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Abstract

Let G be a directed graph and Gr be its r-th power. We study different
issues dealing with the number of arcs, or size, of G and Gr: given the
order and diameter of a strongly connected digraph, what is its maximum
size, and which are the graphs achieving this bound? What is the mini-
mum size of the r-th power of a strongly connected digraph, and which
are the graphs achieving this bound? Given all strongly connected di-
graphs G of order n such that Gr �= Kn, what is the minimum number of
arcs that are added when going from G to Gr, and which are the graphs
achieving this bound?

1 Introduction

Before we expound our study, we first give, for directed graphs, some very basic
definitions and notation, which can be found, e.g., in [3], [4].

1.1 Definitions and Notation

We shall denote by G = (V, A) a directed graph, or digraph, or simply graph, with
vertex set V and arc set A, where an arc (i.e., a directed edge) from x ∈ V to y ∈ V
is denoted by the pair (x, y). We say that x is the origin of the arc, and y its end ;
the origin and the end are the extremities of the arc. We require the graph to have
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no loops nor double arcs — but the arcs (x, y) and (y, x) can simultaneously exist;
in this case, we say that there is a symmetric arc between x and y. The size of a
digraph is its number of arcs, and its order is its number of vertices.

A directed path, or simply path, P = x0x1 . . . x�, is a sequence of vertices xi,
0 ≤ i ≤ �, such that (xi, xi+1) ∈ A, 0 ≤ i ≤ � − 1. The length of P is its number of
arcs, �. A digraph is called strongly connected if for any two vertices x and y there
is a path going from x to y.

In a strongly connected graph G, we can define the distance from any vertex x to
any vertex y, denoted by dG(x, y), as the number of arcs in any shortest directed path
from x to y, since such a path exists. Note that in general, dG(x, y) is not equal to
dG(y, x). We shall say that two vertices x, y are at distance in G greater (respectively,
smaller) than s from one another if dG(x, y) > s or dG(y, x) > s (respectively, if
dG(x, y) < s and dG(y, x) < s). The diameter of a strongly connected graph G is
the maximum distance in the graph:

ϕ(G) = max
x∈V,y∈V

dG(x, y).

Given an integer r ≥ 1, the r-th power, or r-th transitive closure, of the graph
G = (V, A) is the graph Gr = (V, Ar), where, for two distinct vertices x and y, the
arc (x, y) belongs to Ar if and only if dG(x, y) ≤ r.

The clique, or complete graph, Kn, is the digraph of order n with all possible
n(n − 1) arcs. Finally, an induced subgraph of G = (V, A) is a graph G∗ = (V ∗, A∗)
where V ∗ ⊆ V and A∗ = {(x, y) : x ∈ V ∗, y ∈ V ∗, (x, y) ∈ A}; a subgraph is such
that A∗ is included in {(x, y) : x ∈ V ∗, y ∈ V ∗, (x, y) ∈ A}.

1.2 Scope of the Paper

We are interested in the following related problems on sizes and powers, for digraphs:
(a) Given the order and diameter of a strongly connected digraph, what is its

maximum size, and which are the graphs achieving this bound?
The first part of this question received its answer in [5] as far back as 1960; in

Section 2, we characterize the graphs reaching this bound.
(b) Given an integer r ≥ 2, what is the minimum size of a digraph of order n,

of which it is known that it is the r-th power of a strongly connected digraph, and
which are the graphs achieving this bound?

The answer is in Section 3.
(c) Given an integer r ≥ 2 and all strongly connected digraphs G of order n such

that Gr �= Kn, what is the minimum number of arcs that are added when going from
G to Gr, and which are the graphs achieving this bound?

We give the answer in Section 4.

Similar issues for undirected graphs are treated in [2], the motivation coming from
previous studies by Aingworth et al. [1] and Ore [6]: for instance, Ore determined
the maximum number of edges for undirected connected graphs with given order
and diameter, and characterized the graphs reaching this bound, which is exactly
Question (a) above for undirected graphs.



ON THE SIZES OF THE GRAPHS 89

2 The Size of a Digraph with Given Order and Diameter

The following result is the corrected version of the theorem which is proved in [5]
and contains a very small inaccuracy.

Theorem 1 [5], [3, Th. 2.4.6] Let G = (V, A) be a strongly connected digraph of
order n and size m. Then

ϕ(G) ≤
{

n − 1 if n ≤ m ≤ n(n+1)
2

− 1,⌊
n + 1

2
−

√
2m − n2 − n + 17

4

⌋
if n(n+1)

2
− 1 ≤ m ≤ n(n − 1).

From this we can immediately derive the following theorem. We still give a proof of
Theorem 2, because we use it when characterizing the graphs which reach the bound.

Theorem 2 Let G = (V, A) be a strongly connected digraph of order n and diame-
ter ϕ ≥ 2. Then the size of G is at most

ϕ(ϕ + 3)

2
+ (n − ϕ − 1)(n + 2). (1)

Proof. Let z1, z2 ∈ V be such that dG(z1, z2) = ϕ, and C be a shortest directed
path from z1 to z2: C = x0x1 . . . xϕ, with x0 = z1 and xϕ = z2; there are no more
arcs (xi, xj), i < j, but any arc (xi, xj), i > j, can exist. In G, the remaining vertices
yj , 1 ≤ j ≤ n−ϕ− 1, can at most constitute the clique Kn−ϕ−1, and each yj can be
part of at most ϕ + 4 arcs with ends or origins in C: this is clear if ϕ = 2; if ϕ ≥ 3
and there are ϕ + 5 arcs (yj , xk) or (xk, yj), then there are at least four vertices xi

such that both (yj , xi) and (xi, yj) belong to A. This in turn implies that in A there
are two arcs (xi1 , yj) and (yj, xi2) with i1 + 3 ≤ i2. This is impossible, since the path
x0 . . . xi1yjxi2 . . . xϕ would be shorter than C. All in all, we have at most

ϕ +
ϕ(ϕ + 1)

2
+ (n − ϕ − 1)(n − ϕ − 2) + (ϕ + 4)(n − ϕ − 1)

arcs in G, which amounts to (1). �
We shall see that this theorem is also a direct consequence of Theorem 5. We set

σ(ϕ, n) =
ϕ(ϕ + 3)

2
+ (n − ϕ − 1)(n + 2), (2)

and we are going to characterize the graphs G = (V, A) reaching σ(ϕ, n). The
previous proof shows that necessarily G consists of the path C = x0x1 . . . xϕ, all
the arcs (xi, xj), i > j, the clique Kn−ϕ−1 and exactly ϕ + 4 arcs between every
vertex y ∈ Kn−ϕ−1 and the vertices of C. All we have to determine is how these
(ϕ + 4)(n − ϕ − 1) arcs are located.

We observe that, in particular, for each y ∈ Kn−ϕ−1, there are in A at least three
arcs (xi, y) and three arcs (y, xj). Let h be the smallest subscript such that there is
a vertex y1 ∈ Kn−ϕ−1 with (xh, y1) ∈ A; the parameter h can vary from 0 to ϕ − 2.
Let k be the largest subscript such that (y1, xk) ∈ A. Because xhy1xk must not allow
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Figure 1: The locations of the arcs between the vertices in C and the clique. A bold
line without arrow represents a symmetric arc.

shortcuts with respect to C, we have k ≤ h + 2. Now one can see that necessarily:
k = h + 2, and we must have in A all the ϕ − h + 1 arcs (xi, y1), h ≤ i ≤ ϕ, and all
the h + 3 arcs (y1, xj), 0 ≤ j ≤ h + 2, see Figure 1(a).

