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Abstract

Imagine that a fire breaks out at one or more vertices of a graph, and at
each time interval spreads to all neighbouring vertices that have not been
protected earlier on. This is the general setup for The Firefighter Prob-
lem, which has attracted considerable attention since being introduced
in 1995. We survey the directions and results that have been pursued,
including algorithms and complexity, bounds, and containing the fire on
infinite grids. The paper concludes with a collection of 26 open problems
and possible research projects.

1 Introduction

The Firefighter Problem was introduced by Bert Hartnell in 1995 at the 25th Mani-
toba Conference on Combinatorial Mathematics and Computing [23]. Imagine that,
at time 0, a fire breaks out at a vertex of a graph G. At each subsequent time, the fire-
fighter “defends” a vertex of G and then the fire spreads from each “burning” vertex
to all of its undefended neighbours. Once a vertex is burning or defended, it remains
so from then onwards. The process terminates when the fire can no longer spread.
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An example is given in Figure 1. In the general form of the problem, more than one
fire can break out, and the fire or fires are defended by one or more firefighters.

There are a number of different objectives that can be pursued, including:

• Minimize the expected number of vertices burned if the fire breaks out at a
random vertex.

• Save the maximum possible number of vertices.

• Put the fire out as quickly as possible. That is, minimize the number of time
units until the process ends.

• Determine whether all vertices in a specified collection can be prevented from
burning.

• Find the number of firefighters needed to save a particular number of, or frac-
tion of, or subset of the vertices. For infinite graphs, find the smallest number
of firefighters that can “contain” the fire in a finite number of steps.

These objectives are sometimes in conflict. For example, it is easy to find trees to
illustrate that putting the fire out as quickly as possible does not necessarily lead to
saving the maximum possible number of vertices.

burning

rr

(b) time 1 (c) time 2; terminates

r

(a) time 0

defended

Figure 1: An illustration of the process.

The Firefighter Problem is a deterministic, discrete-time model of the spread
of a fire on the vertices of a graph. However, if the graph G represents a social
network – the vertices represent groups of people, and the edges represent contact
between groups – then the Firefighter Problem can be viewed as a simple model of
the spread of a virus or epidemic through a population. According to Devlin and
Hartke [13] (also see [22]), some recent epidemiological models attempt to include
information about which individuals can come in contact, rather than assuming that
the population being studied is well-mixed.

This paper is a survey of directions, results, and open problems that have arisen
in this area to date. Definitions, terminology and preliminary observations appear
in Section 2. The first topic to be surveyed is algorithms and complexity, in Section
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3. These results serve as motivation for many of those in later sections, even though
they did not necessarily come first. Infinite and finite grids are the topic of Sections
4 and 5, respectively. Graphs such that if the fire breaks out at random then the
expected number of vertices burned is minimized are the subject of Section 6. Re-
lated, sometimes earlier, work is briefly mentioned in Section 7. Open problems and
possible directions for future research are listed in Section 8.

2 Definitions, terminology, and preliminaries

For a positive integer f , an f -rooted graph is an ordered pair (G, F ) where G is a
graph and F ⊆ V is an f -subset of vertices of G called roots. A rooted graph is
one which is f -rooted for some f . When F = {r} we may write (G, r) instead of
(G, {r}).

Let f and d be positive integers. Let (G, F ) be an f -rooted graph whose vertices
are initially unlabelled. Consider the following deterministic, discrete-time process.
At time t = 0, the vertices in F are labelled as burning (a set of f fires breaks out at
these vertices). At each subsequent time t = 1, 2, . . ., a set of d or fewer unlabelled
vertices are labelled as defended, and then each unlabelled neighbour of a vertex
labelled as burning is labelled as burning. The process terminates when no further
vertices can be labelled as burning.

As mentioned, this labelling procedure models the spread, among the vertices of
G, of fires that break out at vertices in a set F and are defended by d firefighters. If
the process terminates in a finite number of steps, the fires are said to be contained.
The containment question is of interest for infinite graphs only, but the question of
the number of time units needed to contain a fire or fires is of interest for all graphs.

A vertex that is labelled as burning is called burning, or sometimes, burned. A
vertex that is labelled as defended is called defended. Since the label of a vertex
does not change, once a vertex is burning or defended, it remains so. If the set
F has cardinality one, it is easy to see that, at each time step, the set of burning
vertices induces a connected subgraph and, if there are vertices which are neither
burning nor defended at the end of the process, then the set of defended vertices is
a vertex cut. A vertex is called saved if it never burns. The damage is the total
number of vertices that are burning at the end of the process. For a finite graph
with n vertices, the number of vertices saved plus the damage equals n. The notation
MVS (G, F ; d) stands for the maximum number of vertices that can be saved in G
when the fires break out at vertices in F , over all possible ways of defending vertices
using d firefighters.

