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Abstract

Hall’s condition is a well-known necessary condition for the existence of
a proper coloring of a graph from prescribed lists. Completing a partial
latin square is a very special kind of graph list-coloring problem. Crop-
per’s question was: is Hall’s condition sufficient for the existence of a
completion of a partial latin square? The folk belief that the answer
must be no is confirmed here, but, also, six theorems giving necessary
and sufficient conditions for completion of partial latin squares in differ-
ent circumstances are recast in the form: when the prescribed cells in a
partial latin square form such-and-such a configuration, then not only is
Hall’s condition sufficient for completion, but, in each of these cases, a
small subset of the large set of inequalities constituting Hall’s condition
suffice.

1 Introduction: Hall’s condition for list-colorings

Suppose that G is a finite simple graph, C is an infinite set, and F is the collection
of finite subsets of C. A list assignment to G is a function L : V (G) → F . If L is a
list assignment to G, a proper L-coloring of G is a function ϕ : V (G) → C satisfying,
for all u, v ∈ V (G),

(i) ϕ(u) ∈ L(u) and

(ii) if uv ∈ E(G) then ϕ(u) �= ϕ(v).

It is useful to realize that (ii) may be restated as:

(ii)’ for each σ ∈ C, the preimage ϕ−1(σ) = {u ∈ V (G) | ϕ(u) = σ} is an indepen-
dent set of vertices of G.

For a graph H, let α(H) denote the vertex independence number of H, the
greatest size of an independent set of vertices in H. If L is a list assignment to G,
σ ∈ C, and H is a subgraph of G, let Hσ = H(σ, L) be the subgraph of H induced
by {v ∈ V (H) | σ ∈ L(v)}. If ϕ is a proper L-coloring of G then ϕ−1(σ) ∩ V (H)
is an independent set of vertices in H(σ, L), so |ϕ−1(σ) ∩ V (H)| ≤ α(H(σ, L)).
This observation shows that the following condition on G and L is necessary for the
existence of a proper L coloring of G.

Hall’s condition: For each subgraph H of G,

∑
σ∈C

α(H(σ, L)) ≥ |V (H)|. (*)

Clearly the Hall inequality (∗) holds for every subgraph of G if it holds for ev-
ery induced subgraph of G. Therefore, on the face of it, verifying Hall’s condition
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amounts to checking 2n − 1 inequalities, n = |V (G)|, and checking each inequality
requires the computation of vertex independence numbers, not an easy task; clearly
we are not aiming for computational efficiency in calling attention to Hall’s condition!
(Although in many cases the checking is not so arduous, because of the necessity of
Hall’s condition for a proper coloring. For instance, if G − v is properly L-colorable
for each v ∈ V (G), and sometimes it is easy to see this, then (∗) need be checked
only for H = G.)

Our interest in questions involving Hall’s condition is purely theoretical, at this
point; we are digging for depth in the theory of list-colorings. Our hopes for Hall’s
condition as some sort of key to previously unnoticed doors arise from its pedigree:
when G is a complete graph, any induced subgraph H of G is complete, so

α(H(σ, L)) =

{
1 if σ ∈ ⋃

v∈V (H) L(v),

0 otherwise,
for each σ ∈ C.

Therefore, ∑
σ∈C

α(H(σ, L)) = |
⋃

v∈V (H)

L(v)|.

Then it is easy to see that the satisfaction of the Hall inequality (∗) for each induced
subgraph H of G 	 Kn is, in disguise, the condition in Philip Hall’s theorem [12] on
systems of distinct representatives (SDRs). This theorem guarantees the existence of
a system of distinct representatives of the sets L(v), v ∈ V (G), when Hall’s condition
is satisfied, and such an SDR is no less nor more than a proper L-coloring of G 	 Kn.
That is, Hall’s theorem may be restated: when G is complete, Hall’s condition on G
and L is both sufficient and necessary for the existence of a proper L-coloring of G.
(As explained in [14] and [15], it is this view of Hall’s theorem as a theorem about
list colorings of complete graphs that led to the naming of Hall’s condition.)

The class of graphs that share this property of complete graphs is small.

Theorem HJW ([14], [15]) Suppose G is a finite simple graph. The following
are equivalent:

(a) G has a proper L-coloring whenever G and L satisfy Hall’s condition;

(b) every block of G is a clique;

(c) G contains no induced cycle Cn, n ≥ 4, nor an induced copy of K4-minus-an-
edge.

In other investigations, Hall’s condition has been considered in conjunction with
other requirements—for instance, |L(v)| ≥ 2 for all v ∈ V (G)—and the question
becomes: which graphs G are properly L-colorable whenever G and L satisfy the full
list of requirements, including Hall’s condition? See [10] and [15].
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2 Partial latin squares and Cropper’s question

Surprisingly, in view of the context in which Hall’s condition was first stumbled upon
[13], the following kind of restriction on L has not been considered in conjunction
with Hall’s condition until recently. A partial proper m-coloring of G is a coloring
of a subset V0 ⊆ V (G) with colors from {1, . . . , m} so that adjacent vertices in V0

are assigned different colors. A completion of a partial proper m-coloring ϕ : V0 →
{1, . . . , m} is an extension ϕ̂ : V (G) → {1, . . . , m} of ϕ to a proper coloring of G.
Such an extension is never possible unless m ≥ χ(G), and examples abound in which
no such extension is possible for some partial m-colorings even when m is much
greater than χ(G). For examples, let 1 ≤ n < m and take G = Kn ∨ K̄m, with “∨”
denoting the join operation. (To form the join of two graphs G1 and G2 take the
union of vertex-disjoint copies of the graphs with the complete bipartite graph whose
parts are V (G1) and V (G2).) Let ϕ assign 1, . . . , m to the m vertices of K̄m. This
partial m-coloring is proper, no completion is possible, and m may be arbitrarily
large, while χ(G) = n + 1.

Every partial proper m-coloring ϕ of G defines a list assignment L = Lϕ to
V (G) in a natural way: if v ∈ V0, L(v) = {ϕ(v)}, and if v ∈ V (G)\V0 then L(v) =
{1, . . . , m}\(ϕ(NG(v)∩V0)); that is, each vertex without a prescribed color is endowed
with the list of all colors among 1, . . . , m that do not appear on its neighbors in the
set V0 of vertices with prescribed colors. Clearly ϕ has a completion if and only if
G has a proper Lϕ-coloring. We declare G to be Hall m-completable if and only if
every partial proper m-coloring ϕ of G such that G and Lϕ satisfy Hall’s condition
has a completion.