Now consider another vertex y2 in the clique. If (xh, y2) ∈ A, then everything
goes as with y1. If (xh, y2) /∈ A, let � (respectively, m) be the largest (respectively,
smallest) subscript such that (y2, x�) ∈ A (respectively, (xm, y2) ∈ A); immediately,
m ≥ h + 1, and, because of the forbidden shortcut xhy1y2x�, � ≤ h + 3. And again,
there is no choice left for � and m: � = m + 2 and by the previous inequalities on
� and m, we have � = h + 3, m = h + 1, and we must have in A all the h + 4 arcs
(y2, xj), 0 ≤ j ≤ h+ 3, and all the ϕ−h arcs (xi, y2), h+ 1 ≤ i ≤ ϕ, see Figure 1(b).

So the clique is divided into at most two types of vertices, those with (xh, y) ∈ A,
and the others, with (xh, y) /∈ A but (xh+1, y) ∈ A. When h varies from 0 to ϕ − 2,
we obtain the description of all the graphs achieving the bound σ(ϕ, n) (since we
did not introduce shortcuts, their diameter is indeed ϕ, the distance from x0 to xϕ).
Note that if h = ϕ − 2, we can have only one type of vertex in the clique.

3 Size of the Power of a Digraph

We address the following issue: given an integer r ≥ 2 and all strongly connected
digraphs of order n, G = (V, A), what is the smallest number of arcs in Gr? and
which are the graphs which meet this bound?

We give the complete answer in the next two theorems. If r ≥ n − 1, then
Gr = Kn and the problem is trivial, so we assume that r ≤ n − 2.

Theorem 3 If r ≤ n− 2 and G = (V, A) is a strongly connected digraph of order n,
then the size of Gr is at least nr.

Proof. Let x ∈ V . If for all y ∈ V , dG(x, y) ≤ r, then the n − 1 arcs (x, y),
y ∈ V \ {x}, are in Gr. If there is a vertex y such that dG(x, y) > r, consider a
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shortest path xz1z2 . . . zr . . . y from x to y. Then the r arcs (x, zi), 1 ≤ i ≤ r, are
in Gr. In both cases, since r ≤ n − 1, we see that each of the n vertices x brings at
least r arcs with origin x to Gr. �

Theorem 4 If r ≤ n − 2, the only strongly connected digraph G = (V, A) with
order n such that Gr has size exactly nr is the circuit x0x1 . . . xn−1x0.

Proof. Obviously, the circuit achieves the bound rn. If G meets rn, that is, if
|Ar| = rn, then, following the proof of Theorem 3, each vertex x must contribute
exactly r to Gr with arcs originating in x. Since n − 1 > r, there is a shortest path
with length greater than r, P = xz1z2 . . . zr . . . y, from x to some y ∈ V (otherwise,
all n − 1 vertices in V \ {x} being within distance r from x, there would be more
than r arcs with origin x in Gr). If there is an arc (x, w) ∈ A, w �= z1, then x gives
at least r + 1 arcs with origin x to Gr. So in A the only arc with origin x is (x, z1)
and we have just proved that every vertex is the origin of exactly one arc in G. Since
G is strongly connected, the only possibility is the circuit. �

4 From G to Gr

We consider an integer r ≥ 2 and all strongly connected digraphs G = (V, A),
of order n, such that Gr �= Kn, and we want to determine what is the minimum
number of arcs that have to be added to go from G to Gr, i.e., what is the minimum
cardinality of Ar\A: we shall denote this number by Λ(r, n). Once we know the value
of Λ(r, n) (Theorem 5), we shall characterize the graphs reaching it in Section 4.2.

4.1 Minimum Number of Arcs

Observe that the condition Gr �= Kn is equivalent to the fact that G has diameter
at least r + 1, so

n > ϕ(G) ≥ r + 1.

In the following theorem, we can see that Λ(r, n) is linear in n, with the factor r− 1.

Theorem 5 For r ≥ 2 and n ≥ r + 2, we have:

Λ(r, n) = (r − 1)(n − 1 − r

2
). (3)

Proof. In the course of this proof, we shall prove Lemmas 6–9 and 11, and Corol-
laries 10 and 12.

Note that equality (3) contains the case r = 1 (no arc is added). We set

b(r, n) = (r − 1)(n − 1 − r

2
).

First, we exhibit a digraph G0 = (V0, A0) showing that Λ(r, n) ≤ b(r, n). This graph
has vertex and arc sets defined by

V0 = {xi : 0 ≤ i ≤ n0 − 1}, (4)
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Figure 2: The path C = x0x1 . . . xt used in the proof of Theorem 5.

A0 = {(xi, xi+1) : 0 ≤ i ≤ n0 − 2} ∪ {(xj , xk) : 0 ≤ k < j ≤ n0 − 1}. (5)

In other words, G0 consists of a directed path going from x0 to xn0−1, plus all arcs
going from a vertex xj to a vertex of smaller subscript.

Since G0 has diameter at least r + 1, we have n0 ≥ r + 2. The arcs in Ar
0 \

A0 are the arcs (xi, xj) with 0 ≤ i ≤ n0 − 3 and i + 2 ≤ j ≤ min{i + r, n0 −
1}. So there are r − 1 additional arcs starting from xi as long as i ≤ n0 − 1 −
r, and (r − 2), (r − 3), . . . , 1 additional arcs starting from the subsequent vertices,
xn0−r, xn0−r+1, . . . , xn0−3, respectively. All in all, we have (n0 − r)(r − 1) + 1

2
(r −

1)(r − 2) = b(r, n0) new arcs, which proves the upper bound for Λ(r, n).

Now, let G = (V, A) be any digraph fulfilling the hypotheses, and G∗ = (V ∗, A∗) be
a strongly connected induced subgraph of G, having minimum order, n∗, among all
the strongly connected induced subgraphs of G which have two vertices at distance
in G greater than r from one another — since G has diameter at least r + 1, such
two vertices exist and if necessary we take G∗ = G, so such a graph G∗ always
exists. We name z1 and z2 these two vertices, so that z1 ∈ V ∗, z2 ∈ V ∗ and, say,
dG(z1, z2) = θ > r. Obviously, if t = dG∗(z1, z2), then t ≥ θ > r.

It is useful to give a name to the following property, which simply uses the very
definition of G∗:

(P) If H is a strongly connected subgraph of G with order nH such that
2 ≤ nH < n∗, then any two vertices x, y in H are at distance in G at
most r from one another; consequently, (x, y) ∈ Ar and (y, x) ∈ Ar.

(1) In a first step, we are going to show that V ∗ contains at least b(r, n∗) couples
of vertices u, v such that the arc (u, v) belongs to Ar \ A. Such couples are called
G∗-friendly couples, with origin u and end v. This first step will stop when (13) is
established, and will use Lemmas 6 and 7.

Let C be a shortest path in G∗ from z1 to z2:

C = x0x1 . . . xt, (6)

with x0 = z1, xt = z2 and t ≥ θ > r ≥ 2, see Figure 2.