The following propositions summarizes some easy computations.

Proposition 2.1. 1. For n ≥ 2, MVS (Kn, r; 1) = 1.

2. For n ≥ 3, MVS (Cn, r; 1) = n − 2.

3. For n ≥ 2, MVS (Pn, r; 1) =

{
n − 1 if r is a leaf

n − 2 otherwise,

where Pn denotes the path on n vertices.
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4. For n ≥ 2, MVS (Qn, r; 1) = n, where Qn denotes n-cube [29].

r

Figure 2: An example which shows it can be best to defend away from the fire.

The graph in Figure 2 illustrates that it is not in general advantageous for the
firefighter to only defend vertices adjacent to the fire. On the other hand:

Proposition 2.2. [29] Suppose the fire breaks out at vertex r of the tree T . In an
optimum strategy, each vertex defended is adjacent to a burning vertex.

3 Algorithms and complexity

The decision version of the Firefighter Problem is formally stated below:

FIREFIGHTER
INSTANCE: A rooted graph (G, r) and an integer k ≥ 1.
QUESTION: Is MV S(G, r; 1) ≥ k? That is, is there a finite sequence d1, d2, . . . , dt

of vertices of G such that if the fire breaks out at r then,
(i) vertex di is neither burning nor defended at time i,
(ii) at time t no undefended vertex is adjacent to a burning vertex, and
(iii) at least k vertices are saved at the end of time t?

This problem is NP-complete for bipartite graphs [29]. Much stronger results,
involving a sharp dividing line, hold.

Theorem 3.1. [16] FIREFIGHTER is NP-complete even if restricted to trees with
maximum degree three. The problem is solvable in polynomial time for graphs of
maximum degree three, provided the fire starts at a vertex of degree two.

The NP-completeness proof is a complicated transformation from not-all-equal
3-SAT. In the instance of FIREFIGHTER constructed in the transformation, the
fire breaks out a vertex of degree three.

Although the Firefighter Problem has not been investigated for directed graphs,
it is worth noting that a rooted tree can be viewed as a digraph in which all arcs are
directed “away” from the root. (In the directed version of the Firefighter Problem,
the fire can spread only from the tail of an arc to its head.) Thus, FIREFIGHTER
is also NP-complete for orientations of trees with maximum in-degree one and max-
imum out-degree three.

Corollary 3.2. [27] FIREFIGHTER is NP-complete for cubic graphs.
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Figure 3 shows a slight adaptation of a 0-1 integer program due to Devlin and
Hartke [13] that determines MVS(G, F ; d) for any f -rooted graph (G, F ). Here, T
is an upper bound on the number of time units needed to contain the fire, and for
0 ≤ t ≤ T and x ∈ V , the boolean variables bx,t and dx,t are defined by

bx,t =

{
1 x burned before or at time t

0 otherwise

dx,t =

{
1 x defended before or at time t

0 otherwise.

The first (second) set of constraints assures that a vertex burning (defended) at time
t − 1 is still burning (defended) at time t. The third set of constraints assures that
every neighbour of a vertex burning at time t−1 is burning or defended at time t. The
fourth set of constraints assures that no vertex can be both burning and defended at
any time. The fifth set of constraints prevents a vertex with no burning neighbours
at time t− 1 from burning at time t. The sixth set of constraints guarantees that at
most d firefighters are used per time step. Finally, the next two sets of constraints
initialize the variables corresponding to time t = 0.

This integer program can also be used to determine the minimum number of time
units needed to contain the fires. If the objective function is replaced by

Min
∑

1≤t≤T

|V |t
∑
x∈V

(bx,t − bx,t−1)

then the optimum solution is a base-V integer in which the least positive t such that
coefficient of V t equals zero is the required minimum time.

Besides asking whether a certain number of vertices can be saved, a reasonable
question is whether one firefighter can save all members of a given subset of vertices.
This decision problem is formalized below.

S-FIRE
INSTANCE: A rooted graph (G, r) and a subset S ⊆ V (G).
QUESTION: Can one firefighter save all vertices in S?