In all that follows, when L is a list assignment to a graph G, and H is a subgraph
of G, the restriction of L to H, sometimes denoted L|H or L|V (H), will be denoted
simply by L. The reader will be able to discern which L is meant by the context.

Lemma 1 Suppose that ϕ : V0 → {1, . . . , m} is a partial proper m-coloring of G,
and G′ is the subgraph of G induced by V (G)\V0. There is a proper Lϕ-coloring of
G if and only if there is a proper Lϕ-coloring of G′. Also, G and Lϕ satisfy Hall’s
condition if and only G′ and Lϕ satisfy Hall’s condition.

Proof: The claim about the Lϕ-colorability of G and G′ is easy to see.

If G and Lϕ satisfy Hall’s condition then G′ and Lϕ satisfy Hall’s condition, just
because G′ is an induced subgraph of G, which implies that every induced subgraph
of G′ is an induced subgraph of G. Suppose that H is an induced subgraph of G
and v ∈ V0\V (H). Let H1 be the subgraph of G induced by V (H) ∪ {v}. Then
|V (H1)| = |V (H)| + 1 and

∑
σ∈C α(H1(σ, Lϕ)) =

∑
σ∈C α(H(σ, Lϕ)) + 1 because

α(H1(ϕ(v), Lϕ)) = α(H(ϕ(v), Lϕ)) + 1 and α(H1(σ, Lϕ)) = α(H(σ, Lϕ)) for all σ ∈
C\{ϕ(v)}. That is, adding a vertex of V0 to H increases both sides of (∗) by 1.
Therefore, if (∗) holds for every induced subgraph of G′ then it holds for every
induced subgraph of G. �
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7 3 5
6 1 5

6 3
6
4
2 1
3 4 2

Figure 1: A 7 × 7 partial latin square, an early candidate for answering Cropper’s
question in the negative.

If G is Hall χ(G)-completable we will sometimes say that G is Hall chromatic
completable. A partial latin square (p.l.s.) of order n is the graph Kn�Kn together
with a partial proper n-coloring of it (� denotes the Cartesian product). Matt
Cropper’s question, advanced persistently since about 1999, is: if the list assignment
Lϕ associated with a partial latin square satisfies Hall’s condition, with Kn�Kn, does
the partial latin square necessarily have a completion? In other words, since n =
χ(Kn�Kn), is Kn�Kn Hall chromatic completable? This question was ignored until
2004, or thereabouts, when an attempt was made to put an end to this discussion by
producing an example to show that Kn�Kn is not Hall chromatically completable.
This turned out to be not so easy! In Figure 1, for instance, is a 7 × 7 partial latin
square, a modification by the third author of an example provided by Ron Aharoni.
What follows is a brief account of efforts to show that this square dismisses Cropper’s
question, leading to the tragic discovery that it does not.

Per convention, the vertices of Kn�Kn are the “cells” in an n×n array, with each
cell adjacent to all and only the cells in its row and column. Throughout, the cell in
the ith row, jth column of the array representing Kn�Kn will be denoted v(i, j).

The incompletability of this partial latin square can be easily seen just by looking
at the upper left 3× 3 subsquare. The third author, with the assistance of the first,
expended 3 − 10 months in trying to see that the list assignment induced by the
prescribed cells satisfies Hall’s condition, thereby settling Cropper’s question. In
view of the Lemma, verifying Hall’s condition by brute force would have meant
verifying 234 − 1 inequalities; the third author brought to bear a fiendishly clever
program to reduce these to a couple of thousand. This program led to the dashing
of all hopes: if H is the subgraph of K7�K7 induced by

S = {v(i, j)| 1 ≤ i, j ≤ 2 or 2 ≤ i ≤ 5 and j = 3,
or 4 ≤ i ≤ 5 and j ≥ 2,
or i = 6 and j = 2, 4, 5, 6, or 7,
or i = 7 and 4 ≤ j ≤ 7},

then
∑7

i=1 α(H(i, Lϕ)) = 26 < 27 = |V (H)|
The third author believes that he can prove, with some assistance from the first
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{1} {1, 2}
{7} {2, 3, 7} {3, 4}

{4, 5}
{1, 2, 3, 5, 7} {3, 4, 5} {1, 2, 4, 5, 7} {1, 2, 3, 4, 7} {2, 3, 4, 5, 7} {1, 2, 4, 7}
{1, 2, 3, 5, 7} {3, 5, 6} {1, 2, 5, 6, 7} {1, 2, 3, 7} {2, 3, 5, 6, 7} {1, 2, 6, 7}
{3, 5, 7} {4, 5, 6, 7} {3, 4, 7} {3, 4, 5, 6, 7} {4, 6, 7}

{1, 5, 6, 7} {1, 7} {5, 6, 7} {1, 6, 7}

Figure 2: The bad set in the partial latin square of Figure 1, with lists

6 8 4 5 2 3 7 1
5 6 8 3 7 4 1 2
7 3 1 2 8 5 6 4
4 7 2 1 3 8 5 6
2 5 6 8
8 4 7 6
3 1 5 7
1 2 3 4

1 2 3 4 5 6
3 6 1 2 4 5
5 4 2 6 3 1
2 5
4 1
6 3

Figure 3: Two incomplete partial latin squares satisfying Hall’s conditiion, due to
J. L. Goldwasser; neither can be completed.

author, that S is the only “bad set” of cells in V (K7�K7)\V0, with respect to the
partial proper 7-coloring given in Figure 1. We leave this claim for the reader’s
contemplation.

Despite this example, the answer to Cropper’s question is no. The first known
examples demonstrating this, both discovered by the second author, are given in
Figure 3.

In both cases it is easy to check that the partial latin square cannot be completed:
start at any unfilled cell with a 2-symbol list, fill it with one of the two symbols on
its list, and follow the resulting spreading chain of forced colorings until reaching
impasse. Then do the same starting with the other symbol.

The verification of Hall’s condition for the second partial latin square in Figure 3
is relatively easy. The list assignment Lϕ to V (K6�K6)\V0 for this p.l.s. is given in
Figure 4. Let G 	 K3�K4 be the graph underlying Figure 4. By Lemma 1, we need
only verify that G and the depicted list assignment satisfy Hall’s condition. The key
to seeing this is to observe that Gi = G(i, Lϕ) 	 C4 for each i ∈ {1, . . . , 6}. It follows
that for every induced subgraph H of G, and 1 ≤ i ≤ 6, if i appears on the lists of ti
vertices of H, then α(Hi) ≥  ti

2
�. Therefore,

∑6
i=1 α(Hi) ≥

∑6
i=1 ti/2 = |V (H)|, by

appeal to the fact that every vertex of H has two symbols on its list.