The path C is a subpath of the graph G0 defined by (4) and (5), with n0 − 1 = t:
same vertices, fewer arcs; therefore, there are at least the b(r, t + 1) arcs (xi, xj),
i + 2 ≤ j, to be added when going from G∗ to (G∗)r, cf. the above study of G0.
Moreover, these couples xi, xj are G∗-friendly: (a) xi, xj ∈ V ∗, (b) (xi, xj) /∈ A
because (xi, xj) /∈ A∗, and (c) (xi, xj) ∈ Ar because (xi, xj) ∈ (A∗)r ⊆ Ar. So:

there are at least b(r, t + 1) G∗-friendly couples xi, xj in C, with i < j. (7)
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If every vertex in G∗ belongs to C, i.e., n∗ = t+1, then we have proved the existence
of at least b(r, n∗) G∗-friendly couples, which is what we wanted. So from now on,
we assume that there is at least one vertex in G∗ which is not a vertex xi, 0 ≤ i ≤ t.
We denote by Y ∗ the set of these vertices:

Y ∗ = V ∗ \ {xi : 0 ≤ i ≤ t}, with |Y ∗| = n∗ − t − 1.

(1a) In an intermediate step, our goal is to prove the following property (Q):

(Q) for any vertex y ∈ Y ∗, we add, when going from G to Gr, at least
r − 1 distinct arcs such that:

either (i) the origin is y and the end is in G∗,

or (ii) the end is y and the origin is in C.

As a consequence, we never count twice the same arc for two different y1, y2 in Y ∗.
Obviously, these arcs yield G∗-friendly couples. To prove that (Q) is true, we state
a first lemma.

Lemma 6 Let y ∈ Y ∗. If for all xi in C, dG(xi, y) ≤ r and dG(y, xi) ≤ r, then
property (Q) holds.

Proof of Lemma 6. By assumption, all the arcs (xi, y) and (y, xi) belong to Ar,
so it is sufficient to show that at least r − 1 of them do not belong to A.

If no i exists such that (xi, y) ∈ A, then (Q) holds, because t > r. So we can
assume that there is a smallest k, 0 ≤ k ≤ t, such that (xk, y) ∈ A. We use the
fact, which is true for all j between k + 3 and t, that (y, xj) /∈ A: otherwise the two
arcs (xk, y), (y, xj), belonging to A∗ ⊆ A, would contribute to provide, in G∗, a path
shorter than C from z1 to z2.

Therefore, the arcs (y, xj), k+3 ≤ j ≤ t, and (xi, y), 0 ≤ i ≤ k−1, do not belong
to A, i.e., all in all, t − 2 ≥ r − 1 arcs, which proves Lemma 6. �
Back to the proof of Theorem 5, we consider a shortest path W in G∗ from y ∈ Y ∗

to x0:
W = w0w1 . . . wq,

with w0 = y and wq = x0; see Figure 3. Note that the intersection between C and
W is not necessarily reduced to x0. For i between 2 and q, the arc (y, wi) does not
belong to A, because W is a shortest path, and for i between 2 and min{q, r}, the
arc (y, wi) belongs to Ar and satisfies (i) in (Q). If q ≥ r, then (Q) holds, so from
now on we assume that q < r, and we have just shown that

in Ar \ A, there are q − 1 arcs (y, wi), 2 ≤ i ≤ q, satisfying (i) in (Q). (8)

We consider the vertices x0, x1, . . . , xr−q in C. By the triangle inequality, for i be-
tween 0 and r − q, we have dG∗(y, xi) ≤ q + (r − q) = r and so

dG(y, xi) ≤ r for 0 ≤ i ≤ r − q. (9)

We are now ready to prove Lemma 7.
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Figure 3: The paths C and W used in the proof of Theorem 5.
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Figure 4: The paths C, W and U used in the proof of Lemma 7.

Lemma 7 If there exists a path in G∗ from y to xk, 1 ≤ k ≤ r − q, which does not
go through x0, then (Q) is true.

Proof of Lemma 7. Among these paths, we choose a path U for which k is
minimum; see Figure 4. For i between 1 and k − 1, the arcs (y, xi) are in Ar \ A,
because of (9) and the minimality of k, and these arcs satisfy (i) in (Q), so we have
just shown that

in Ar \ A, there are k − 1 arcs (y, xi), 1 ≤ i ≤ k − 1, satisfying (i). (10)

Let M be a path in G∗ from xt to y; see Figure 5. Then M does not go through x0:
otherwise, consider the subpath M∗ of M going from xt to x0, and C ∪M∗, by which
we mean the induced subgraph of G with vertices in C ∪ M∗, so that there can be
more arcs than simply the arcs of the path C and the arcs of the subpath M∗. Now
this graph is strongly connected, contains x0 = z1 and xt = z2 which are at distance
greater than r in G, and does not contain y, thus contradicting the minimality of G∗.

Consider next the subpath C∗ of C going from xk to xt; see Figure 6, and U∪C∗∪
M ; this graph is strongly connected and contains fewer vertices than G∗ (because it
does not contain x0), and so, by property (P), we have

dG(y, xi) ≤ r and dG(xi, y) ≤ r, for k ≤ i ≤ t. (11)

If for all i between k + 1 and t − 1, the arcs (xi, y) are not in A, then they are in
Ar \ A and satisfy (ii) in (Q). So, together with our first k − 1 arcs from (10), we
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Figure 5: The paths C, W , U and M used in the proof of Lemma 7.
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Lemma 7.
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Figure 7: The paths C, W , U , M , and the arc (xh, y) used in the proof of Lemma 7.

have at least (k − 1) + (t − k − 1) = t − 2 ≥ r − 1 suitable arcs. We assume finally
that there is an arc (xh, y) in A, with k + 1 ≤ h ≤ t − 1; see Figure 7.

Consider, with abuse of notation, the graph G = (xh, y) ∪ W ∪ {x0, x1, . . . , xh}.
This strongly connected graph cannot go through xt, otherwise it would do so
along W , and, since W goes back to x0, we would again have the vertices in C
strongly connected between themselves, contradicting the minimality of G∗. So this
graph G has fewer vertices than G∗, and therefore by property (P), for all i between
0 and h, we have: dG(y, xi) ≤ r, dG(xi, y) ≤ r. Using (11) and h ≥ k + 1, we see
that we are in the conditions of Lemma 6, which shows that (Q) is true and ends
the proof of Lemma 7. �
Back to the proof of Theorem 5, we can conclude about property (Q), assuming
finally that the hypothesis of Lemma 7 is not fulfilled: in particular, in A∗, hence
in A, there is no arc (y, xi) for i between 1 and r − q, but, by (9), all these arcs are
in Ar. So:

in Ar \ A, there are r − q arcs (y, xi), 1 ≤ i ≤ r − q, satisfying (i). (12)

Also because the conditions of Lemma 7 do not apply, and unlike in Figure 4, a
vertex wi in W , 2 ≤ i ≤ q, cannot coincide with a vertex xj , 1 ≤ j ≤ r − q, for
otherwise the beginning of the path W from y to x0 would be a path from y to xj

not going through x0. Therefore we can add the arcs obtained in (8) and (12), which
proves that property (Q) holds in all cases, and marks the end of our intermediate
step.

(1b) The first step is now almost complete: by (7) and because (Q) provides G∗-
friendly couples which are counted only once, we have in G∗ at least

b(r, t + 1) + (r − 1)|Y ∗| = b(r, t + 1) + (r − 1)
(
n∗ − t − 1

)
= b(r, n∗) (13)

G∗-friendly couples, which ends our first step.
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Figure 8: The graph G1 and a smallest ear induce the graph G2.

(2) The sequel of the proof of Theorem 5 will use Lemmas 8, 9 and 11, as well as
Corollaries 10 and 12.