Corollary 3.3. [27] S-FIRE is NP-complete, even if S is the set of leaves of a tree
of maximum degree three. The problem is solvable in polynomial time for trees of
maximum degree three in which the fire breaks out at a vertex of degree 2.

The problems FIREFIGHTER and S-FIRE can be brought into a common frame-
work by introducing vertex weights. These can be regarded as the value of each ver-
tex, and the goal is to maximize the value (i.e., weight) of the set of vertices saved.
Theorem 3.1 then states that the decision version of this problem, “can a subset of
vertices with weight at least the given integer k be saved?”, is NP-complete for trees
of maximum degree three and all weights equal. Note, however, that the theorem
does not imply that the problem is polynomial for all weighted graphs of maximum
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Min
∑
x∈V

bx,T

Subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bx,t ≥ bx,t−1 x ∈ V, 1 ≤ t ≤ T

dx,t ≥ dx,t−1 x ∈ V, 1 ≤ t ≤ T

bx,t + dx,t ≥ by,t−1 x ∈ V, y ∈ N(x), 1 ≤ t ≤ T

bx,t + dx,t ≤ 1 x ∈ V, 1 ≤ t ≤ T∑
y∈N(x)

by,t−1 ≥ bx,t x ∈ V, 1 ≤ t ≤ T

∑
x∈V

(dx,t − dx,t−1) ≤ d 1 ≤ t ≤ T

dx,0 = 0 x ∈ V

bx,0 =

{
1 if x = ri for some i, 1 ≤ i ≤ f

0 otherwise
x ∈ V

bx,t, dx,t ∈ {0, 1} 1 ≤ t ≤ T

Figure 3: A 0-1 integer program for the Firefighter Problem

degree three if the fire breaks out at a vertex of degree two, although this may indeed
be true. Given an instance of S-fire, construct a weighted graph by assigning to each
vertex in S the weight n = |V (G)|, assigning to each non-root vertex not in S the
weight 1, and assigning the root weight 0. Set k = n|S|. Then, a subset of vertices
with weight at least k can be saved if and only if all vertices in S can be saved.

The results above suggest that it is reasonable to focus attention on trees, and
on the case where there is one fire and one firefighter. There are three directions
that have been pursued. The first of these is approximation algorithms, the second
is exact (exponential) algorithms, and the third is special classes of trees for which
the problem is solvable in polynomial time.

Since there is a unique path between any two vertices in a tree, once a vertex is
defended, that vertex and all of its children are saved. Each vertex v of a rooted
tree (T, r) can therefore be regarded as having a weight, w(v), equal to the number
of vertices that will be saved if v is defended. Since the root r can not be defended,
its weight is defined to be 0.

A natural candidate for an approximation algorithm for the Firefighter Problem
on trees is the greedy algorithm: at each time step save the undefended vertex of
largest weight which is not burning. For the rooted tree (T, r) shown in Figure
4, the greedy algorithm saves five vertices whereas MVS(T, r; 1) equals six. It is
easy to generalize this example to show that the solution produced by the greedy
algorithm can be arbitrarily far from optimum in absolute terms. On the other hand,
the solution obtained from the greedy algorithm can not be far from the optimum
solution in relative terms.
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r

 

Figure 4: A tree on which the greedy algorithm does not find an optimum solution.

Theorem 3.4. [25] If Greedy(T, r; 1) denotes the number of vertices saved by a single
firefighter using the greedy algorithm, then

Greedy(T, r; 1) ≥ 1

2
MVS (T, r; 1).

That is, the Greedy Algorithm is a 1
2
-approximation algorithm for the Firefighter

Problem on trees.

The ratio Greedy(T,r;1)
MVS(T,r;1)

can be seen to be arbitrarily close to 1
2
. Consider the family

of rooted graphs (Gk, r) obtained by subdividing one edge of a star on k ≥ 3 vertices
k times and setting r to be the vertex of degree two adjacent to the vertex of degree
k. Hence the bound in the theorem is sharp. The same result holds for one fire and
any number of firefighters [25].

The “greedy” strategy of defending the vertex of highest degree adjacent to a
burning vertex always finds an optimum solution in a caterpillar [29], but not an
arbitrary tree. It is unknown whether there a constant c ∈ (0, 1] such that this
algorithm saves at least c · MVS(T, r; 1) vertices.