Now let G 	 K4�K4 be the graph underlying the unfilled array in the first p.l.s.
in Figure 3, and let L denote the list assignment to it induced by the entries in the
filled cells. Cells (3, 4) and (4, 3) in the 4 × 4 array have list {8}, and cells (3, 3)
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4, 6 1, 3 1, 6 3, 4
5, 6 3, 5 2, 6 2, 3
4, 5 1, 5 1, 2 2, 4

Figure 4: List assignment to the unfilled cells in the second partial latin square in
Figure 3.

and (4, 4) have lists {2, 4, 8} and {5, 7, 8}, respectively. Let G′ denote the graph
obtained by deleting vertices (cells) (3, 4) and (4, 3) from G, and let L′ be the list
assignment to G′ obtained by removing 8 from the L-lists on cells (3, 3) and (4, 4) and
letting L = L′ on the other cells of G′. It is easy to see that G and L satisfy Hall’s
condition if G′ and L′ satisfy Hall’s condition. But |L′(v)| = 2 for every v ∈ V (G′),
and G′(i, L′) 	 C4 for each i ∈ {1, . . . , 7}, so G′, L′ satisfy Hall’s condition, by the
argument above.

If we were interested only in Hall chromatic completability the demise of Crop-
per’s question would largely kill our interest in the graphs Kn�Kn. But completing
partial latin squares is a subject of special importance in combinatorics (whether
inevitably or by historical accident we leave to debate), and there is evidence, in the
results of [6], [13] and [16], that there may be interesting answers to the following
question: For which sets V0 ⊆ V (Kn�Kn) is it the case that whenever V0 is the set of
prescribed cells in a partial latin square of order n—i.e., whenever V0 is the domain
of a partial proper n-coloring ϕ of Kn�Kn—such that Kn�Kn and Lϕ satisfy Hall’s
condition, there is necessarily a completion of the partial latin square? The results
in [6] and [13] are that subrectangles and subrectangles minus one cell have this
property, but even more: in the case of a subrectangle, a single instance of (∗), i.e.
satisfaction of the inequality for a single choice of H, suffices to guarantee the exis-
tence of a completion, and in the case of a subrectangle minus one cell, satisfaction
of (∗) for 3 choices of H implies completability.

In Section 3 we revisit the case where V0 is a subrectangle, giving the result
a bit differently than in [6] and [13], and then deal with 4 other cases, in each of
which a theorem about completing partial latin squares can be reconstructed to the
form: if a partial latin square has prescribed cells forming such-and-such a shape
(after permuting rows and columns), then Hall’s condition is sufficient (as well as
necessary, of course) for the existence of a completion—and a relatively small number
of instances of (∗) suffice for completion.

The 6 “shape-of-the-domain” theorems are preceded by two classical results, the
precursor of Ryser’s theorem due to M. Hall [11] and the affirmation of the Evans
conjecture [4], [20]. Theorems of Andersen and Hilton sharpening the Evans conjec-
ture yield corollaries concerning Hall’s condition. We suspect that there is a general
theorem awaiting discovery to which these results are clues. More such results and
clues will appear in [16].

In the last section we find that a theorem due to Andersen and Hoffman on
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completing partial commutative latin squares can be reconstructed in a way similar
to the other reconstructions. A main difference is that the underlying graph is not
Kn�Kn.

This paper is not about Hall m-completability; that definition was given only for
the purpose of placing our work on completing partial latin squares in a more general
context that might be suitable for future exploration. However, having given the
definition, there is no harm in ending this section with a compendium of elementary
results on the subject. Proofs will be given only when they are not obvious. None
of these results will bear on the work in Section 3.

Elementary results on m-completions and Hall m-complet-

ability

1. If m ≥ Δ(G) + 1 then every partial proper m-coloring of G has a completion.

2. G is Hall m-completable (assuming, m ≥ χ(G)) if and only if every component
of G is Hall m-completable.

3. If G is one of the following then G is Hall m-completable for all m ≥ χ(G):

(a) an odd cycle;

(b) complete multipartite;

(c) a graph in which every block is a clique.

Proof of 3: (a) follows from 1, above, and (c) follows from Theorem HJW.
(b): Suppose that G = Kn1,...,nr , m ≥ r, and ϕ : V0 → {1, . . . , m} is a partial proper
m-coloring of G such that G and Lϕ satisfy Hall’s condition. Any two vertices from
the same part of G that are not in V0 have the same list assigned by Lϕ. Therefore,
if K is a clique in G induced by a collection of single representatives not in V0 of the
parts of G that have vertices not in V0, then the proper Lϕ-colorability of K would
imply the proper Lϕ-colorability of G, and that would finish the proof. Because G
and Lϕ satisfy Hall’s condition, K and the restriction of Lϕ to V (K) satisfy Hall’s
condition, so there is a proper Lϕ-coloring of K, by Theorem HJW (or by Hall’s
Theorem, of which Theorem HJW is a generalization). �

4. Every bipartite graph is Hall chromatic completable, but for every m ≥ 3 there
is a bipartite graph which is not Hall m-completable.

Proof: To show that every bipartite graph is Hall chromatic completable, by 2 and
common sense about isolated vertices it suffices to consider G bipartite, connected,
of order > 1. Suppose ϕ : V0 → {1, 2} is a partial proper 2-coloring of G such that
Lϕ and G satisfy Hall’s condition. Let X, Y be a bipartition of V (G). There can
fail to be a proper 2-completion of ϕ only if either the same color is prescribed by ϕ
to vertices in X and in Y , say ϕ(x) = ϕ(y) = 1 for some x ∈ X ∩ V0, y ∈ Y ∩ V0,
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{1, 3}

{3}

{2, 3}

{1, 2}

x

zw

y

Figure 5: The smallest graph with a list assignment satisfying Hall’s condition from
which there is no proper coloring

or different colors are prescribed by ϕ to vertices in the same part, say ϕ(x) = 1,
ϕ(z) = 2 for some x, z ∈ X ∩V0. In the first case, because G is connected, there is a
path P in G with ends x and y. Because G and Lϕ satisfy Hall’s condition, P and Lϕ

must satisfy Hall’s condition, so P is properly Lϕ-colorable, by Theorem HJW. But
since P is a path from a vertex in X to a vertex in Y , P is of odd length; since there
are only 2 colors available, the ends of P cannot have the same color, in a proper
coloring. So ϕ(x) = ϕ(y) for x ∈ X ∩ V0, y ∈ Y ∩ V0 cannot happen. Similarly,
ϕ(x) �= ϕ(z) for x, z ∈ X ∩ V0 cannot happen. Thus G is Hall 2-completable.