Now we consider all the strongly connected induced subgraphs Ĝ of G, of order n̂,
containing two vertices at distance in G greater than r from one another, and con-
taining at least b(r, n̂) Ĝ-friendly couples — we have just proved that such graphs
exist; among them, we take one, G1 = (V1, A1), with order n1. If n1 = n, then
G1 = G, there are at least b(r, n) G-friendly couples, i.e., at least b(r, n) arcs in
Ar \ A, and Theorem 5 is proved. So from now on, we assume that V \ V1 �= ∅.

Since G is strongly connected, there is a smallest set of vertices Y = {y1, y2, . . . ,
yh} ⊆ V \ V1 such that H = y1y2 . . . yh is a directed path in G and the arcs (u, y1),
(yh, v) are in A, where u and v are two, non necessarily distinct, vertices in V1; see
Figure 8. We call Y an ear and set G2 = (V2, A2), the induced subgraph of G with
vertex set V2 = V1 ∪ Y ; the arc set A2 contains, among others, the arcs of A1 and
of H, as well as (u, y1) and (yh, v). Because of the minimality of Y , there is in A2,
hence in A, no arc (yi, yj) with 1 ≤ i < j ≤ h, no arc with origin in V1 and end yi,
2 ≤ i ≤ h, and no arc with origin yi, 1 ≤ i ≤ h − 1, and end in V1.

Trivially, every G1-friendly couple is G2-friendly, and G1- and G2-friendly couples
all give arcs in Ar \ A.

We are going to show that every vertex in Y belongs to r−1 G2-friendly couples,
except possibly one vertex; in this case however, this will be compensated by one
vertex in Y belonging to 2(r − 1) G2-friendly couples. In any case, no G2-friendly
couple will be counted twice.

We first assume that h ≥ 2.
Let y ∈ Y . If there is a vertex x in V2 such that dG2(y, x) ≥ r + 1, then

in Ar \ A, there are at least r − 1 arcs with origin y and end in V2. (14)

Indeed, a shortest path in G2 from y to x: z0z1 . . . zt, with z0 = y, zt = x and t > r,
shows that the r − 1 arcs (y, zi), 2 ≤ i ≤ r, belong to Ar \ A.

Let y ∈ Y \ {yh}. If all vertices x in V2 are such that dG2(y, x) ≤ r, then

in Ar \ A, there are at least r − 1 arcs with origin y and end in V1. (15)

Indeed, for all x ∈ V1, the arc (y, x) /∈ A, as mentioned above, and (y, x) ∈ Ar because
dG2(y, x), hence dG(y, x), is at most r. Since G1 contains two vertices at distance
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in G greater than r from one another, its order is at least r − 1 and claim (15) is
true.

Gathering (14) and (15), we obtain immediately the following lemma.

Lemma 8 If h ≥ 2, then, for all y ∈ Y \ {yh},
there are at least r − 1 G2-friendly couples with origin y. (16)

�
Lemma 9 If h ≥ 2, then

there are at least r − 1 G1-friendly couples with end y2. (17)

Proof of Lemma 9. Take any vertex x ∈ V1 and a shortest path C in G2 from x
to y2. By the minimality of the ear Y , this path goes through vertices in V1, then
goes to y1, and then it goes to y2, by minimality of C.

First, we assume that there is a vertex w ∈ V1 such that dG2(w, y2) ≥ r. By the
above remark and because r ≥ 2, there is a vertex z ∈ V1 with dG2(z, y2) = r (and
so dG(z, y2) ≤ r), and the first r − 1 vertices in a shortest path in G2 from z to y2

belong to V1. If we call these r − 1 vertices z0, z1, . . . , zr−2, then the arcs (zi, y2)
belong to Ar \ A, and claim (17) holds.

If, on the other hand, for all w ∈ V1, dG2(w, y2) < r, then for all vertices w in V1,
(w, y2) ∈ Ar \ A, and (17) follows, which proves Lemma 9. �
Corollary 10 If h ≥ 2, then there are at least |Y |(r−1) distinct arcs in Ar \A with
one end or one origin in Y and the other extremity in V2, i.e., at least |Y |(r − 1)
distinct G2-friendly couples with one extremity in Y .

Proof of Corollary 10. Simply add up the arcs, or friendly couples, obtained
in (16) and in (17): if h ≥ 3, then yh gives no arc, y2 gives r − 1 arcs with origin y2

and end in V2, and r−1 arcs with origin in V1 and end y2, and the remaining vertices
yi ∈ Y each give r − 1 arcs with origin yi and end in V2; if h = 2, then y1 gives r − 1
arcs with origin y1 and end in V2, and y2 gives r−1 arcs with origin in V1 and end y2.
All these arcs are distinct, which proves Corollary 10. �
Back to the proof of Theorem 5, we are left with the case h = 1, that is, V2 = V1∪{y}.
Lemma 11 If Y = {y}, then there are at least r − 1 G1-friendly couples whose
origin or end is y.

Proof of Lemma 11. Assume first that there is a vertex x in V1 such that
dG2(y, x) ≥ r; then the argument leading to (14) still works, and we obtain r − 1
arcs in Ar \A with origin y and end in V1. Similarly, if there is a vertex x in V1 such
that dG2(x, y) ≥ r, then there exist r − 1 arcs in Ar \A with end y and origin in V1.

Finally, we treat the case when for all x ∈ V1, dG2(x, y) < r and dG2(y, x) < r.
We know that in V1 there are two vertices at distance in G at least r + 1 from one
another: if we denote them by z1 and z2, with dG(z1, z2) > r, there is in G1 a shortest
path x0x1 . . . xt with x0 = z1, xt = z2 and t > r. Mimicking the proof of Lemma 6,
we see that y is the origin or the end of r−1 arcs (y, xi) or (xi, y) belonging to Ar \A,
with xi ∈ V1, which proves Lemma 11. �
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Corollary 12 For all h ≥ 1, there are at least h(r − 1) distinct arcs in Ar \ A with
one end or one origin in the ear Y = {y1, y2, . . . , yh} and the other extremity in V2,
i.e., at least h(r − 1) G2-friendly couples with one extremity in Y . �

The proof of Theorem 5 is now almost complete: in G2, which has n2 = n1 + h
vertices, there are two vertices at distance in G at least r + 1 from one another, and
there are at least

b(r, n1) + h(r − 1) = b(r, n1 + h) = b(r, n2)

G2-friendly couples. If G2 = G, we are done; if not, we can act again on G2 as we did
on G1, . . . , until we eventually reach G, which proves that there are at least b(r, n)
arcs in Ar \ A and ends the proof of Theorem 5. �
Theorem 5 implies directly Theorem 2: let G = (V, A) be a strongly connected
digraph of order n and diameter ϕ ≥ 2. Then Gϕ−1 �= Kn, |Aϕ−1| ≤ n(n−1)−1, and
|A| ≤ |Aϕ−1|−b(ϕ−1, n). Calculations show that n(n−1)−1−b(ϕ−1, n) = σ(ϕ, n),
including the case ϕ = 2.

4.2 Characterization

We now characterize the graphs which attain the bound |Ar \ A| = Λ(r, n); we have
already seen at the beginning of the proof of Theorem 5 that the graph G0 with
vertex set V0 = {xi : 0 ≤ i ≤ n0 − 1} and arc set A0 given by (5) is such that there
are exactly Λ(r, n0) arcs in Ar

0 \ A0.
We consider a strongly connected digraph G = (V, A) of order n, such that

Gr �= Kn and |Ar \ A| = Λ(r, n); the diameter ϕ of G is at least r + 1.
In the process of proving Theorem 5, we considered the graph G∗ and, in G∗,

a shortest directed path C = x0x1 . . . xt, t > r, from z1 = x0 to xt = z2, cf. (6);
this path will provide at least Λ(r, t + 1) G∗-friendly couples, cf. (7). Each vertex in
Y ∗ = V ∗ \ {xi : 0 ≤ i ≤ t} will bring at least r − 1 G∗-friendly couples, thanks to
property (Q), and all in all G∗ will give at least Λ(r, n∗) G∗-friendly couples, cf. (13).
Then, switching from G∗ to G1, we proved (Corollary 12) that each vertex in V \ V1

gives, in average, at least r − 1 arcs to Ar \A, finally leading to at least Λ(r, n) arcs
in Ar \ A.