It follows from Proposition 2.2 that, in an optimal strategy for the Firefighter
Problem on trees, the vertex defended at time i is at distance i from root (i.e., at
level i). The additional observation that no descendant of a defended vertex is also
defended in an optimal solution leads to an 0-1 integer programming formulation of
the Firefighter Problem on trees [29]: For each vertex v of T , let dv be a boolean
decision variable such that dv = 1 if and only if vertex v is defended (dv = 0
otherwise). Recall that, for v �= r, the weight w(v) is the number of vertices that
will be saved if v is defended (that is, the number of vertices in the subtree rooted

at v), and w(r) = 0. The objective is to maximize
∑
v∈V

dvw(v), subject to constraints

that guarantee that at most one vertex is defended at every level, and at most one
ancestor of each vertex is defended. The latter condition will be satisfied if and only
if exactly one ancestor of each leaf is defended. Such a 0-1 integer program is shown
in Figure 5.

The solution to the LP relaxation of this 0-1 integer program can be arbitrarily
far from the optimum integral solution in absolute terms. While no bound is known
on how far the LP optimum can be from the integral optimum in relative terms, there
is strong experimental evidence that suggests such a bound exists [22]: About 1.68



64 STEPHEN FINBOW AND GARY MACGILLIVRAY

Max
∑
v∈V

dvw(v)

Subject to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
level(v) = i

dv ≤ 1 for each level i

dv +
∑

u an ancestor of v

du ≤ 1 for every leaf v of T

dv ∈ {0, 1}

Figure 5: A 0-1 integer program for the firefighter problem on a tree [29].

million trees on 100 vertices were randomly generated and both the LP optimum
and integral optimum computed. Of these, the LP optimum was strictly greater
than the integral optimum less than 6% of the time. In these cases, the LP optimum
was no more than 1.0634 times the integral optimum. These numbers were improved
to 0.7% of the cases and 1.0373 times the integral optimum by adding additional
constraints.

Conjecture 3.5. [22] There is a constant c such that the optimum solution to LP
relaxation of the 0-1 integer program in Figure 5 is at most c times the optimum
integral solution. That is, linear programming gives a c-approximation algorithm for
the Firefighter Problem on trees.

It is possible to guarantee an integer optimum solution to the relaxation of the
above integer linear program by replacing the constraints corresponding to ances-
tors by different, but non-linear, constraints [29]: For each vertex v �= r and each
descendant w of v, add the constraint dvdw = 0.

A recursive algorithm that works for all trees has been described by MacGillivray
and Wang [29]. Because of Theorem 3.1, it is of interest to find classes of trees for
which the Firefighter Problem is solvable in polynomial time. Two such classes of
trees have previously been noted: caterpillars and trees of maximum degree three
where the root has degree two (these include binary trees).

Another special class of trees, besides binary trees and caterpillars, for which
the problem is solvable in polynomial time is the so-called P-trees [29]. For P-trees,
the Firefighter Problem can be transformed into a maximum weight independent set
problem on a related perfect graph, which can be solved in polynomial time by linear
programming [21].

4 Infinite graphs: Containing fires

For infinite graphs, the main issues are whether the fire can be contained by the given
number of firefighters, how quickly, and finding the minimum number of vertices



THE FIREFIGHTER PROBLEM 65

burned. Research to date has mostly focussed on various infinite grids, and numbers
of fires and firefighters.

A useful method for obtaining a lower bound on the number of firefighters needed
to contain a fire in an infinite graph was introduced by Fogarty [17], and generalized
by Devlin and Hartke [13]. Suppose a fire breaks out at the vertex r of the graph G.
Let V0 = {r}. For each integer k ≥ 1, let Vk be the set of vertices at distance k from
r, let Bk ⊆ Vk be the subset of these vertices that are burning at time k, and let xk

be the number of vertices in ∪i>kVi defended at the end of k time units.

Theorem 4.1. [17] Suppose that a fire breaks out at the vertex r of the graph G.
For a given positive integer d, if for every positive integer k, every non-empty subset
A ⊆ Vk satisfies |N(A) ∩ Vk+1| ≥ |A| + d, then |Bt| > xt for every t.

The Hall-like condition in the statement assures that the set of vertices that are
at distance t from r and burning at time t (that is, the boundary of the fire) has
more neighbours than can be defended. Thus, d firefighters can not contain the fire.

As an example, we apply Theorem 4.1 to the infinite square grid with vertex set
Z×Z and edge set {(u, v)(x, y) : u = x and v − y = ±1, or v = y and u− x = ±1}.
For each k ≥ 0, A ⊆ Vk satisfies |N(A)∩Vk+1| ≥ 2|A| ≥ |A|+1. Hence one firefighter
can not contain the fire.

