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Abstract. 

We show that, in any colouring of the edges of K53 with two colours, there exists a 

monochromatic K 5 , and hence R(5, 5) ~ 53. This is accomplished in three stages: a full 

enumeration of (4,4)-good graphs, a derivation of some upper bounds for the maximum 

number of edges in (4,5)-good graphs, and a proof of the nonexistence of (5,5)-good graphs 

on 53 vertices. Only the first stage required extensive help from the computer. 

1. Introduction. 

The two-colour Ramsey number R( k, 1) is the smallest integer n such that, for any graph 

F on n vertices, either F contains Kk or F' contains Kj, where P denotes the complement 

of F. A graph F is called (k, I)-good if F does not contain a Kk and F' does not contain 

a K 1• The best upper bound known previously, R(5, 5) ~ 55, is due to Walker (1971 [7]). 

The best lower bound, R(5,5) ;:::: 43, was obtained by Exoo (1989 [1]), who constructed a 

(5,5)-good graph on 42 vertices. 

Throughout this paper we will also use the following notation: 

N F(X) - the neighbourhood of vertex x in graph F 

degF(x) 

n(F), e(F) 

t(F) 

f(F) 

V(F) 
(k, 1, n)-good graph 

e(k,I,n) 

E(k, 1, n) 

t(k, 1, n) 

- the degree of vertex x in graph F 

- the number of vertices and edges in graph F 

- the number of triangles in F 

the number of independent 3-sets in graph F; i.e. t(F') 
- the vertex set of graph F 

- a (k, I)-good graph on n vertices 

- the minimum number of edges in any (k, 1, n)-good graph 

- the maximum number of edges in any (k, 1, n)-good graph 

- the minimum number of triangles in any (k, 1, n)-good graph 
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Let n = IV(F) I and let ni be the number of vertices of degree i in F. The well-known 

theorem of Goodman [2] says that 

( ) 

n-:l 

t(F) + f(F) = ; - ~ ~ i(n - i - 1)ni. (1) 

In his study of the Ramsey numbers R(k, 1), Walker [6] observed that if F is a (k, I, n)

good graph then 

t(F) + f(F) s:; ~ E (E(k-l, I, i) - e(k, I-I, n-i-l) + (n - i - l))ni. 
3 i=O 2 

Let x E V be a fixed vertex in a (k, l)-good graph F and consider the two induced subgraphs 

of F, G x and H x , where V(G x ) = N F(x) and V(Hx) = V -( {x }UV(Gx )). Note that G x and 

Hx are (k-l, I)-good and (k, I-I)-good graphs, respectively. We define the edge-deficiency 

8 ( x) of vertex x to be 

The edge deficiency 8 (x) measures how close to extremal graphs the subgraphs G x and H x 

are. Clearly, 8(x) ~ o. One can also easily see that 

(2) 

It is convenient to define the edge deficiency L1(F) of a (k, l)-good graph F by 

L1(F) = L 8(x). (3) 
x€V(F) 

The first lemma below, similar to (1) in [6], gives a strong condition which permits us 

to restrict the search space for (k, l)-good graphs. 

Lemma 1. If ni is the number of vertices of degree i in a (k, l, n)-good graph F then 

n-l 

Os:; 2L1(F) = L(2E(k-1,l,i)+2E(I-1,k,n-i-1)+3i(n-i 1)-(n-I)(n-2))ni. (4) 
i=O 

Proof. Observe that for all x E V(F) the number of triangles containing x is equal to 

e(Gx) and the number of independent 3-sets containing x is equal to e(Hx). Hence by (2), 

3(t(F) + f(F)) = L (e(G x) + e(Hx)) 

and so by (3) we have 

x€V(F) 

= L (E(k-1, l, n(Gx )) + E(l-I, k, n(Hx)) - 8(x)), 
xEV(F) 

n-l 

o s:; L1(F) = L (E(k-l, l, i) + E(l-I, k, n-i-l))ni - 3(t(F) + f(F)). 
i=O 

Now using (1) and I:~ol nj = n, we obtain (4). I 
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2. Generation of aU (4, 4)-good graphs. 

This section describes how we generated the set of all (4,4)-good graphs. Let us denote 

by R(4,4,n) the set of all (4,4,n)-good graphs and let R'(4,4,n) be the subset of those 

F E R( 4, 4, n) with maximum degree D at most (n - 1) /2. The result of applying the 

permutation a to the labels of any labelled object X will be denoted by X cx , and also 

Aut(F) is the automorphism group of the graph F, as a group of permutations of V(F). 

Suppose that 8 is a function defined on Un~2 R' (4,4, n) which satisfies these properties: 

(i) 8(F) is an orbit of Aut(F), 

(ii) the vertices in 8(F) have maximum degree in F, and 

(iii) for any F, and any permutation a of V(F), 8(FCX) = 8(F)cx. 