If G attains the bound, then in the previous paragraph, we can replace each
occurrence of “at least” by “exactly”. In particular, G∗ achieves the bound Λ(r, n∗)
and C achieves the bound Λ(r, t + 1), for the number of G∗-friendly couples. The
following easy lemma will be used repeatedly.

Lemma 13 If C = x0x1 . . . xt, the shortest path in G∗ from z1 = x0 to xt = z2,
meets the bound Λ(r, t + 1), and if i > j and (xi, xj) ∈ Ar, then (xi, xj) ∈ A.

Proof. The Λ(r, t + 1) G∗-friendly couples from (7) are of type xk, x�, with k < �,
so no arc (xi, xj), i > j, can belong to Ar \ A. �
Note that we are in the conditions of Lemma 13 as soon as G meets the bound
Λ(r, n). We now show that all vertices of G∗ are in C.
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Lemma 14 If G achieves the bound Λ(r, n), then the set Y ∗ is empty.

Proof. Let D be a shortest path in G∗ going from xt to x0 (such a path exists since
G∗ is strongly connected). Then all the vertices in Y ∗ are vertices of D, for otherwise
the set of vertices of C and D would violate the minimality of G∗. We now show
that D has no vertices outside of C.

Assume the contrary.

If D intersects C in a vertex xh, h /∈ {0, t}, we consider the couple xt, xh. The
arc (xt, xh) belongs to Ar: the graph consisting of xhxh+1 . . . xt and the part of D
from xt to xh is strongly connected and smaller than G∗, and we use property (P).
Therefore, by Lemma 13, (xt, xh) ∈ A. Similarly, (xh, x0) ∈ A, and, because r ≥ 2,
(xt, x0) is in Ar, hence in A, which yields a path shorter than D.

Assume now that D does not intersect C, except on x0 and xt.

If D, apart from xt and x0, has at most r − 1 vertices, then the distance in D
from xt to x0 is at most r, from which we can conclude that (xt, x0) ∈ A, again a
contradiction.

So we assume that D, apart from xt and x0, has at least r vertices, w1, w2, . . . ,
wr, . . . , with (xt, w1) the first arc in D. Then (w1, wi) ∈ Ar \ A for 3 ≤ i ≤ r, and
the same is true with either (w1, wr+1) or (w1, x0); by property (Q), which must be
satisfied with equality, there is no other arc in Ar \ A having w1 as an extremity;
in particular, because r ≥ 2, the arc (xt−1, w1) must belong to A, see Figure 9. It
follows that the path F which goes from x0 to x0 using the shortcut (xt−1, w1) is
strongly connected and smaller than G∗, so we can conclude that (xt−1, x0) ∈ A by
Lemma 13, since (xt−1, x0) ∈ Ar by (P).

Let y be any vertex in D\{x0, xt}. If there is an arc (y, xi) in A with 1 ≤ i ≤ t−1,
see Figure 10, the same argument with xtw1 . . . yxixt shows that (xt, xi) ∈ A. Then
we can see in Figure 11 a path going from xt to xi, then to xt−1, then to x0, that is,
a path from xt to x0 which uses only vertices in C; this contradicts the minimality
of G∗.

So we can assume that there is no arc (y, xi), 1 ≤ i ≤ t−1, in A. Using again the
property of the path F , this means however that all the arcs (y, xi), 1 ≤ i ≤ t − 1,
belong to Ar\A, which represents more than r−1 arcs, since t > r. This contradiction
completes the proof of Lemma 14. �

Thus, G∗ is made of the path C, plus some arcs (xi, xj), i > j, which make G∗

strongly connected. We now show that G∗ contains all the arcs (xi, xj), i > j.
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Let D still be a shortest path in G∗ from xt to x0. If D �= xtx0, let (xt, xh), h �= 0,
be the first arc in D. Let us consider, in D, the next arc which goes “from right
to left”, that is, which reads (xj , xk) with k < j and j ≥ h: see Figure 12 for an
example where j > h. Because D is a shortest path, we have k < h.

Since the path xh . . . xj . . . xtxh has fewer vertices than G∗, all its vertices are
within distance r from each other, and as before, using Lemma 13, we can conclude
that (xt, xi) ∈ A for h ≤ i ≤ t−1. But if (xt, xi) ∈ A for h < i ≤ j, then xtxi . . . xjxk

yields a path from xt to x0 shorter than D ; so h = j, and (xt, xh) and (xh, xk) belong
to A, which in turn implies that (xt, xk) ∈ Ar, because r ≥ 2, and (xt, xk) ∈ A by
Lemma 13, again yielding a path shorter than D. Therefore we have shown that
D �= xtx0 is impossible: actually, (xt, x0) = (z2, z1) ∈ A.

This implies that dG(xt, x1) ≤ 2, so, still using r ≥ 2 and Lemma 13, (xt, x1) ∈ A,
and step by step, (xt, xj) ∈ A for 0 ≤ j ≤ t − 1. Similarly, (xi, xj) ∈ A for
0 ≤ j < i ≤ t − 1, and we have proved the following result.

Lemma 15 If G achieves the bound Λ(r, n), then G∗ has vertex set V ∗ = {xi : 0 ≤
i ≤ n∗ − 1} and arc set given by (5) with n∗ = t + 1 = n0. �

Lemma 16 If G achieves the bound Λ(r, n), then dG(z1, z2) = dG∗(z1, z2).

Proof. When we introduced z1, z2, G∗ and C, we remarked that if θ = dG(z1, z2)
and t = dG∗(z1, z2), then obviously t ≥ θ. Assume that t > θ and consider a shortest
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x
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x x
jh

Figure 12: Going from xt to x0.
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path in G from z1 to z2: J = w0w1 . . . wθ, with w0 = x0 = z1 and z2 = xt = wθ.
Then, because we have just shown that (xt, x0) ∈ A, the subgraph induced by J is
strongly connected, so that it contradicts the minimality of G∗. �

We are now ready to describe the graphs which meet the bound Λ(r, n). We say
that a graph G = (V, A) is a directed path (W0, W1, . . . , Wq) of cliques if it meets the
following conditions:

• the sets W0, W1, . . . , Wq partition V ;

• for i between 1 and q, the subgraph of G induced by Wi−1 ∪ Wi is a clique;

• for i and j between 0 and q, i ≤ j − 2, there is no arc from Wi to Wj in A, and
all arcs from Wj to Wi belong to A.

Note that a graph meeting these conditions has diameter q, and that if y ∈ Wi and
z ∈ Wj, i < j, then dG(y, z) = j − i and dG(z, y) = 1.

