
Combinatorial Aspects of C.A.R. Hoare's FIND
Algorithm

Abstract

D.H. Anderson l

Operations Research Section,
Civil Aviation Authority, Australia,

GPO Box 367,
Canberra, ACT, 2601

and

R. Brown

CRA Y Research (Australia) Pty. Ltd.
283 Normanby Rd.

Port Melbourne, Vic, 3207

In his invited address to the 1971 IFIP Congress, Donald E: Knuth [1] examined the
average performance of C.A.R. Hoare's FIND algorithm [2] for finding the j-th largest
out of n elements. Knuth commented that the recurrence relation that he derived was
"not the kind of recurrence that we would normally expect to solve". Nevertheless,
he went on to solve it, commenting on the "extra.ordinary coincidence" of a certain
co:~nmon factor in each of the terms of a derived recurence relation. An extension due
to R.C. Singleton [3} to the basic algorithm, knov.;n as "median-of-three selection",
has seen widespread use in many important computational techniques applied to a.
diverse set of problems. Because of the renewed interest in median-of-three selection,
this paper addresses itself to a serious study of its average performance.

In this paper the median-of-three selection problem is formulated in combinatorial
terms and solved by generating function techniques. Closed form expressions are
presented for the average of the underlying distribution.

research was undertaken while this author was employed in the Computer Science De
partment, University College, University of New South 'Vales, Australian Defence Force Academy,
Canberra, ACT, 2600.

Australasian Journal of Combinatorics ~(1992), pp.l09-119

Introduction

C.A.R Hoare's FIND algorithm [2] solves the selection problem, namely that of finding
the j-th largest out of a set of n numbers. This problem includes the problem of
finding the median of a set of numbers becallse j can, for example, be chosen to be
l (n + 1) /2 J, where lJ is the floor function. Obviously, one way of solving the general
problem would be to sort the n numbers and then choose the j-th, but this is clearly
doing more work than is necessary. The numbers are not required to be in precise
order; all that is required is that the j-th largest be identified. Simple algorithms exist
for specific j. For example, it is easy to construct efficient algorithms for j = 1 and
j = n. The FIND algorithm works for general j and is based on the idea of picking
a random element, the pivot, which is compared with all the remaining elements
so that the original set is partitioned into two subsets, one containing numbers less
than (or equal to) the pivot, and the other containing values greater than the pivot.
Clearly, given the number of elements in each of these two subsets, the problem can
be reduced to one involving fewer elements. In his invited address to the 1971 IFIP
Congress, Donald E. Knuth [1] examined the average performance of this algorithm.
He derived a recurrence relation that he commented was "not the kind of recurrence
that we would normally expect to solve", but which he went on to solve because of
the fortuitous cancellation of a common factor.

An extension due to Singleton [3] to the basic algorithm is known as median-of
three selection. The pivot element is chosen as the median of the first, middle and
last elements of the set. This variant has seen widespread use in recent years. Not
only is it the basis of the usual quicksort algorithm but it has also been used in the
most efficient of the published methods for least absolute value regression (see, for
example, Bloomfield and Steiger [4], Anderson and Steiger [5]).

The renewed interest in median-of-three selection has motivated a serious study of
its average performance. As background to the analysis of the median-of-three algo
rithm and to provide some insights, the basic algorithm will firstly be considered. It
will be assumed that all possible orderings are equally likely and, to keep the analysis
simpler, the numbers will be assumed to be distinct. With these assumptions, then,
the average number of comparisons to find the j-th out of n numbers in the FIND
algorithm will be the total over all n! permutations of the number of comparisons to
find the j-th value, divided by nL

Consider firstly the case j = 1, that is, finding the smallest of the set. When
n = 1, the pivot is the element required, and this situation can be represented by the
graph ri in Figure 1. When n = 2 there are two possibilities: either the smaller is
chosen as the pivot, in which case the algorithm terminates; or the larger is chosen
as pivot, in ,vhich case the required number is the smallest out of the remaining one
element. This situation is represented graphically by r~ of Figure 1. When n = 3
there are 3! = 6 cases, and the graph is r1 of Figure 1, where each of the major three
branches correspond to two €ases each. In general, for j = 1 the graph r; of Figure
1 is obtained, with each major branch corresponding to (n - I)! cases.

Similarly, for j =·2 the graphs r~, r~ and r~ of Figure 2 can be associated with
n = 2, n 3 and n = 4, respectively, and for j = 3 the graphs r~ and r~ of Figure 3

110

Figure 1 : Graphs for selecting the 'smallest out of n

Figure 2: Graphs for selecting the second smallest out of n

112

can be associated with n = 3 and n = 4. In general it can be seen that these graphs
are of the general form of r~ of Figure 4. Note that the graphs satisfy the symmetry
property that r~ is the reflection of r:+1- i in the "GIFT" line that joins the top
node to the first terminal node. (If the authors can be forgiven some levity, GIFT is
an acronym for Got It First Try.)