Regarding the other assertion in 4, consider the 4-cycle with list assignment in Figure
5. Clearly there is no proper coloring of G = C4 from these lists, and it is not hard
to see that Hall’s condition is satisfied. [Verify that G− v is properly colorable from
the lists, for each v ∈ V (G).] For each m ≥ 3 attach pendant vertices to the vertices
of the graph and prescribe colors to these to obtain a partial proper m-coloring ϕ
of the augmented graph such that the lists Lϕ on w, x, y, and z are as indicated.
For instance, if m = 4, 2 leafs will be attached to w with prescribed colors 3, 4; 2
to x with prescribed colors 2, 4; 2 to y with prescribed colors, 1, 4; and 3 to z with
prescribed colors, 1, 2, 4.

The resulting graph is bipartite, and by Lemma 1 it satisfies Hall’s condition with
the list assignment generated by the prescription, but this prescription admits no
completion. �

Item 4 affirms the ghastly possibility that a graph may be Hall m-completable
but not Hall (m + 1)-completable. At present m = 2 is the only value for which this
is known to occur, among graphs of chromatic number ≤ m.

In the graphs in the proof of item 4 which are not Hall m-completable, and in
all other examples that we know of, the maximum degree of the constructed graph
is m + 1. Item 1 implies that every graph G is Hall (Δ(G) + 1)-completable. Is it
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true that every connected graph G which is not a complete graph or an odd cycle
(the only connected graphs for which χ > Δ, by Brooks’ theorem [7]) is Hall Δ(G)-
completable?

Item 1 and the existence of graphs G which are not Hall m-completable for some
m ≥ χ(G) implies that for some G and m ≥ χ(G), G is not Hall m-completable but
is Hall (m + 1)-completable. It is possible, in such a case, that G could be not Hall
(m + k)-completable for some k ≥ 2?

3 Six theorems on completing partial latin squares, restated

Suppose that m ≥ χ(G) and V0 ⊆ V (G). We will say that V0 is Hall(m, G) easy
if every partial proper m-coloring ϕ : V0 → {1, . . . , m} such that Lϕ and G satisfy
Hall’s condition has an m-completion. So, for any G and m ≥ χ(G), ∅ and V (G) are
Hall(m, G) easy; and G is Hall m-completable if and only if every subset of V (G) is
Hall(m, G) easy.

If V0 is Hall(m, G) easy and π is an automorphism of G, then π(V0) is
Hall(m, G) easy. Therefore, if G = Kn�Kn and V0 ⊆ V (G) is Hall(n, G) easy, then
so is any set of cells obtained from V0 by permuting rows and columns of the n × n
array constituting the standard representation of Kn�Kn, or by reflecting about the
main diagonal. This should be kept in mind in considering the six theorems below,
each of which shows that particular forms of cell sets in V (Kn�Kn) are Hall(n, G)
easy.

There are two famous theorems that belong with the six. The first of these
appeared before any of the others; it is the first application of Hall’s theorem to the
problem of completing partial latin squares.

Theorem MH [11] If the set of prescribed cells in a partial latin square of order n
is the union of some rows of the array, then the partial latin square is completable.

Corollary 1 Any union of rows of Kn�Kn is Hall(n, Kn�Kn) easy.

The second famous theorem is the confirmation of Evans’ conjecture.

Theorem E ([4] and [20]) Any partial square of order n with n−1 or fewer prescribed
cells can be completed to a latin square of order n.

We have not given these results the same status as the other 6 because there
is nothing we can add to the original result. Given an r × n latin rectangle on n
symbols, as a partial latin square of order n it is completable and therefore satisfies
Hall’s condition; the set of inequalities (∗) to be checked is empty. The same holds
for any partial latin square of order n in which the number of prescribed cells is no
greater than n − 1.
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1 x

x+1

x+1

Type 2 (1 ≤ x < n)

1

x

x+1

x+1

Type 3 (1 ≤ x < n)Type 1 (1 ≤ x < n)

1 x

x+1

n

Figure 6: The noncompletable partial latin squares of side n with n nonempty cells

3.1 A theorem of Andersen combined with one of Andersen and Hilton

In [4], Andersen and Hilton not only proved Evans’ Conjecture, they also gave a
complete characterization of the partial latin squares of order n with exactly n pre-
scribed cells which are not completable to latin squares of order n. These are given
in Figure 6, as they appeared in [5]. It is to be understood that these represent, also,
any partial latin squares that can be obtained from them by permuting rows and/or
columns, permuting the names of the symbols, and/or interchanging the roles of
the rows and columns—i.e., reflecting the array about the main diagonal. Therefore
Types 2 and 3 represent the same batch of bad partial latin squares.

Andersen went on, in [3], to characterize the incompletable partial latin squares
of order n in which exactly n + 1 cells are prescribed. These are given in Figure 7,
as they appeared in [5]. Again, there is some redundancy: Types 4 and 5 represent
the same lot, as do Types 7 and 8, and Types 10 and 11. The compound theorem
alluded to in the title of this section is:

Theorem AH For all integers n > 1 the partial latin squares of order n, with either
exactly n or n+1 prescribed cells, which are not completable to latin squares of order
n, are represented by the 13 Types in Figures 6 and 7.

Corollary 2 Any set of no more than n + 1 vertices in Kn�Kn is Hall (n, Kn�Kn)
easy.

Proof: Equivalently, the claim is that any partial latin square of order n in which
no more than n + 1 cells are prescribed, such that the induced list assignment to
Kn�Kn satisfies Hall’s condition, is completable to a proper n-coloring of Kn�Kn

(i.e., a latin square of order n).

Since the only such partial latin squares which are not completable are equivalent to
one of Types 1–13 in Figures 6 and 7, to prove the corollary it suffices to give, for
each type, a set of vertices V (H) of an induced subgraph H of Kn�Kn such that
H and the induced list assignment in question do not satisfy Hall’s condition. We
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n-2

1 2

1

3

4

Type 13 (n = 4)

1 n-3

n-2

n-2

Type 10 (n ≥ 5)

n-1

n-1

1

1

2 3

Type 12 (n ≥ 5)

4 5

1

n-3

n-2

Type 11 (n ≥ 5)

n-1

n-2 n-1

1 n-3

n-2 n-1

Type 7 (n ≥ 4)

n-2

n-1

1

1

2 3

2

Type 9 (n ≥ 4)

4

1

n-3

n-2

n-1 n-2
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Figure 7: Noncompletable partial latin squares of side n with n + 1 nonempty cells,
other than those obtained by filling in one more cell in the instances in Figure 6.