Next, we define graphs of type 1 and of type 2 in the following way (see Figures 13
and 14):

• a digraph G = (V, A) is of type 1 if it is a directed path (W0, W1, . . . ,
Wr+1) of cliques such that if, for 0 ≤ i < j ≤ r + 1, one has |Wi| ≥ 2 and
|Wj| ≥ 2, then j = i+1; in other words, there are at most two values of i
such that |Wi| ≥ 2, and if they exist, these two values are consecutive.
Moreover, we ask that:

at least one set Wi is not a singleton; (18)

if |W0| ≥ 2, then |W1| ≥ 2; if |Wr+1| ≥ 2, then |Wr| ≥ 2; (19)

• a digraph G = (V, A) is of type 2 if it is a directed path (W0, W1, . . . , Wq)
of cliques with |Wi| = 1 for 2 ≤ i ≤ q − 2.

Moreover, we ask that if q = r + 2, then |W1| = 1 or |Wq−1| = 1, and
that if q = r + 1, then |W1| = |Wq−1| = 1.



102 AUGER, CHARON, HUDRY AND LOBSTEIN

W
0

W
r +2

W
0

W
r +2

W
r +1

W
0

clique

q q = +2r

= +1rq q = +2r

clique

clique
clique

W
q

W
1

clique

> +2r

clique
clique

W
0

W
1

clique

all possible arcs from right to left

clique

clique

clique

clique

W
r +1

Figure 14: Type 2 digraphs. All arcs going from right to left exist.

Note that, thanks to (18), (19), a graph of type 1 cannot be of type 2, and thus
cannot simply be a graph of the type defined by (4), (5) (a shortest path from left
to right and all arcs from right to left), which is of type 2.

The digraphs of type 1 and 2 just described are very similar to the undirected
graphs of type 1 and 2 depicted in [2, Th. 8].

Theorem 17 Let G = (V, A) be a connected digraph of order n such that Gr �= Kn.
Then |Ar \ A| = Λ(r, n) if and only if G is of type 1 or of type 2.

Proof. In the course of this proof, we shall prove and use Lemmas 18–20.
First, it has to be checked that these digraphs do satisfy |Ar \ A| = Λ(r, n).

This can be seen using the following argument: first, in all cases there are at least
r singleton sets Wi; second, if all sets Wi are singletons, i.e., we have the graph G0

defined by (4) and (5), then we know that the graph meets Λ(r, n0), where n0 is
the order of G0; third, we observe that, starting from G0, if we add one by one the
vertices y belonging to the sets Wj which are not singletons, each vertex y brings
exactly r − 1 new arcs in Ar \A, arcs (y, z) or (z, y) according to the position of the
non singleton set it belongs to, with Wi = {z} and r ≥ |i − j| ≥ 2; these arcs are
counted only once; finally, we use that Λ(r, n) is linear in n, with the factor r − 1:
we obtain

Λ(r, n0) + (n − n0)(r − 1) = Λ(r, n)

edges.
Next, we consider a graph G = (V, A) of order n and diameter ϕ which meets the

bound Λ(r, n); thanks to Lemmas 15 and 16, we know that there exists an induced
subgraph G∗ of G with the following properties: G∗ is of type 1 or 2, and is such
that r + 1 ≤ dG(x0, xt) = dG∗(x0, xt) = t ≤ ϕ, with the notation of Lemma 15.
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This means that the set of induced subgraphs of G, of type 1 or 2, with vertex set
W0 ∪ W1 ∪ · · · ∪ Wq, r + 1 ≤ q ≤ ϕ, such that

∀y ∈ W0, ∀z ∈ Wq, dG∗(y, z) = dG(y, z) = q, (20)

is a nonempty set, and we can take one, G1 = (V1, A1), with maximum order, n1. In
particular, (20) implies that

for all y ∈ Wi, z ∈ Wj, 0 ≤ i < j ≤ q, dG1(y, z) = dG(y, z) = j − i. (21)

If G1 = G, we are done, so we assume that V \V1 �= ∅. As in the proof of Theorem 5,
there is a smallest ear Y = {y1, y2, . . . , yh} ⊆ V \ V1 such that H = y1y2 . . . yh is a
directed path in G and the arcs (u, y1), (yh, v) are in A, where u and v are two, non
necessarily distinct, vertices in V1; cf. Figure 8.

Lemma 18 There is a smallest ear such that
• either u ∈ Wi, v ∈ Wj and i �= j,
• or u = v.

Proof of Lemma 18. If we can choose one vertex xi in each set Wi, 0 ≤ i ≤ q, such
that u = xj ∈ Wj and v = xk ∈ Wk for some j, k in {0, 1, . . . , q}, see Figure 15 where
u = v is possible, we are done; if not, this means that u and v belong to the same
set Wi0 and are distinct, in which case we choose u = xi0 , see Figure 16. We show that
we can come down to the former case: if in G there is the arc (yh, u) or an arc (yh, x�)
with x� ∈ W�, � �= i0, then we simply rename v: v = u = xi0 or v = x�. So we assume
that (yh, xi) /∈ A for i = 0, 1, . . . , q. For i = 0, 1, . . . , i0 + 1, we have dG(yh, xi) = 2,
which implies that (yh, xi) ∈ Ar \ A. If i0 + 2 > r − 1, we get a contradiction with
the proof of Corollary 10 or with Lemma 11 when G achieves the bound Λ(r, n), so
we can assume that i0 ≤ r − 3. For i = i0 + 2, i0 + 3, . . . , min{q, i0 + r − 1}, we have
dG(yh, xi) ≤ r, so the min{q− i0 − 1, r− 2} arcs (yh, xi), i ≥ i0 + 2, belong to Ar \A,
and all in all, we have min{q + 1, r + i0} > r − 1 arcs in Ar \ A. This is again a
contradiction, and Lemma 18 is proved. �
Back to the proof of Theorem 17, we consider from now on a smallest ear with
vertices u = xj and v = xk in (possibly equal) sets Wj and Wk. Note that, if y2

exists, there is no arc with origin in V1 and end y2. We call C the path x0x1 . . . xq,
which is a shortest path from x0 to xq, in G1 as well as in G.

We are going to show that the ear Y contains only one vertex; suppose on the
contrary that h ≥ 2.

Lemma 8 and the proof of Corollary 10 show that y1 is the origin of r − 1 arcs
belonging to Ar \ A, and, consequently, that, if G achieves the bound Λ(r, n), then
y1 cannot be the end of any arc in Ar \ A.

Since (xj , y1) ∈ A, we have (xj−1, y1) ∈ Ar and therefore (xj−1, y1) ∈ A; step by
step, we obtain that for all i between 0 and j − 1, (xi, y1) ∈ A. For i > j, the arc
(xi, xj) is in A, so as before we must have (xi, y1) ∈ A: we have just proved that all
arcs (xi, y1), 0 ≤ i ≤ q, are in A, which implies that dG(xi, y2) ≤ 2. So (xi, y2) ∈ Ar,
and we have observed that (xi, y2) /∈ A. This represents q + 1 > r − 1 arcs in Ar \A
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with origin in V1 and end y2, which is more than stated in Lemma 9, and so the
bound cannot be achieved: the assumption h ≥ 2 led to a contradiction, and we
have, setting y = y1, Y = {y}. By Lemma 11 and to satisfy the bound with equality,
we have in Ar \ A exactly r − 1 arcs with end or origin y.

We denote by G2 = (V2, A2) the induced subgraph of G with vertex set V2 =
V1 ∪{y}. Knowing that G1 = (V1, A1) is a path of cliques (W0, W1, . . . , Wq) of type 1
or 2, satisfying (21) with q ≥ r + 1, we are going to show that G2 is a sum of cliques
of type 1 or 2, also satisfying (21), with:

• G2 = (W0, . . . , Wi0 , . . . , Wq) and y ∈ Wi0 ;
• or, with abuse of notation, G2 = (W−1 = {y}, W0, . . . , Wq);
• or G2 = (W0, . . . , Wq, Wq+1 = {y}).