It is easy to implement a function satisfying the requirements for 8 by using the program 

nauty [3]. Given (), and F E R'(4,4,n) for some n ~ 2, the parent of F is the graph par(F) 

formed from F by removing the first vertex in 8(F) and its incident edges. The properties 

of 8 imply that isomorphic graphs have isomorphic parents. It is also easily seen that 

par(F) E R' (4,4, n-1). Since R' (4,4,1) = {KIl, we find that the relationship "par" defines 

a rooted directed tree T whose vertices are the isomorphism classes of Un~l R' (4,4, n), with 

the graph Kl at the root. If v is a node of T, then the children of v are those nodes v' of 

T such that for some F E v' we have par(F) E v. The set of children of v can be found by 

the following algorithm, whose correctness follows easily from the definitions: 

(a) Let F be any representative of the isomorphism class v. 

Suppose that F has n vertices and maximum degree D. 

(b) Let L L(F) be a list of all subsets X of V(F) such that 

(b.l) either IXI > D, or IXI = D and X does not include any vertex of degree D, 

(b.2) X intersects every independent set of size 3 in F, 

(b.3) X does not include any triangle of F, and 

(b.4) if F(X) is the graph of order n + 1 formed by joining a new vertex x to X, 

then x E ()(F(X)). 

(c) Remove isomorphs from amongst the set {F(X) I X E L}. 

The remaining graphs form a set of distinct representatives for the children of v. 

The primary advantage of this method is that isomorph rejection need only be per

formed within very restricted sets of graphs. For example, even though IR' (4,4, 12) I = 
909767, no isomorphism class of R' (4,4, 11) has more than 58 children. 

The full set Un~l R'(4, 4, n) was found by this method. Altogether, 5623547 sets X 

passed conditions (b.l)-(b.3), and 2165034 passed condition (b.4) as well. The total size of 

R' (4,4, n) for all n is 2065740, which is only slightly less because most (4,4)-good graphs 

have no nontrivial automorphisms. There are altogether 3432184 nonisomorphic (4,4)-good 
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graphs. The total execution time on a 12-mip computer was 9.4 hours, or 6 milliseconds 
per invocation of the program nauty. In particular, we obtained the information gathered 
in Table 1. 

n 4 5 6 7 8 9 10 
IR(4, 4, n)1 9 24 84 362 2079 14701 103706 
E(4,4,n) 5 8 12 16 21 27 31 
t( 4,4, n) 0 0 0 0 0 1 4 

n 11 12 13 14 15 16 17 
IR(4,4,n)1 546356 1449166 1184231 130816 640 2 1 
E(4,4,n) 36 40 45 50 55 60 68 
t(4,4,n) 7 10 17 25 38 56 68 

Table I. Some data on (4,4)-good graphs 

3. Upper bounds for E( 4,5, n). 

Walker [7J established the best upper bound so far of 28 for R(4, 5), so we know that 
any (4,5)-good graph has at most 27 vertices. No (4,5, n)-good graph is known for n 2: 25. 
The goal of this section is to derive some upper bounds for E( 4,5, n) for 24 ::; n ::; 27, 
provided such graphs exist. 

Let F be a (4,5,71, )-good graph and let ai denote the number of edges in F contained 
in i triangles. Note that ai = 0 for i 2: 5 since F is (4,5 )-good. For each x E V (F) 
consider induced subgraphs G x and H x as in Section 1, which in this case are (3,5)-good 
and (4,4)-good graphs, respectively. 

Lemma 2. 

L t(Hx) = 4a4 - 2a2 - 2al + L (71,/3 + 3 - degF(x))e(G x)· (5) 
xEV(F) xEV(F) 

Proof. For an arbitrary triangle T = ABC in F let bi (T) denote the number of vertices 
in V(F) - T adjacent to exactly i vertices in T, and let degF(T) = degF(A) + degFCB) + 
degFCC). Note that b;(T) = 0 for i 2: 3, since F has no K4 . By counting the 4-sets of 
vertices formed by any triangle T and any vertex x not adjacent to T in two different ways 
we have 

(6) 
xEV(F) T-triangle 



and one also easily notes that for each triangle T 

and 

Now (7) and (8) give 

Using (9) in (6) we obtain 

xEV(F) T-triangle 

Counting edges adjacent to points in triangles by two methods gives 

L degF(T) = 
T-triangle xEV(F) 

and one can also easily see that 

4 

3t(F) = L e(Gx ) = L iai' 
xEV(F) i=l 

By recalling the definitions of b2 (T) and ai we conclude that 

4 4 

b2(T) = L i(i - 1)ai = 4a4 

T-triangle i=2 
2a2 - 2a1 + 2 Liai' 

i=l 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Now applying (11), (12) and (13) in (10) we obtain 

1 
t(Hx) = 3(n+3) e(Gx)+4a4 -2a2-2a1 +2 L e(Gx )- degF(x)e(Gx), 

xEV(F) xEV(F) xEV(F) xEV(F) 

which can be easily converted to (5). I 

We know that for each vertex x the number of triangles in Hx is at least t( 4,4, n(Hx)), 

where n(Hx) = n - 1 degF(x). Define the triangle deficiencies ,(x) of a vertex x and 

r(F) of a graph F as 

"((x) t(Hx) - t(4,4,n(Hx)), r(F) = L "((x). (14) 
xEV(F) 

For any vertex x we obviously have ,(x) ~ o. 