COMPLETING PARTIAL LATIN SQUARES 139

give V (H) as follows, skipping redundant types, and leave the verification that Hall’s
condition is violated to the reader.

Type 1: V (H) = {v(1, x + 1)}.
Type 2: V (H) = {v(1, j) | x + 1 ≤ j ≤ n}.
Type 4: V (H) = {v(1, n − 2), v(1, n − 1)}.
Type 6: V (H) = {v(i, j) | n−2 ≤ i ≤ n−1, 1 ≤ j ≤ n−3}∪{v(n−2, n), v(n−1, n)}
Type 7: Same as Type 4.

Type 9: Same as Type 6.

Type 10: Same as Type 4.

Type 12: Same as Type 6.

Type 13: V (H) = {v(1, 3), v(1, 4), v(2, 3), v(2, 4)}. �

Can n + 2 replace n + 1 in Corollary 2? What is the largest integer f(n) such
that n + f(n) can replace n + 1 in Corollary 2?

3.2 Ryser’s theorem

Suppose that 1 ≤ r, s ≤ n and that R = {v(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ s}, the r × s
rectangle in the upper left of G = Kn�Kn. Suppose that R is filled in with symbols
from {1, . . . , n} so that it is a latin rectangle —and so G becomes a partial latin
square of order n, with R as the set of prescribed cells. For each i ∈ {1, . . . , n}, let
NR(i) be the number of occurrences of i in R.

Ryser’s Theorem [19] A partial latin square of order n with prescribed cell set R
can be completed if and only if, for each i ∈ {1, . . . , n}, NR(i) ≥ r + s − n.

Restatement A partial latin square with prescribed cell set R can be completed if,
and only if, the Hall inequality (∗) holds when V (H) = [v(i, j) | 1 ≤ i ≤ r, s + 1 ≤
j ≤ n}.

[In this restatement and in all to follow, it is to be understood that the L in
inequality (∗) is the list assignment Lϕ associated with the partial proper n-coloring
ϕ constituting the partial latin square, and C is any set containing {1, . . . , n}.]

Proof: The necessity of (∗) for completability follows from the necessity of Hall’s
condition for a list coloring. Now suppose that (∗) holds, for this choice of H. For
each i ∈ {1, . . . , n}, V (Hi) is an (r−NR(i))×(n−s) subrectangle of V (H), because i
is available on the list of every cell of H not in a row where i appears in R, and only on
the lists of such cells. Therefore, α(Hi) = min(r−NR(i), n−s) = α(Kr−NR(i)�Kn−s).
Applying (∗),
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|V (H)| = (n − s)r ≤
n∑

i=1

α(Hi)

≤
n∑

i=1

(r − NR(i))

= nr −
n∑

i=1

NR(i)

= nr − |R| = nr − sr.

Equality implies termwise equality in the second inequality in the chain; that is, for
each i ∈ {1, . . . , n}, min(r−NR(i), n−s) = α(Hi) = r−NR(i), so r−NR(i) ≤ n−s.
Then a completion exists, by Ryser’s theorem. �

In [6] and in [13] it was shown that the conditions for completability in Ryser’s
theorem could be replaced by a single inequality of type (∗): in [6], H = Kr�Kn,
the first r rows of the array, and in [13], H = Kn�Kn. (In [13], the reformulation of
Ryser’s theorem preceded the formulation of Hall’s condition, and it was not realized
that the inequality in the reformulation was an instance of one of the inequalities
constituting Hall’s condition.) Although the reformulation here is not much different
from that in [6], we like it as a warm-up—it is a lot easier than what is to come, but
bears a great family resemblance to 3 of the remaining 4 restatements.

As mentioned previously, in [6] it is shown that a subrectangle minus one cell is
Hall(n, Kn�Kn) easy. If the set of prescribed cells is R\{v(1, s)}, R as above, then
satisfaction of (∗) for 3 choices of H implies completability. These 3 can be: (i)
H1 = the copy of Kr�Kn−s in the upper right of Kn�Kn, as in the reformulation of
Ryser’s theorem; (ii) the single vertex v(1, s); and (iii) H1 ∪ v(1, s).

In [16] will be found much more on Hall(n, Kn�Kn) easy subsets of subrectangles
of Kn�Kn.

3.3 A theorem of Buchanan and Ferencak

In the theorem referred to (in [8]), the prescribed cells of a p.l.s. of order n occupy
the first r rows of the n × n array and the first d columns of row r + 1. In [8] it is
proven that such a p.l.s. is completable if and only if there do not exist sets X of
columns and

∑ ⊆ {1, . . . , n} such that

(i) the d prescribed symbols in the d filled cells of row r + 1 are in
∑

;

(ii) X is among the columns numbered d + 1, . . . , n;

(iii) every σ ∈ {1, . . . , n}\∑
appears in each column of X, in the first r rows; and

(iv) |X| > |∑ | − d.
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Observe that, in view of Theorem MH, for partial latin squares of the sort featured
in this theorem, there is a completion if and only if the last n − d cells in row r + 1
can be properly colored from the list assignment induced by the specified cells. Since
these cells, as vertices in Kn�Kn, induce a clique, Kn−d, it follows, from P. Hall’s
theorem, or Theorem HJW, that there is a completion if and only if the Kn−d and
its list assignment satisfy Hall’s condition. That is, it is necessary and sufficient for
completion that the 2n−d − 1 instances of the Hall inequality (∗) corresponding to
the non-empty subsets of {v(r + 1, d + 1), . . . , v(r + 1, n)} hold.

It is beside our point, which is that a set of rows together with part of another
row in Kn�Kn is necessarily Hall(n, Kn�Kn) easy, with a relatively small collec-
tion of instances of the Hall inequality (∗) sufficient to imply completability, but it
bears mention that the necessary and sufficient conditions for completability given
by Buchanan and Ferencak boil down to the 2n−d − 1 instances of (∗) referred to
above. To see this it suffices to observe that any set X of columns among the last
n − d columns corresponds to a set S ⊆ {v(r + 1, d + 1), . . . , v(r + 1, n)}, namely
the set of intersections of the columns of X with row r + 1, and if X and

∑
satisfy

(i) - (iii) then
⋃

u∈S Lϕ(u) ⊆ ∑ \D, where D is the set of symbols appearing in cells
v(r + 1, 1), . . . , v(r + 1, d). Conversely, given S, let X be the set of columns of the
cells in S and let

∑
= (

⋃
u∈S Lϕ(u)) ∪ D. Then

∑
and X satisfy (i) – (iii).