Recurrence relations can now be derived for both the basic algorithm and the
extension. Although strictly not necessary for the analysis of the basic algorithm, a
consideration will be made of the number of "passes". This is actually the simplest
of all of the analyses that need to be done, and the difficulty in producing general
results in this case demonstrates why the other cases are so intractable.

Number of passes for basic algorithm

In this case, let G~(x) be the polynomial where the coefficient of x P is the number of
times out of the total of n! that the algorithm takes exactly p passes. Assuming, as
above, that each permutation is equally likely, and noting that the subgraphs r~-=-ik
represent (71. - k)! arrangements, whereas there are (n - I)! cases for each major
branch of r~, the relation

i _ {i-
1

(n - I)! i-k _ I n (n - I)! i }
Gn(x) - x E (n _ k),Gn-k(x) + (n 1). + kEl (k _ 1)!Gk- 1 (1)

is obtained. The second sum can be eliminated to give

j _ i _, n+l-k _ n-k i-I (Gi-k G j
-

k)
Gn+1 (n+x)Gn-xn.{; (n+1-k)! (n-k)! (2)

where Gi = x and the explicit dependence of G on x has been dropped.
Unfortunately, even in this very simple case, a closed-form solution for G(x) is

not known, although a great deal of progress can be made. If attention is restricted
to the total over all the permutations of the number of passes, denoted by >.~, then

. d . I >.~ = dx G~(x) :z:=I' (3)

Differentiating the relation 2 with respect to x, putting x = 1, and noting that
G~(l) = n!, gives the relation

j _ j _ I n+1-k _ n-k

{

i-I (>.j-k)..i-k)}

>'n+1 (n+1)>'n-n. 1+{; (n+1-k)! (n-k)! (4)

which can be solved reasonably easily to give

>.~ = n! (Hn+1-i + H j - 1) (5)

where Hn is the harmonic sum Lk=11/k.

113

Figure 3: Graphs for selecting the third smallest out of n

Figure 4: The general case, selecting the j-th out of n

114

Number of comparisons for basic algorithm

This is the next most difficult problem. The recurrence relation for the generating
function undergoes a minor change:

. {j-l(n-l)' . k n (n-l)' . }
G~(x) = X

n
-

1 :L (n _ k);G~-=-k + (n -I)! + :L (k _l);GLI
k=l k=J+I

(6)

which becomes

j n-l j _ n , n+l-k _ n-k j-I (G
j
-

k
Gj-k)

Gn+1-x(n+x)Gn-x n.t;, (n+1 k)! (n-k)! (7)

and now obtaining a general solution seems an impossible goal. Instead, if the last
~'elation is differentiated at x = 1 and J.1.~ denotes dd G~(x)1 ,a relation analogous

x x=l
to 4 is obtained for the total number of comparisons over all permutations:

j _ j _ , J.1. n+l-k _ fJ.n-k
{

j-I (j-k j-k)}
fJ.n+1 (n+1)l-t n -n. 2n+{; (n+l-k)! (n-k)! (8)

The solution is a litle more difficult to obtain than previously. One approach is to
define

(9)

solve the resulting equation, and then obtain I-t~/n!. The result is

I-t~ = 2n! {n + 3 + (n + l)Hn - (j + 2)Hj - (n + 3 - j)Hn+l-i1, (10)

which agrees with the result in Knuth's IFIP paper [1].
Consider, now, the median-of-three extension. The analysis is complicated by the

fact that even though all permutations are considered equally likely, the number of
cases corresponding to each major branch of r~ are not equal. If the branches a.re
numbered from left to right according to k = 1,2"", n then the number of cases
corresponding to the k-th branch is

6(k -l)(n - k)(n - 3)1

The k-th 0ranch corresponds to the situation where the k-th largest number is chosen
as the pivot. Since the pivot is the median of three elements, there are k - L possibil
ities for the smallest of the three, and n - k possibilities for the largest. The factor
6 takes into account the arrangement of the three elements. If the pivot is the k-th
largest number, then, after the partitioning process, if k < j the remaining problem
will be to find the (j k)-th largest out of n - k elements, and when k > j it will be
to find the j-th largest out of k - 1 elements.

115

Number of passes in Median-of-three algorithm

The generating function in this case is

{

j-l j-k 6(k - l)(n - k)(n - 3)1
x 2:::: Gn _ k (-k)1

k=l n.

+6(j - l)(n - j)(n - 3)!

n j 6(k-1)(n-k)(n-3)!}
+ kE.l Gk_1 (k I)!

which can be rewritten in the form

G~+2 - 2(n - l)G~+l + ((n - l)(n - 2) - 6x) G~ =
j-I k 1

() 1 \:""" - {G j- k 2(k)Gj- k
6x n - 1 . L..J (_ k)' n+2-k - n + 1 - n+l-k+

k=l n + 1 .
. k} (n+1-k)(n-k)G~-=-k .