Let h be the smallest subscript such that (xh, y) ∈ A and k be the largest sub-
script such that (y, xk) ∈ A; then in Ar \ A, there are the min{r − 1, h} arcs
(xh−1, y), (xh−2, y), . . . , and the min{r − 1, q − k} arcs (y, xk+1), (y, xk+2), . . .

Therefore, in Ar \ A, we have at least

Γ = min{r − 1, h} + min{r − 1, q − k} (22)

arcs with one extremity in C and one extremity on y, and so Γ ≤ r − 1.

Lemma 19 (a) k ≤ h + 2.

(b) The following three cases, which are not excluding each other, are the only
possible cases:

• q = r + 1 and k = h + 2;

• h = 0 and k ∈ {0, 1, 2};
• k = q and h ∈ {q − 2, q − 1, q}.

(c) Every arc in Ar \A with one extremity on y has its other extremity in {x0, x1,
. . . , xq}.

(d) • If i ≥ h and w ∈ Wi, then (w, y) ∈ A; in particular, (xi, y) ∈ A.

• If i ≤ k and w ∈ Wi, then (y, w) ∈ A; in particular, (y, xi) ∈ A.

Proof of Lemma 19. (a) Since C is a shortest path, both in G1 and in G, we
cannot have shortcuts going through y, which means that the existence of (xh, y)
in A implies the nonexistence in A of (y, xh+3), (y, xh+4), . . . , and we have k ≤ h+ 2.

(b, c) Examining Γ in (22), we see that four cases are possible:
(i) h ≤ r − 1 and q − k ≤ r − 1. Then Γ = q + (h − k) and, because Γ ≤ r − 1,
q ≥ r + 1 and k − h ≤ 2, we must have: q = r + 1, k = h + 2, and Γ = r − 1 counts
exactly all the arcs in Ar \A with one extremity on y: these are the h arcs (xh−1, y),
(xh−2, y), . . . , (x0, y), plus the q − k arcs (y, xk+1), (y, xk+2), . . . , (y, xq).
(ii) h ≤ r − 1 and q − k ≥ r. Then Γ = h + r − 1 and h = 0, k ≤ 2, and Γ = r − 1
counts exactly all the arcs in Ar \A with one extremity on y, which here are the arcs
(y, xk+1), (y, xk+2), . . . , (y, xk+r−1).
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(iii) h ≥ r and q − k ≤ r − 1. Then Γ = r − 1 + q − k and q = k, h ≥ q − 2; again,
Γ = r − 1 counts exactly all the arcs in Ar \ A with one extremity on y. This time,
these are the arcs (xh−1, y), (xh−2, y), . . . , (xh−r+1, y).
(iv) h ≥ r and q − k ≥ r. This case is impossible, since this would imply that
Γ = 2(r − 1), so Γ > r − 1 when r ≥ 2.

(d) Since in G1 all arcs (z, y) exist for z ∈ Wj, y ∈ Wi and i < j, we have for
all w ∈ Wi, i ≥ h: dG(w, y) ≤ dG1(w, y) ≤ dG1(w, xh) + dG1(xh, y) ≤ 2. Therefore,
(w, y) ∈ Ar, and we have just seen, in the three cases (i)–(iii) of the previous step,
that (w, y) does not appear in Ar \ A when i ≥ h, hence (w, y) ∈ A. Finally, if
w ∈ Wi, i ≤ k, then dG(y, w) ≤ dG1(y, w) ≤ dG1(y, xk)+dG1(xk, w) ≤ 2, and, exactly
as above, this leads to (y, w) ∈ Ar with (y, w) /∈ Ar \ A, and ultimately (y, w) ∈ A.

This ends the proof of Lemma 19. �
Back to the proof of Theorem 17, we give the following definition of i0, which covers
all cases of Lemma 19(b) and will be used in Lemma 20; note that i0 depends on y
through h and k.

• if h = k = 0, then i0 = −1;
• if h = 0, k = 1, then i0 = 0;
• if k − h = 2, then i0 = h + 1 = k − 1;
• if h = q − 1, k = q, then i0 = q;
• if h = k = q, then i0 = q + 1.

Lemma 20 Let w ∈ Wi, 0 ≤ i ≤ q.
(1) If i ≤ i0 − 1, then (y, w) ∈ A.
(2) If i ≥ i0 + 1, then (w, y) ∈ A.
(3) If i0 /∈ {q, q + 1} and i ≤ i0 + 1, then (y, w) ∈ A.
(4) If i0 /∈ {−1, 0} and i ≥ i0 − 1, then (w, y) ∈ A.
(5) If −1 ≤ i0 < i ≤ q, then dG(y, w) = i − i0.
(6) If 0 ≤ i < i0 ≤ q + 1, then dG(w, y) = i0 − i.
(7) If 0 ≤ i0 = i ≤ q, then (y, w) ∈ A and (w, y) ∈ A.
(8) If |Wi| ≥ 2 and i − i0 ≥ 2, then i − i0 ≥ r + 1.
(9) If |Wi| ≥ 2 and i0 − i ≥ 2, then i0 − i ≥ r + 1.

Proof of Lemma 20. (1,2) The definition of i0 shows that in all cases, k ≥ i0 − 1
and h ≤ i0 + 1, and we simply apply Lemma 19(d).

(3,4) We apply the same argument as above, noting that if i0 /∈ {q, q + 1}, then
k = i0 + 1, and if i0 /∈ {−1, 0}, then h = i0 − 1.

(5) If i = i0 + 1, then by Lemma 20(3), we have immediately (y, w) ∈ A, i.e.,
dG(y, w) = 1 = i − i0. So from now on, we assume that i − i0 ≥ 2. Now

dG(y, w) ≤ dG(y, xi0+1) + dG(xi0+1, w) ≤ 1 + (i − i0 − 1) = i − i0, (23)

thanks to (21). We distinguish between three cases, i0 ≥ 1, i0 = 0 and i0 = −1.
We first assume that i0 ≥ 1. We have

dG(x0, y) ≤ dG(x0, xi0−1) + dG(xi0−1, y) ≤ (i0 − 1) + 1 = i0, (24)
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using (21) and Lemma 20(4). Since dG(x0, w) = i, one has i ≤ dG(x0, y)+dG(y, w) ≤
i0 + (i − i0) = i, by (24), (23), so that dG(x0, y) = i0 and dG(y, w) = i − i0, which is
what we wanted.

Next, we assume that i0 = 0, so that i ≥ 2 and h = 0, k = 1. Let C be a
shortest path in G from y to w, with length �(C); then �(C) ≤ i − i0 = i by (23),
and �(C) ≥ dG(x0, w)− dG(x0, y), which is equal to i− 1, by (21) and Lemma 19(d).
If C does not go through the vertex x2, we set

Ĉ = C if i = q and Ĉ = Cxi+1 . . . xq = y . . . wxi+1 . . . xq if i < q;

this new path has length �(C) + (q − i) ≥ (i − 1) + (q − i) = q − 1 ≥ r. Because C
is a shortest path, y belongs to only one arc in C, and because k = 1, none of the
arcs (y, xi+1), . . . , (y, xq) belongs to A. Consequently, there exist at least r − 1 arcs

in Ar \A, originating in y and ending in Ĉ. Moreover, (y, x2) belongs to Ar (because
k = 1, (y, x1) ∈ A, (x1, x2) ∈ A and r ≥ 2) and (y, x2) /∈ A (because k = 1), and
this contradicts the assumption that G meets the bound Λ(r, n). So from now on,
we can assume that C goes through x2; in this case, since (y, x2) /∈ A, we see that
�(C) ≥ 2 + dG(x2, w) = 2 + (i − 2) = i, which means that the distance from y to w
is exactly i = i − i0 in G, which is what we wanted.