3.4 Another theorem of Buchanan and Ferencak

In this theorem, also in [8], the prescribed set of cells is the upper right r × (n − d)
rectangle R together with the set Y of the first d cells in row r + 1. The situation is
depicted in Figure 8.

For i ∈ {1 . . . , n}, let NR(i) denote the number of occurrences of i in R. It is
shown in [8] that the conjunction of the following three conditions is necessary and
sufficient for completability, in these circumstances.

1. There do not exist X and
∑

as described in the preceding section, satisfying
(i) – (iv).

2. For each i ∈ {1, . . . , n}, NR(i) ≥ r − d.

3. If NR(i) = r − d, then i does not appear in Y .

Restatement If the prescribed part of a partial latin square of order n is R∪Y , as
depicted in Figure 8, then the satisfying of the Hall inequalities (∗) when H is each of
the 2n−d − 1 cliques induced by non-empty subsets of {v(r + 1, d + 1), . . . v(r + 1, n)},
and when H is the copy of Kr�Kd depicted in Figure 8, is necessary and sufficient
for completability.

Proof: Necessity follows from the necessity of Hall’s condition for a proper coloring
from lists.
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H Rr

n − dd

Yrow r + 1

Figure 8: {prescribed cells} = R ∪ Y

As indicated in Section 3.3 (even though the situation here is slightly different from
the situation there, the explanation there still works), condition 1 of Buchanan and
Ferencak here is equivalent to (∗) holding for each of the cliques induced by subsets
of {v(r + 1, d + 1), . . . , v(r + 1, n)}. So to complete the proof of sufficiency in the
restatement, it suffices to show that the instance of the Hall inequality (∗) for the H
in Figure 8 implies Buchanan and Ferencak’s conditions 2 and 3. So, suppose that
(∗) holds for that H.

If i ∈ {1, . . . , n} then Hi is a subrectangle of H of dimensions either (r−NR(i))×d, if i
does not appear in Y , or (r−NR(i))× (d−1), if i ∈ D, the set of symbols appearing
in Y . Therefore, applying the Hall inequality (∗), rd = |V (H)| ≤ ∑n

i=1 α(Hi) ≤∑n
i=1(r−NR(i)) = rn−∑n

i=1 NR(i) = rn−r(n−d) = rd. Equality implies termwise
equality in the second inequality in the string; that is, α(Hi) = r − NR(i) for each
i = 1, . . . , n. Therefore,

r − NR(i) ≤ d, if i �= D, and
r − NR(i) ≤ d − 1, if i ∈ D.

These inequalities, together, restate Buchanan and Ferencak’s conditions 2 and 3. �

Corollary 3 Suppose that the prescribed cells in a partial latin square of order n
consist of an r × (n − d) rectangle in the upper right part of the square, together
with part of the r + 1st row, including the first d cells. The p.l.s. can be completed
if and only if the Hall inequality (∗) holds (with L = Lϕ, as usual) with H ranging
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over all of the cliques induced by sets of unprescribed cells in row r + 1, and with H
being the Kr�Kd in th upper left part of the square.

Proof: By Hall’s theorem, or Theorem HJW, the hypothesis implies that row
r + 1 can be properly completed. Now consider the partial latin square obtained
by blanking out all entries in v(r + 1, d + 1), . . . , v(r + 1, n); that is, these cells
are unprescribed, in the new p.l.s., which fits the form treated in Buchanan and
Ferencak’s second theorem, the subject of this subsection. Then the fact that row
r + 1 could be properly completed, in this situation, and the fact that the lists on
H, the upper left Kr�Kd, are the same in this new p.l.s. as in the one we started
with, give that the new p.l.s. satisfies the hypothesis of the restatement of Buchanan
and Ferencak’s theorem, and so is completable. Therefore, the new p.l.s. is also
completable to an (r + 1) × n latin rectangle on n symbols, and therefore, since the
filling in of H places no restraints on the filling in of the last n − d entries of row
r +1, it follows that the original p.l.s. is completable to an (r +1)×n latin rectangle
on n symbols. Therefore, by Theorem MH, the original p.l.s. is completable. �

3.5 Another theorem of Andersen and Hilton

In this theorem the prescribed cells of the p.l.s. are, for some r, s ∈ {1, . . . , n − 1},
say with r ≤ s, and t ∈ {1, . . . , n − s},

{v(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ s} ∪ {v(r + i, s + i) | 1 ≤ i ≤ t},
with the additional proviso that if r = s then t ≤ n − s − 1. See Figure 9.

Let R be the r×s rectangle shown in Figure 9, and let H be the copy of Kr�Kn−s,
depicted in Figure 9, with vertices in the unprescribed area to the right of R. For
i ∈ {1, . . . , n}, let NR(i) denote the number of occurrences of i in R, and let f(i)
denote the number of occurrences of i in the cells v(r + j, s + j), 1 ≤ j ≤ t. Clearly∑n

i=1 f(i) = t.

It is proven in [4] that such a partial latin square is completable if and only if,
for each i ∈ {1, . . . , n},

NR(i) ≥ r + s − n + f(i).

Restatement In the circumstances described, the p.l.s. is completable if and only
if the instance of the Hall inequality (∗) associated with H holds.

Proof: Again, the necessity is automatic. For the sufficiency, suppose that (∗) holds
for this particular H. For each i ∈ {1, . . . , n}, Hi is an (r − NR(i)) × (n − s − f(i))
subrectangle of H. Therefore, invoking the Hall inequality (∗),

r(n − s) = |V (H)| ≤ ∑n
i=1 α(Hi)

≤ ∑n
i=1(r − NR(i))

= rn − ∑n
i=1 NR(i) = rn − rs.
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R H
r

s t

Figure 9: Prescribed cells in Andersen and Hilton’s theorem: R∪ {“diagonal” cells}

Equality throughout implies termwise equality in the second inequality above;

r − NR(i) = α(Hi) = min[r − NR(i), n − s − f(i)]

implies r−NR(i) ≤ n−s−f(i), for each i, which implies completability, by Andersen
and Hilton’s theorem. �

3.6 A theorem of Rodger

This theorem, in [18], deals with the missing case in Andersen and Hilton’s theorem:
r = s and t = n − s. See Figure 10, and let D be as defined there.

Let NR and f be defined as in the preceding section. Rodger [18] proved that a
partial latin square with such a domain can be completed if and only if each of the
following conditions hold:

R1. For each i ∈ {1, . . . , n}, NR(i) ≥ 2r − n + f(i).

