique analysis can be performed on each such graph Gi to determine that it contains no i -

cliques, and therefore that the square contains no i xi subsquares. 

This may not be the most efficient way to determine that Lis subsquare free. However, it is 

useful in displaying subsquare free property of L. 

As a final check we subjected each square to a dedicated subsquare checking algorithm which 

works as follows. Choose any pair of cells in the same row and generate the smallest square 

containing them. This involves 8(n2) amount of work for each pair. There are 8(n3 ) pairs 

which means that the subsquare checker has complexity 8(nS) . 
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1. Subs quare free Latin square of order 16 

The following is one of the SFLS's of order 16 produced by our algorithm: 

8 7 14 5 11 2 9 16 1 6 12 10 13 4 3 15 

11 10 5 12 2 9 15 14 16 8 4 3 1 7 13 6 

9 13 12 15 7 1 3 4 6 2 10 5 14 11 16 8 

111 4 2 10 14 8 5 7 12 3 13 15 6 9 -16 

5 2 9 10 1 8 11 3 12 15 13 7 16 14 6 4 

12 4 7 1 13 6 5 15 11 9 16 8 3 2 14 10 

3 14 16 7 5 10 6 13 8 1 9 4 11 15 2 12 

10 3 1 13 14 11 12 9 5 4 6 16 2 8 15 7 

13 16 11 4 9 7 14 6 2 5 8 15 10 3 12 1 

4 1 8 9 6 15 10 11 13 16 2 14 7 12 5 3 

6 8 13 14 12 16 7 1 3 11 15 2 4 5 10 9 

2 6 3 8 15 12 16 10 14 13 7 11 9 1 4 5 

15 9 10 6 3 13 2 8 4 7 11 12 5 16 1 14 

7 12 15 16 4 5 1 2 10 3 14 6 8 9 11 13 

16 5 2 3 8 4 13 12 15 14 1 9 6 10 7 11 

14 15 6 11 16 3 4 7 9 10 5 1 12 13 8 2 

Permutation types in above square: 

1: (6,10) 

2: (3,13) 

3: (16) 

4: (5,11) 

5: (3,6,7) 

6: (3,3,10) 

7: (4,5,7) 

8: (4,12) 

9: (3,3,5,5) 

10: (3,4,9) 

11: (4,6,6) 

12: (7,9) 

13: (5,5,6) 

14: (3,5,8) 

15: (8,8) 

16: (4,4,8) 

17: (3,3,4,6) 
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Inter-row permutation cycle type structure: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1: 1 2 3 4 4 1 5 2 6 7 8 1 5 5 3 

2: 1 - 8 5 9 1 8 10 1 11 3 12 4 6 3 3 

3: 2 8 - 3 8 1 12 3 4 3 5 4 2 3 3 10 

4: 3 5 3 3 5 3 12 3 8 2 3 3 1 12 1 

5: 4 9 8 3 - 2 4 3 4 3 10 8 12 3 13 14 

6: 4 1 1 5 2 8 3 4 11 3 15 2 3 3 3 

7: 1 8 12 3 4 8 - 14 1 3 7 1 8 3 16 3 

8: 5 10 3 12 3 3 14 - 14 4 17 6 6 2 2 4 

9: 2 1 4 3 4 4 1 14 - 7 3 8 2 3 11 7 

10: 6 11 3 8 3 11 3 4 7 - 1 7 10 12 1 4 

11: 7 3 5 2 10 3 7 17 3 1 - 7 3 17 2 15 

12: 8 12 4 3 8 15 1 6 8 7 7 - 8 16 7 3 

13: 1 4 2 3 12 2 8 6 2 10 3 8 - 7 11 14 

14: 5 6 3 1 3 3 3 2 3 12 17 16 7 - 12 15 

15: 5 3 3 12 13 3 16 2 11 1 2 7 11 12 - 8 

16: 3 3 10 1 14 3 3 4 7 4 15 3 14 15 8 

Cycle structure clique analysis: 

Clique size Allowable cycle Allowable row # cliques 

types permutation numbers 

3 (3) 2,5,6,9, 10, 14, 17 8 

5 (5) 4,7,9, 13, 14 ° 7 (7), (4,3) 5,7, 10, 12, 17 ° 8 (8), (5, 3), (4, 4) 10, 14, 15,16, 17 ° 
The 8 3-cliques are: 

{l,8,9}, {l,8,14}, (l,8,lS}, {2,8,14}, {3,13,16}, {8,9,13}, {8,ll,14}, {S,ll,lS} 

It can be quickly confirmed that none of these cliques are associated with a 3-cyc1e on a common 

set of elements. 