Now suppose that the square grid is augmented by adding the edges (u, u)(u +
1, u+1), and (u,−u)(u+1,−(u+1)), where u ∈ Z. One firefighter can not contain the
fire on this new graph because it contains the square grid as a subgraph. But Theorem
4.1 can not be applied: for each k ≥ 1, there exists A ⊆ Vk with |N(A)∩Vk+1| = |A|.
Hence the theorem is somehow dependent on the structure of the graph, and in
particular on the “shape” of the k-sphere Vk. This example was found by S. Lowdon
(personal communication, 2007).

The following proposition gives an easy upper bound on the number of firefighters
necessary to contain a fire in an infinite grid.

Proposition 4.2. [31] Let G be an r-regular graph. Then a single fire can be con-
tained by r − 1 firefighters in two time units, and the minimum number of vertices
burned is two.

Since an n-dimensional square grid is 2n-regular, Proposition 4.2 immediately
implies an upper bound on the number of firefighters needed to contain the fire.

Corollary 4.3. [31] In the infinite n-dimensional square grid a single fire can be
contained by 2n − 1 firefighters in two time units, with two vertices burned.

The fact that a single firefighter can not contain the fire in an infinite 2-dimen-
sional square grid was first proved by Moeller and Wang [31], and later by Fogarty
using Theorem 4.1, as above [17]. Moeller and Wang also showed that two firefighters
can contain the fire in eight time units, and this is the best possible. This improved
an earlier result of Finbow, Hartnell and Schmeisser that 11 time units suffice for
two firefighters to contain the fire. Moeller and Wang’s strategy results in 18 vertices
being burned. Devlin and Hartke [13] used (essentially) the integer program in Figure
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3 to show that this is the best possible, even if more than eight time units are used
to contain the fire. They also used a modified version of the integer program to
give another proof that eight time units are necessary to contain the fire under any
strategy.

The following theorem summarizes the situation for infinite square grids.

Theorem 4.4. [13, 31] The following statements hold with respect to containing a
single fire in an infinite n-dimensional square grid.

1. If n = 1 or n ≥ 3 then 2n−1 firefighters are necessary and sufficient to contain
the fire. The minumum number of time units needed to contain the fire is two.
The minimum damage when the fire is contained by 2d − 1 firefighters is two,
and this can be achieved in two time units.

2. If n = 2 then two firefighters are necessary and sufficient to contain the fire.
The minimum number of time units needed by two firefighters to contain the fire
is eight. The minimum damage when the fire is contained by two firefighters is
18, and this can be achieved in eight time units. Three firefighters can contain
the fire in two time units, with two vertices burned.

The above theorem suggests that, in some sense, the 2-dimensional case is differ-
ent from the remaining cases. The following theorem provides more evidence that
this is true.

Theorem 4.5. The following statements hold with respect to containing an outbreak
of one or more fires in an infinite n-dimensional square grid.

1. If n = 1, then a single firefighter can contain any finite number of fires.

2. [17] If n = 2, then two firefighters are necessary and sufficient to contain any
finite number of fires.

3. [13] If n ≥ 3, then for any positive integer d there is a finite number of fires
that can not be contained by d firefighters.

With respect to the above theorem and others, note that one way of showing that
any finite number of fires can be contained by d firefighters is to argue that if a single
fire is allowed to burn for t time units, then d firefighters can still contain the fire.

The problem of containing fires on other infinite grids has been investigated.
Here, the strong grid has vertex set Z × Z and edge set {(u, v)(x, y) : |u − x| ≤
1, |v − y| ≤ 1, and (u, v) �= (x, y)}. the triangular grid is the infinite planar graph
whose faces form a tiling of the plane with equilateral triangles, and the hexagonal
grid is the infinite planar graph whose faces form a tiling of the plane with regular
hexagons. The latter two grids are planar duals. The main results follow.

Theorem 4.6. 1. [30] In the 2-dimensional infinite strong grid, four firefighters
are necessary and sufficient to contain any finite number of fires.
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2. [17, 30] In the 2-dimensional infinite triangular grid, three firefighters are nec-
essary and sufficient to contain any finite number of fires.

3. [30] In the 2-dimensional infinite hexagonal grid, two firefighters suffice to con-
tain any finite number of fires.

Other grid graphs that have been considered include quarter planes (square grid
[17] or strong grid [30]), and grids that are finite in one dimension (square grid [17],
strong grid [30], or the triangular grid [17] (called the hexagonal grid by Fogarty)).