R2. For each i ∈ {1, . . . , n}, if NR(i) = r then f(i) �= n − r − 1.

R3. If R is a latin square on the symbols 1, . . . , r and n = 2r+1, then
∑r

i=1 f(i) �= 1.

(Actually, Rodger proved this for n ≥ 10. Strangely, the cases n < 10 proved
resistant, and were finally dispatched by Abueida [1].)
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B

r R

r

A

n − r

n − r

Figure 10: The domain of the p.l.s. in Rodger’s theorem is R ∪ D, D = {v(j, j) |
r + 1 ≤ j ≤ n}.

Restatement If a partial latin square of order n has domain R ∪ D, as depicted
in Figure 10, then it can be completed to a latin square of order n if and only if
inequality (∗) holds for each of the following choices of H:

R(i) The copy of Kr�Kn−r induced by the cells A = {v(i, j)| 1 ≤ i ≤ r, r + 1 ≤ j ≤
n}. [The rectangle B in Figure 8 could be substituted for A in R(i).]

R(ii) The clique induced by the cells in column j, for each j = r + 1, . . . , n. [Rows
could be substituted for columns, and, in each case, the jth column or row
minus v(j, j) could be substituted for the full line.]

R(iii) For each k = r +1, . . . , n, the subgraph H(k) induced by A∪B∪ (kth row)∪ (kth

column). [H(k) − v(k, k) could be substituted for H(k).]

Proof: As usual, we need only prove sufficiency.

By the proof in the preceding section, the satisfying of (∗) when H is the subgraph in-
duced by A implies R1, which is just the condition in Andersen and Hilton’s theorem
in the case r = s, t = n − r.

Suppose R2 does not hold. Then for some i ∈ {1, . . . , n}, NR(i) = r and f(i) =
n − r − 1. Then i is the prescribed symbol in every cell of D except one; say v(j, j)
has prescribed symbol ϕ(v(j, j)) = k �= i. Because i is in every row of R, and every
cell of D except v(j, j), i does not appear on the list of any cell in the jth column of
the array. Therefore, if H is the clique induced by the cells of that column,

n∑
z=1

α(Hz) ≤ n − 1 < n = |V (H)|,
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i.e., (∗) does not hold. Therefore, if the Hall inequality (∗) does hold for every clique
induced by a column of the array among the last n − r columns, then R2 holds.

Now suppose that R3 is violated. Then R is a latin square on the symbols 1, . . . , r,
n = 2r + 1, and

∑r
i=1 f(i) = 1. Then exactly one of 1, . . . , r appears on D, and it

appears exactly once. Without loss of generality, we may suppose that 1 = ϕ(v(k, k)),
i.e., 1 appears on v(k, k), and neither 1 nor any other symbol in {1, . . . , r} appears
anywhere else on D. We will show that the Hall inequality (∗) does not hold with
H = H(k), which will finish the proof of the restatement.

|V (H(k))| = 2r(n − r) + 2(n − r) − 1
= 2r(r + 1) + 2r + 1,

since n = 2r + 1.

To simplify notation, let α(H
(k)
i ) = α(i), i = 1, . . . , n. Clearly α(1) = 1 and α(j) = 2,

j = 2, . . . , r.

If j ∈ {r+1, . . . , 2r+1}, then j appears on the lists of the cells in an r×(n−r−f(j)),
i.e., r × (r + 1− f(j)), subrectangle of A, in an (r + 1− f(j))× r subrectangle of B,
and in r − f(j) cells of row k outside B, and in r − f(j) cells of column k outside
A. It makes it easier to estimate α(j) in this case if we imagine that k = r + 1. (In

fact, we could arrange for k = r + 1 by permuting rows and columns.) Then H
(k)
j is

contained in the union of two rectangles, one of dimensions (r + 1) × (r + 1 − f(j))
and the other of dimensions (r + 1− f(j))× (r + 1). Then α(j) ≤ 2(r + 1− f(j)). If
f(j) = 0, then α(j) ≤ 2r + 1, because we are considering a (2r + 1)× (2r + 1) array.

Let S1 = {j ∈ {r + 1, . . . , 2r + 1} | f(j) = 0} and S2 = {r + 1, . . . , 2r + 1}\S1. Then∑
j∈S2

f(j) = n − r − 1 = r, so |S2| ≤ r. We have

∑n
j=1 α(j) = 1 + 2(r − 1) +

∑
j∈S1

α(j) +
∑

j∈S2
α(j)

≤ 2r − 1 + (2r + 1)|S1| + 2
∑

j∈S2
(r + 1 − f(j))

= 2r − 1 + (2r + 1)|S1| + 2(r + 1)|S2| − 2
∑

j∈S2
f(j)

= 2r − 1 + (2r + 1)(|S1| + |S2|) + |S2| − 2r
= −1 + (2r + 1)(r + 1) + |S2|
≤ 2r2 + 3r + r = 2r(r + 1) + 2r < 2r(r + 1) + 2r + 1 = |V (H(k))|.

Regarding the alternatives proposed in brackets in R(i), R(ii), and R(iii): clearly
rows can play the roles of columns, and B the role of A. Deleting any v(j, j) from
H reduces both sides of (∗) by 1. �

Corollary 4 (A corollary of the proof above) Suppose, for a p.l.s. with domain
R ∪ D, as in Rodger’s theorem, the hypothesis of R3 does not hold: that is, either
n �= 2r + 1 or n = 2r + 1 but R, with its prescription, is not a latin square of order
r. Then if the Hall inequality (∗) holds for the n− r + 1 instances of H described in
R(i) and R(ii), the p.l.s. is completable to a latin square of order n.
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4 A theorem of Andersen and Hoffman

A commutative latin square is a latin square which is symmetric, as a matrix. So,
a partial commutative latin square of order n is an assignment to a symmetric set
of cells, in an n × n array, of n symbols, say 1, . . . , n, so that symmetric cells are
assigned the same symbol and no symbol appears more than once in any row or
column.

A commutative latin square of order n can be regarded as a proper vertex coloring,
with n colors, of a graph G(n), to be defined shortly. Moreover a partial proper n-
coloring of G(n) corresponds to a partial commutative latin square. To define G(n),
n = 1, 2, . . . , let Vn = {v(i, j) | 1 ≤ i ≤ j ≤ n}, the set of cells on and above the main
diagonal in the n × n array that usually represents Kn�Kn. Vn is the vertex set of
G(n). The edge set of G(n) contains all the edges from Kn�Kn induced in that graph
by Vn, and also contains other edges which reflect the symmetry of any commutative
latin square that will arise from a proper n-coloring of G(n). In a commutative latin
square, if a symbol σ is placed in a cell v(i, j) with i < j, then σ cannot appear
elsewhere in row i or column j; but σ also appears in v(j, i), so σ cannot appear in
v(j, t), t �= i, nor in v(t, i), t �= j. If we declare an edge in G(n) between vertex v(i, j)
and v(j, k) whenever i < j < k, then for every commutative latin square of order n,
the symbols on Vn will constitute a proper n-coloring of G(n), and, conversely, every
proper n-coloring of G(n) determines a commutative latin square of order n.