Finally, we consider the case i0 = −1, which implies that i ≥ 1, h = k = 0. In
this case, dG(y, w) ≤ i + 1 by (23) and dG(y, w) ≥ dG(x0, w) − dG(x0, y) = i − 1
because h = 0. We proceed as in the previous case: if C is a shortest path from y
to w, not going through x1, we extend it to Ĉ, which has length at least r. This
provides more than r−1 arcs in Ar \A with extremity on y, including the arc (y, x1).
So C goes through x1, �(C) ≥ 2 + dG(x1, w) = 2 + (i − 1) = i + 1, and the distance
from y to w is exactly i + 1 = i − i0.

(6) This case is symmetric to the previous case (5).

(7) If k = i0 or k = i0 + 1, then i = i0 ≤ k and by Lemma 19(d), (y, w) ∈ A;
similarly, if h = i0 or h = i0 − 1, then i = i0 ≥ h and (w, y) ∈ A. Due to the
definition of i0 showing that {h, k} ⊂ {i0 − 1, i0, i0 + 1}, the only cases that we have
to investigate are when k = i0 − 1 and when h = i0 + 1. But k = i0 − 1 implies
i0 = q + 1, and h = i0 + 1 implies i0 = −1, a contradiction.

(8) We can assume that w �= xi: otherwise, we consider another vertex in Wi.
Since i − i0 ≥ 2 and dG(y, w) = i − i0, we have dG(y, w) ≥ 2, and (y, w) /∈ A.
Lemma 19(c) then implies that (y, w) /∈ Ar, and so dG(y, w) = i − i0 ≥ r + 1.

(9) This case is symmetric to the previous case (8) and Lemma 20 is proved. �

We return to the proof of Theorem 17: starting from the graph G1 which is a path
of cliques (W0, W1, . . . , Wq), of type 1 or 2, satisfies (21) and has maximum order n1,
we are led to add one vertex y, following the different conditions on h and k. Case by
case, we are going to check, using Lemmas 19 and 20, that the resulting graph G2 is
necessarily still of type 1 or 2 and satisfies (21), contradicting the maximality of n1.

There are five cases, according to the values of i0, defined just before Lemma 20.
In each case we say that y ∈ Wi0 and check, in a very straightforward way, that G2

has the desired properties.
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• If h = k = 0 and i0 = −1, we add a set W−1 = {y}. Then, by Lemma 20(2), all
arcs from the sets Wi, i ≥ 0, to y are in A. By Lemma 20(5), dG(y, w) = i − i0, so
the only arcs in A which originate in y go to the vertices in W0, and property (21)
is preserved in G2 (for −1 ≤ i < j ≤ q). Finally, by Lemma 20(8), the only sets Wi

which can have size at least 2 in G1 are W0 and Wi, i ≥ r.
We can see that either G1 is of type 1 with, using (18) and (19), |W0| = 1,

|Wr| ≥ 2 and |Wr+1| ≥ 1, or G1 is of type 2 (with |W1| = 1). In both cases, the
addition of y yields a graph of type 2 with q +2 ≥ r+3 sets Wi (starting, with abuse
of notation, at W−1).
• The case h = k = q and i0 = q + 1 is symmetric.
• If h = 0, k = 1 and i0 = 0, we put y into W0. Then, by Lemma 20(2,7), all arcs
from the sets Wi, i ≥ 0, to y are in A, plus all arcs from y to the vertices of W0;
by Lemma 20(5,7), the only arcs in A which originate in y go to the vertices in W0

and W1; also, property (21) is preserved in G2. Finally, Lemma 20(8) shows that the
only sets Wi which can have size at least 2 in G1 are W1 and Wi, i ≥ r + 1.

If G1 is of type 1, then by (18) and (19), |W1| ≥ 2, and the addition of y to W0

yields a graph of type 1 with |W0| ≥ 2, |W1| ≥ 2 and q = r + 1. If G1 is of type 2,
then G2 simply has one additional element in W0, and remains of type 2, with the
same number, q + 1, of sets Wi.
• The case h = q − 1, k = q and i0 = q is symmetric.
• Finally, if k − h = 2 and 1 ≤ i0 = h + 1 = k − 1 ≤ q − 1, we put y into Wi0 .
By Lemma 20(1,2,7), all arcs from the sets Wi, i ≥ i0, to y are in A, and all arcs
from y to the sets Wi, i ≤ i0, are in A. By Lemma 20(5,6), the arcs from Wi0−1 to y
and from y to Wi0+1 are in A, there are no more arcs with extremity y in A, and
property (21) still holds in G2. Besides, by Lemma 20(8,9), the only sets Wi which
can have size at least 2 in G1 are Wi0−1, Wi0−r−1, Wi0−r−2, . . . , and Wi0+1, Wi0+r+1,
Wi0+r+2, . . .

If G1 is of type 1, then q = r + 1 and 1 ≤ i0 ≤ r, implying that the only sets Wi

which can have size at least 2 in G1 are Wi0−1 and Wi0+1, and consequently exactly
one of them is not a singleton. Together with Wi0 ∪ {y}, this gives exactly two
consecutive sets of size at least 2, showing that G2 is of type 1, with q + 1 sets Wi.
So we assume that G1 is of type 2.

If q = r + 1, as before the only sets Wi which can have size at least 2 in G1 are
Wi0−1 and Wi0+1, and consequently at most one is not a singleton. If none of them
has size at least 2, then Wi0 ∪ {y} is the only non singleton, and G2 is of type 1,
since 1 ≤ i0 ≤ q − 1. If Wi0−1 = W0 (respectively, Wi0+1 = Wr+1) is the only non
singleton in G1, then we have in G2 exactly two, consecutive, sets of size at least 2,
W0 and W1 (respectively, Wr and Wr+1), and again G2 is of type 1.

From now on, we assume that q > r + 1. By Lemma 19(b), this, plus the
assumption k − h = 2, implies that h = 0, k = 2 or k = q, h = q − 2, and so i0 = 1
or i0 = q − 1.

If q = r + 2, then i0 = 1 or i0 = r + 1, and by Lemma 20(8,9), the only sets Wi

which can have size at least 2 in G1 are W0, W2, Wr and Wr+2. But since G1 is of
type 2, we can have only |W0|, |W1|, |Wr+2| ≥ 2 or |W0|, |Wr+1|, |Wr+2| ≥ 2, so that
only |W0| ≥ 2 and |Wr+2| ≥ 2 are possible. After addition of y in Wi0 , the only pos-
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sible non singletons in G2 are |W0|, |W1|, |Wr+2| for i0 = 1, and |W0|, |Wr+1|, |Wr+2|
for i0 = r + 1, so G2 is of type 2 (with q + 1 sets Wi).

If q > r + 2, then the only sets Wi of size at least 2 in G1 are |W0|, |W1|, |Wq−1|,
and |Wq|, and adding y to W1 or to Wq−1 does not change anything.

So, starting from an induced subgraph of G, G1 �= G, which was assumed to have
maximum order, we exhibited an induced subgraph of G with one more vertex and
same properties, G2. This ends the proof of Theorem 17. �
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