Variations of the problem that have been considered include determining the
number of firefighters needed to contain a fire to a given region [30], and using a
periodic sequence of numbers of firefighters at each time step [30, 33]. In the latter
case, an interesting result is that the fire can be contained in such a way that the
average, over all time units to the end of the process, of the number of firefighters
used is smaller than the optimum number of firefighters required to contain the fire
or fires. This has been done for the strong grid and triangular grid [30], and for the
2-dimensional square grid [30, 33]. For the 2-dimensional square grid, the average
can be as low as 3

2
, and any ratio greater than or equal to 3

2
can be achieved [33].

Conjecture 4.7. [33] There is no periodic sequence for which the average, over all
time units to the end of the process, of the number of firefighters used to contain the
fire is less than 3

2
.

The fractional version of the Firefighter Problem was first considered by Fogarty
[17]. Her point of view was that the firefighters could extinguish some fraction of
the fire at a vertex, and then the remaining fraction of the fire is passed on to each
non-burning, undefended neighbour of such a vertex. The fire is extinguished when
no fraction of it can spread. When f = d = 1, a solution to the LP relaxation of
the integer program in Figure 3 can be interpreted in exactly this way. Although
Fogarty’s work was for the infinite 2-dimensional square grid, the same arguments
also apply to other 2-dimensional grids.

Proposition 4.8. Let (G, r) be a rooted infinite graph, and for k ≥ 0, let Vk be the
set of vertices at distance k from r. If there is a constant c such that |Vk| ≤ ck,
then for d = 1 the LP relaxation of the 0-1 integer program in Figure 3 has a finite
optimum solution. That is, a single fractional firefighter can contain the fire.

Proof. Rather than setting the values of the variables in the linear program, we take

Fogarty’s point of view. Since
∞∑

k=1

1

k
diverges, there exists a least integer T such that

1

c

T∑
k=1

1

k
≥ 1. At times t = 1, 2, . . . , T , assign 1

|Vt| ≥ 1
ct

of a firefighter to each vertex

in Vt. Hence one firefighter is used at each time step. By definition of T , after at
most T time units no fraction of the fire can spread.

Corollary 4.9. One fractional firefighter suffices to contain the fire in each of the
following infinite grids: the 2-dimensional square grid, the strong grid, the triangular
grid and the hexagonal grid.
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P. Dukes and S. Lowdon (personal communication, 2007) have observed that
the proof of Proposition 4.8 fails for n-dimensional square grids with n ≥ 3. They

note that the underlying reason is that |Vk| is a quadratic function of k, and
∞∑

k=1

1

k2

converges. This provides further evidence that the 2-dimensional case is different.

5 Finite grids

The finite grids that have received attention are square grids of dimension 2 or 3,
that is, Cartesian products of two or three paths. Only the case of one fire and one
firefighter has been considered.

Exact (exponential) algorithms for solving the Firefighter problem on these grids
have been described by Moeller and Wang [31]. The integer program in Figure 3
can also be used. Clearly, the number of vertices burned is a function of the vertex
where the fire breaks out. Some bounds and exact answers were given by Moeller
and Wang [31] and MacGillivray and Wang [29]. Subesquent to the appearance of
the latter paper, the problem for the 2-dimensional square grid when the fire breaks
out in the first row was included on the 2005 Asian Pacific Mathematics Olympiad
[3].

Suppose the rows and columns of the 2-dimensional square grid Pn�Pn are in-
dexed with 1, 2, . . . , n in the natural way. The following strategy is believed to save
the maximum number of vertices:

Proposition 5.1. [31] In Pn�Pn, when the fire breaks out at (r, c), 1 ≤ r ≤ c ≤

n/2�, if the firefighter defends vertices in the following order: (r + 1, c), (r + 1, c +
1), (r+2, c−1), (r+2, c+2), (r+3, c−2), (r+3, c+3), . . . , (r+ c, 1), (r+ c, 2c), (r+
c, 2c + 1), . . . , (r + c, n), then n(n − r) − (c − 1)(n − c) vertices are saved.

The following was proved in the case (r, c) = (1, 1) by Moeller and Wang [31].

Proposition 5.2. [29] The strategy described in Proposition 5.1 saves the maximum
number of vertices when r ∈ {1, 2}.

The difference between the number of vertices saved by the strategy in Proposition
5.1 and the best known upper bound on the number of vertices that can be saved
becomes arbitrarily large, as a function of n, as the vertex at which the fire starts
approaches the middle of the grid. For example, if n is odd and the fire starts at
(
n

2
�, 
n

2
�), then the difference between these two quantities is roughly 3

8
n2 [29].