Lemma 3. If F is any (4,5, n)-good graph on at least 24 vertices and F has ni vertices 

of degree i for each i) then 

13 

o ::; 3r(F) ::; L ((n + 9 - 3i)E(3, 5, i) + 6i - 3t(4, 4, n-i-1) )ni . (15) 
i=6 

Proof. Since R(3, 5) = 14 and R( 4,4) = 18, by (5) we have 

13 

3 'L t(Hx) = 12a4 - 6a2 - 6a1 + 'L 'L (n + 9 - 3i)e(Gx)' 
xEV(F) i=6 degF(x)=i 

Note that for n ;::: 24 the coefficient n + 9 - 3i is negative only for i = 13 or for i = 12 

and n = 24,25,26, hence we can use E(3, 5, i) in place of e( G x) in the following inequality 

except in those cases. 

13 

3 'L t(Hx)::; 12a4 + 'L(n + 9 - 3i)E(3, 5, i)ni 
xEV(F) i=6 

+ 'L (E(3,5,degF(x)) - e(G x ))(3degF(x) - n - 9). (16) 
degF(x)~12 

All (3,5)-good graphs are known ([5J and independently [4]). In particular, there 

exists a unique (3,5,13)-good graph, which implies that the terms in the last summation 

for degF(x) ;::: 13 are equal to zero. It is also known that E(3, 5,12) = 24 is achieved only 

by 4-regular graphs, and furthermore any (3,5,12)-good graph has only vertices of degree 

3 and/or 4. Thus if for some vertex x of degree 12 in F the graph G x is not maximal, 

i.e. e( G x) < 24, then for each vertex y of degree 3 in G x the edge {x, y} contributes to a3, 

and each edge appearing in three triangles can be accounted at most twice this way. Thus 

the second summation in the right hand side of (16) is at most 3a3 for n ;::: 24. Hence by 

e(F) ;::: a4 + a3 and (16) we find 

13 

3 'L t(Hx)::; 12e(F) + 'L(n + 9 - 3i)E(3, 5, i)ni' (17) 
xEV(F) i=6 

Finally, we can easily obtain (15) by using (14), (17) and 12e(F) = I::;!6 6ini' I 

Theorem 1. If we interpret e(k, l, n) as 00 and E(k, 1, n) as 0 for n ;::: R(k, l) then 

153::; e(4,5,27) and E(4,5,27)::; 160,130::; e(4,5,26) and E(4,5,26)::; 154, 

116 ::; e( 4,5,25) and E( 4,5,25) ::; 148, 101 ::; e( 4,5,24) and E( 4,5,24) ::; 139. 

Proof. Let F be any (4, 5, n )-good graph for some 24 ::; n ::; 27 with e edges and ni vertices 

of degree i. Consider the set of constraints formed by .L:;!6 ni = n and the conditions for 

.d(F) and reF) given by Lemmas 1 and 3, respectively. This gives a simple instance 



(for a computer) of a non-negative integer linear programming optimization problem with 

variables ni and objective function 2e = 2:~!6 ini' For n = 27 we have to minimize or 

maximize 

subject to 

27 = ng + nlO + nll + n12 + n13, 

o ::; -21ng - 10nlO - n ll + 2n12 - n 13 , (18) 

and 

(19) 

where constraint (18) is obtained from (4) and constraint (19) is obtained from (15), using 

the numerical data from Table I for t( 4,4, j), E( 4,4, i), and some of the results listed in [5], 

namely E(3, 5, i) = 2i for 10 ::; i ::; 13 and E(3, 5, 9) = 17. Also in [5] we find the values 

E(3, 5, 8) = 16, E(3, 5, 7) = 12 and E(3, 5, 6) = 9, which are needed for the calculations in 

the cases of 24 ::; n ::; 26. For n = 27 the maximal number of edges e is 160 with the unique 

possible degree sequence n12 = 23 and nll = 4. The other bounds are obtained similarly. 

We used a simple computer program to perform these calculations, and another to check 

them. I 

The numbers of edges in the known (4,5,24)-good graphs range from 118 to 132 (personal 

communication from G. Exoo). The lower bounds for e( 4,5, n) are not needed for the proof 

of R(5, 5) ::; 53; they are included in Theorem 1 for completeness. 

4. An upper bound for R(5,5). 

We are now in a position to prove our major result. 

Theorem 2. R(5,5)::; 53. 

Proof. Assume that F is a (5,5)-good graph on 53 vertices and let ni be the number of 

vertices of degree i in F. Since R( 4,5) ::; 28 we have in this case n 25 + n 26 + n 27 = 53. The 

calculation of bounds for 2.::1(F) from Lemma 1, using Theorem 1, gives 

o ::; (2·308 + 3·25·27 - 52·51)(n25 + n 27 ) + (2·308 + 3·26·26 - 52·51)n26 

= -11(n25 + n 27 ) - 8n26, 

which is a contradiction. I 

The same method does not disprove the existence of a (5,5,52)-good graph, but such a 

result would be possible if we could sufficiently improve the bounds of Theorem 1. 

1<1 
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