224 



2. Subsquare free Latin square of order 18 

The following is the SFLS of order 18 produced by our algorithm: 

14 9 16 6 17 15 1 13 4 11 10 18 5 2 8 3 12 7 

16 4 8 10 2 18 9 14 15 13 11 17 3 5 7 12 6 1 

13 18 4 5 8 11 7 16 10 9 15 12 17 3 6 1 14 2 

11 16 1 13 15 9 12 7 18 2 6 8 4 17 10 5 3 14 

2 14 17 12 3 1 18 11 13 6 9 10 15 7 16 4 5 8 

9 3 18 2 12 7 13 4 8 5 17 1 6 14 11 15 10 16 

5 8 14 1 11 16 17 18 9 15 12 4 2 10 3 6 7 13 

18 5 7 17 14 10 8 15 2 12 1 6 16 11 4 9 13 3 

10 2 3 14 6 5 11 9 16 4 8 13 7 1 18 17 15 12 

8 13 11 3 7 17 4 12 6 10 16 14 9 18 15 2 1 5 

4 7 12 8 10 2 3 6 5 17 13 9 1 16 14 11 18 15 

17 15 13 9 5 14 6 1 7 3 4 2 10 8 12 18 16 11 

6 11 2 15 4 13 5 10 14 8 3 7 18 12 1 16 9 17 

12 17 5 7 1 6 15 3 11 14 18 16 8 13 2 10 4 9 

7 12 10 16 9 4 14 17 3 1 5 15 11 6 13 8 2 18 

15 1 9 11 18 3 10 2 12 16 7 5 13 4 17 14 8 6 

3 10 6 18 16 8 2 5 1 7 14 11 12 15 9 13 17 4 

1 6 15 4 13 12 16 8 17 18 2 3 14 9 5 7 11 10 

Permutation types in above square: 

1: (18) 

2: (4,4,10) 

3: (3,15) 

4: (4,5,9) 

5: (4,14) 

6: (7,11) 

7: (4,6,8) 

8: (3,7,8) 

9: (6,12) 

10: (5,13) 

11: (8,10) 

12: (3,5,10) 

13: (3,3,5,7) 

14: (9,9) 

15: (3,6,9) 

225 



16: (3,4,4,7) 

17: (3,4,11) 

18: (3,3,12) 

19: (5,6,7) 

20: (5,5,8) 

21 : (3, 4, 5, 6) 

Inter-row permutation cycle type structure: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1: 1 2 1 1 3 1 4 5 3 6 1 1 7 1 8 1 1 

2: 1 9 10 11 1 9 3 1 12 1 11 13 10 14 11 6 10 

3: 2 9 - 11 11 1 5 5 1 1 15 5 10 5 3 5 10 10 

4: 1 10 11 16 12 3 10 1 1 8 5 10 6 14 11 11 6 

5: 1 11 11 16 - 1 6 6 2 17 15 11 5 5 5 10 5 9 

6: 3 1 1 12 1 1 1 6 3 16 12 1 4 2 1 1 4 

7: 1 9 5 3 6 1 6 8 18 15 6 10 14 5 6 10 5 

8: 4 3 5 10 6 1 6 - 15 1 1 3 5 16 13 3 9 11 

9: 5 1 1 1 2 6 8 15 - 3 10 1 1 1 19 1 12 1 

10: 3 12 1 1 17 3 18 1 3 - 3 12 1 1 19 20 1 1 

11: 6 1 15 8 15 16 15 1 10 3 - 1 18 1 7 18 2 12 

12: 1 11 5 5 11 12 6 3 1 12 1 - 5 3 5 10 9 14 

13: 1 13 10 10 5 1 10 5 1 1 18 5 3 3 10 3 10 

14: 7 10 5 6 5 4 14 1~ 1 1 1 3 3 - 5 3 13 11 

15: 1 14 3 14 5 2 5 13 19 19 7 5 3 5 - 3 21 11 

16: 8 11 5 11 10 1 6 3 1 20 18 10 10 3 3 6 5 

17: 1 6 10 11 5 1 10 9 12 1 2 9 3 13 21 6 5 

18: 1 10 10 6 9 4 5 11 1 1 12 14 10 11 11 5 5 

Cycle structure clique analysis: 

Clique size Allowable cycle 

types 

Allowable row 

permutation numbers 

# cliques 

3 

5 

7 

8 

9 

(3) 

(5) 

3,8, 12, 13, 15, 16, 17, 18,21 

4, 10, 12, 13, 19, 20, 21 

(7), (4, 3) 6,8, 13, 16, 17, 19, 21 

(8), (5, 3), (4,4) 2,7,8, 11, 12, 13, 16, 20,21 

(9), (6, 3), (5,4), (3, 3, 3) 4, 14, IS, 21 
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The 14 3-cliques are: 

(1,6, IO}, (4,5, II}, {4, 6, II}, (4, 7, II}, (5, 10, II}, {6, 10, II}, (6, 10, 12}, (7,9, IO), {7, 10, II}, 

(8, 12, 14), (8, 14, 16), {8, 15, 16}, {13, 14, 17l, (13, 15, 17} 

It can be quickly confirmed that none of these cliques are associated with a 3-cycle on a common 

set of elements. 
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