Very little is known about the Firefighter Problem in three dimensional square
grids. The evidence suggests that relatively few vertices can be saved [13, 31].

Conjecture 5.3. [31] For any vertex v of Pn�Pn�Pn,

lim
n→∞

MV S(Pn�Pn�Pn, v; 1)

n3
= 0.
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Let G be the subgraph of the 3-dimensional infinite square grid induced by the
vertices with non-negative coordinates and at distance at most 3n from (0, 0, 0).
Then G contains Pn�Pn�Pn as an induced subgraph.

Theorem 5.4. [13] Let G be the subgraph of the 3-dimensional infinite square grid
induced by the vertices with non-negative coordinates and at distance at most 3n from
(0, 0, 0). Then,

lim
n→∞

MV S(G, (0, 0, 0); 1)

n3
= 0.

6 Minimizing the expected damage and the maximum dam-

age

Two scenarios involving f fires breaking out at a random subset of vertices of a finite
graph G and being defended by d firefighters are discussed in this section. In the
first of these, the goal is to determine the graphs for which the expected damage is
minimized. In the second scenario, the goal is to determine the graphs for which the
maximum damage is minimized.

Let (G, F ) be an f -rooted graph. Let mindam(F, d) = n − MV S(G, F ; d), the
minimum damage if the f fires are defended by d firefighters. If each f -subset is
equally likely to be the location where the fires start, the expected damage is

E(G, f ; d) =
1(|V (G)|
f

) ∑
|F |=f

mindam(F, d).

Another way of looking at the expected damage is the surviving rate, defined by Cai
and Wang [7]:

ρ(G, f ; d) =
1(|V (G)|
f

) ∑
F⊆V

MV S(G, F ; d)

|V | = 1 − 1

|V |E(G, f ; d).

This is the average percentage of vertices that can be saved when f fires randomly
break out at vertices of G.

For given positive integers f and d, a graph G is called optimal if E(G, f ; d) is
minimum over all graphs with the same number of vertices as G.

Theorem 6.1. [15] Suppose f = d = 1. Then a connected graph G is optimal if and
only G is a tree such that

1. each vertex has at most two neighbours of degree at least 2, and

2. each vertex has at most one neighbour of degree at least 3.

Thus, when there is one fire and one firefighter, the optimal graphs on n vertices
are caterpillars in which any two vertices of degree at least three are at distance at
least three. These include paths and stars. It turns out that a star is always an
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optimal graph when there is a single firefighter, irrespective of the number of fires
[15].

Let Bk,t denote the tree obtained from a star on t+ k + 1 vertices by subdividing
t of its edges once each.

Theorem 6.2. [11] Suppose f = d = 2. Then a graph G with n ≥ 13 vertices is
optimal if and only if G ∼= Bn−9,4.

For the complete list of optimal graphs for n < 13, see reference [11].
Cai and Wang [7] have determined lower bounds on the surviving rate of trees,

outerplanar graphs and Halin graphs. Recall that a graph is outerplanar if it has a
plane embedding in which all vertices are on the same face, and is a Halin graph if
it can be formed from an outerplane embedding of a tree with no vertices of degree
two by adding a cycle through its leaves in counterclockwise order.

Theorem 6.3. [7]

ρ(G, 1; 1) >

⎧⎪⎨
⎪⎩

1 − √
2/n if G is a tree with n vertices

1/6 if G is an outerplanar graph

3/10 if G is a Halin graph with at least 5 vertices.

According to Cai and Wang, the bounds given in the theorem are not tight.
Finding improved lower bounds is an open problem, as is extending the results to
other classes of graphs. Since trees, outerplanar graphs and Halin graphs are all
planar, it is natural to wonder whether there is a constant lower bound for the
surviving rate of a planar graph. However, they note that lim

n→∞
ρ(K2,n, 1; 1) = 0, so

no such lower bound exists in general. The following conjecture is made.

Conjecture 6.4. [7] There is a positive constant c such that every nontrivial planar
graph G of maximum degree three satisfies ρ(G, 1; 1) ≥ c.

For given positive integers f and d, an mmd-graph is a graph G such that
max|X|=f mindam(X, d) is minimized over all graphs on the same number of ver-
tices as G. When f = d = 1, the mmd-graphs are exactly paths and cycles. This
is also true when f = d = 2 and the number of vertices is at least 11. In this case
there are two further mmd-graphs on 10 vertices [15].