(11)

(12)

The more complicated nature of this relation makes it quite intractable. As before,
however, it can be differentiated at x = 1. If'\~ denotes ;t;G~(X)IX=l' then the
resulting relation is

.\~+2 - 2(n - l).\~+I + (n + 1)(n - 4)'\~ =
j-I k 1

6n! + 6(n - I)! 2:::: (-_ k)f {.\~+~-k - 2(n + 1 - k).\~+~_k+
k=2 n + 1 .

(n + 1 - k)(n - k)'\~-=--~}. (13)

Although this relation looks quite difficult to deal with, close examination indicates
that the solution is of the form

. 6 j. j-I .

.\~ =-n!Hn + 2:::: Ok' (n - k)! + 2:::: ¢>~. [_4]n-k
5 k=O k=j-4

(14)

where [al n indicates the rising factorial a(a + 1)·· . (a + n 1). Note that the last
term disappears for large n (as long as j is not too big), so it will be ignored.

Consider the O~ in the first summation. Sollltions for some special cases yield the
following results, where the notation [a In indicates the falling factorial a(a-I) ... (a +
1 - n),

oj
1 0

o~ -~(j - Ih
5

o~ -~[j-1h
5

oj -~[j - ll4 4 10

116

()~ 26
5

[j]5

()~ -~[j -lk
Although it seems possible that a general pattern may exist, it transpires that the
first six ot values are special cases, and, in general

(15)

To complete the analysis of the median-of-three algorithm, the number of com
parisons after the pivot selection is required. The choice of the pivot itself requires 3
comparisons in most cases and 2 in others. The average is 8/3 comparisons per pivot
selection.

Number of comparisons in Median-of-three algo
rithm after pivot selection

The generating function here is the same as for the number of passes except that the
factor x is replaced by xn

-
3 • Differentiating and putting x = 1 and J.1.~ = -dd G~I

x x=I
gives the relation

J.1.~+2 - 2(n - 1)J.1.~+1 + (n + 1)(n - 4)J.1.~ =
j-I k 1

12(n - l)n! + 6(n - I)! L: (-_ k)1 {J.1.~-:;'~-k - 2(n + 1 - k)J.1.~-:;';-k+
k=2 n + 1 .

(n + 1 - k)(n - k)J.1.~-=-~}. (16)

This relation looks even more rlifficult to deal with than the previous one, however,
close examination indicates that the solution is of the form

. 24 j. j-I .

fl~ = 2(n + I)! - -n!Hn + L: o:i . (n - k)! + L: ,B~. [-4t- k. (17)
5 k=O k=j-4

The last term agai!l disappears for large enough n and will again be ignored. Con
sideration of the o:i in the first summation yields the following special cases

-3[j - 1h
12 [.] -) -12
5

~[j -lh
5

~[j - 1]4
5

6[. J 36 [.] -)-1 4 +-)-1 5 5 25

~[j - 1]6
5

117

and the general solution

Conclusion

The total number of comparisons is

8· .
-AJ + II) 3 n t"'n

(18)

Note some minor correction is required due to the fact that sometimes there are only
1 or 2 elements, and the median-of-three selection algorithm then requires special
processing. This correction is less than 1 comparison per permutation.

The exact expression for the total number of comparisons is complicated by the
special forms for B~ and at when k :::; 6, however, a very accurate approximation is
given by

(
44 72 72 3 j (n+1- j)) (19) 2n! n+-H --H +I ·--H·+ . _ 35 n 35 n -) 35) 2 n

A comparison between this expression and the one for the basic algorithm is given in
Table 1 for n = 1000. The Table shows that the median-of-three modification can be
expected to be better than the basic algorithm in all cases except when finding the
smallest (or largest) of the set. When the median is required or an order statistic not
too close to the first or last an expected improvement of 15 to 20 percent should be
achievable.

j Simple Selection Median-of- three Relative improvement
Selection (percent)

1 1985 1987 -0.1
2 1996 1988 0.4

10 2073 2006 3.2
50 2352 2112 10.2

100 2603 2237 14.1
200 2952 2445 17.2
300 3172 2595 18.2
400 3296 2684 18.6
500 3336 2714 18.7

Table 1: Average number of comparisons to find the j-th largest out of a set of 1000
numbers.

References

1. Knuth, D.E., Mathematical Analysis of Algorithms, in Information Processing
71, Proceedings of the 1971 IFIP Congress, North-Holland, Amsterdam, 1972,
19-27.

2. Hoare, C.A.R., FIND (Algorithm 65), Comm. AC}U, 1961, 321-322.

3. Singleton, R.C. SORT (Algorithm 347), Comm. ACM, 1969, 185-186.

4. Bloomfield, P and Steiger, W.L., Least absolute deviations curve-fitting, SIAM
J. Scientific and Statistical Comp., 1980, 290-301.

5. Anderson, D.H. and Steiger, W.L., A Comparison of Methods for Discrete L1
Curve-fitting, Department of Computer Science Report DCS-TR-96, Rutgers
University, New Brunswick, New Jersey, 1981.

119