The extra edges of G(n) which are not in Kn�Kn are illustrated in Figure 11 in
the case n = 5.

Figure 11: The edges of G(5) which are not also in K5�K5

Suppose L is a list assignment to G(n), and S ⊆ Vn. If the Hall inequality (∗)



148 BOBGA, GOLDWASSER, HILTON AND JOHNSON JR.

holds with H being the subgraph of G(n) induced by S, then also (∗) holds with H
being the subgraph of Kn�Kn induced by S, because the independence numbers in
the graph with more edges are no greater than those in the graph with fewer edges.

Suppose that we have a partial commutative latin square which, were it to be
considered a p.l.s. (with symmetric prescription), would have domain R ∪ D, as
in Figure 10—i.e., as in Rodger’s theorem, of Subsection 3.6. For i ∈ {1, . . . , n},
let NR(i) and f(i) be as in that subsection, and let g(i) be the total number of
appearances of i on the main diagonal of R, so that d(i) = f(i) + g(i) is the total
number of appearances of i on the main diagonal of the n × n array. A theorem
proven independently by Andersen [2] and Hoffman [17] asserts that this partial
commutative latin square can be completed to a commutative latin square of order
n if and only if:

For each i ∈ {1, . . . , n},
AH(1) NR(i) ≥ 2r − n + f(i), and
AH(2) d(i) ≡ n mod 2.

Proof that AH(1) and AH(2) are equivalent to (∗) holding for a small number of
choices of H, with G = G(n):

Obviously AH(1) and R1, in Rodger’s theorem, Subsection 3.6, are the same,
and it is shown in 3.6, by reference to 3.5, that that condition is implied by a single
instance of (∗), the inequality in Hall’s condition with reference to Kn�Kn, with H
being the subgraph induced by the r × (n − r) rectangle A shown in Figure 10. By
remarks above, if the Hall inequality (∗) holds with H being the subgraph of G(n)
induced by A, then it holds with respect to Kn�Kn, and so AH(1) holds.

Now we shall show that a single instance of the Hall inequality (*) implies AH(2),
and thus that this theorem of Andersen and Hoffman can be restated as the other
theorems have been restated. The only difference is that the underlying graph here
is G(n), not Kn�Kn.

Let the vertices (cells) v(i, j), 1 ≤ i ≤ j ≤ r, and v(i, i), r + 1 ≤ i ≤ n have
prescribed colors from {1, . . . , n}, so that no cells adjacent in G(n) have the same
color, and let L be the list assignment to G(n) induced by this partial proper coloring.
Let M(n) = M = {v(i, i) | 1 ≤ i ≤ n}, the “main diagonal” of G(n).

We shall show that if the Hall inequality (*) holds for L and H = H(n) =
G(n)−M(n), then condition AH(2) must hold. Suppose that (∗) holds for L and H
while AH(2) does not hold.

Let L′ denote the list assignment to G(n) induced just by the diagonal cells,
i.e. the cells of M . Since L(v) ⊆ L′(v) for all v ∈ V (G(n)),

∑n
i=1 α(H(i, L)) ≤∑n

i=1 α(H(i, L′)), so if the inequality (*) fails to hold for H and L′, then it fails for
H and L, and we have a contradiction. For each i ∈ {1, . . . , n}, we will see that

α(H(i, L′)) = �n−d(i)
2

�
=

{
n−d(i)

2
if n ≡ d(i) mod 2

n−d(i)−1
2

if n �≡ d(i) mod 2
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and this will imply that the inequality (*) fails for H and L′. For, letting b > 0 be
the number of “bad” symbols, i.e. symbols i satisfying d(i) �≡ n mod 2, we would
have

∑n
i=1 α(H(i, L′)) =

∑n
i=1

n−d(i)
2

− b
2

= n2−n
2

− b
2

= |V (H)| − b
2

< |V (H)|.
Suppose i ∈ {1, . . . , n}. Applying an automorphism of G(n), we can assume

that i occupies the last, i.e. the bottom right, d(i) cells on M . Then H(i, L′) is
induced by {v(i, j) | 1 ≤ i < j ≤ n − d(i)}. That is, H(i, L′) 	 H(n − d(i)) =
G(n − d(i)) − M(n − d(i)). So, to finish the proof, it suffices to show that for each
positive integer z, α(H(z)) = �z

2
�. (Actually, it suffices to show that α(H(z)) ≤ �z

2
�,

but it does not hurt to prove the equality.)

Suppose that v(i1, j1), . . . , v(ik, jk) are distinct vertices in V (H(z)) = {v(i, j) |
1 ≤ i < j ≤ z}, no two adjacent. By the way adjacency is defined in G(z), i1, . . . , ik
must be distinct, j1, . . . , jk must be distinct, and no it is equal to any jr. [For,
if it = jr then ir < jr = it < jt and v(it, jt), v(ir, jr) are adjacent.] Therefore,
i1, . . . , ik, j1, . . . , jk are 2k distinct integers in {1, . . . , z}. Therefore k ≤ �z

2
�; there-

fore, α(H(z)) ≤ �z
2
�.

To show equality, we exhibit an independent set of �z
2
� vertices in H(z). Start in

the upper right hand corner of the triangular array V (H(z)) and move along the back
diagonal toward M(z); the cells in the set are v(1, z), v(2, z − 1), . . . , v(α, z −α + 1),
where α satisfies either α + 1 = (z − α + 1) − 1 in which case α = z−1

2
= �z

2
�, or

α = (z − α + 1) − 1 in which case α = z
2

= �z
2
�. �

Restatement of the theorem of Andersen and Hoffman
If a partial commutative latin square of order n has domain R ∪ D, as depicted in
Figure 10, then it can be completed to a commutative latin square of order n if and
only if the Hall inequality (∗) holds for the following two choices of subgraphs H of
G = G(n):

(i) The subgraph induced by the cells A = {v(i, j) | 1 ≤ i ≤ r, r + 1 ≤ j ≤ n};
(ii) H = G(n) − M(n).
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