Let S2n+1 be the graph obtained by subdividing each edge of a star on n + 1
vertices exactly once, and let S ′

2n be the graph obtained by subdividing all but one
edge of a star on n + 1 vertices exactly once.

Suppose n = 5q + r, where 1 ≤ r ≤ 5. Let Fn be the tree constructed from q + 1
disjoint paths L1, L2, . . . , Lq+1, such that L1, L2, . . . , Lq have 5 vertices and Lq+1 has
r vertices, by adding edges joining a centre vertex of Li to a centre vertex of Li+1

for 1 ≤ i ≤ q.

Theorem 6.5. [15] Suppose that there are f fires and d firefighters.

1. If n ≤ 2f + 1 then any tree on n vertices is an mmd-graph.
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2. If f ≤ 3 and n ≥ 4f then a path on n vertices is an mmd-graph.

3. If f ≤ 3 and 2f + 1 < n ≤ 4f − 1 then

(a) if n = 2m + 1 then Sn is an mmd-graph, and

(b) if n = 2m + 2 and d ≥ m−f+1
2

then S ′
n is an mmd-graph.

4. If f ≥ 4, n ≥ 5f − 4, and d ≥ f then a path on n vertices is an mmd-graph.

5. If f ≥ 4 and 2f + 1 < n < 5f − 4 then

(a) If f = 3t + 1 (so that 6t + 3 < n < 15t + 1) then

i. if 6t + 3 < n ≤ 10t + 5 then Sn is an mmd-graph when n is odd and
S ′

n is an mmd-graph when n is even, and

ii. if 10t + 5 < n ≤ 15t then Fn is an mmd-graph.

(b) If f = 3t + 2 (so that 6t + 5 < n < 15t + 6) then

i. if 6t + 5 < n ≤ 10t + 9 then Sn is an mmd-graph when n is odd and
S ′

n is an mmd-graph when n is even, and

ii. if 10t + 9 < n ≤ 15t + 5 then Fn is an mmd-graph.

(c) If f = 3t + 3 (so that 6t + 7 < n < 15t + 11) then

i. if 6t + 7 < n ≤ 10t + 13 then Sn is an mmd-graph when n is odd and
S ′

n is an mmd-graph when n is even, and

ii. if 10t + 13 < n ≤ 15t + 10 then Fn is an mmd-graph.

7 Related work

In this section some other problems which resemble the Firefighter Problem are
briefly mentioned. Our intention is to indicate a few pointers to the literature, and
not to undertake any sort of detailed survey of results.

In Politicians Firefighting [36] the number of firefighters available varies each
time step according to the growth of the fire. Specifically, for each vertex that
caught fire at time t and has at least one undefended non-burning neighbour, there
is one firefighter available to be placed on such a neighbour in the next time step.
This problem is solvable in linear time for trees but NP-hard for planar graphs of
maximum degree five. It is fixed parameter tractable for general graphs.

There is a considerable literature on the propagation of rumours, viruses or epi-
demics in small-world and/or scale-free networks (for a sample see [12, 32, 35, 39, 40]),
most of which uses probabilistic methods. There can be (and often is) a threshold
for the spreading rate below which an epidemic will die out before reaching the entire
population, but scale-free networks do not admit such a threshold [35]. The discrete
model considered by Comellas, Mitjana and Peters [9] exhibits similar rates of infec-
tion to the probabilistic models just mentioned. In this model, a vertex of a graph
that is infected remains contagious for A time units and can infect k of its neighbours
in each time unit in which the infection is active. The same authors subsequently
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[10] determined the time for a virus to spread to all vertices – which they prove is
guaranteed to happen for any k ≥ 2 and A ≥ 1 – and then considered the problem
of stopping the spread of the virus by installing “firewalls” at some vertices of the
graph. The firewalls are installed beforehand (as opposed to at a rate of several per
time step), and prevent an infected vertex from spreading the virus to any of its
neighbours. Upper and lower bounds on the number of firewalls needed to prevent
the virus from infecting all vertices are presented.

The angel problem was introduced by Berlekamp, Conway, and Guy in Winning
Ways [6]. The problem is to decide if a devil eating a square per turn from an infinite
checkerboard can strand an angel able to jump up to p squares per turn. When p = 1
this can be viewed as the problem of containing a fire (the angel) that can spread to
only one neighbouring vertex per time unit. Such an angel can be trapped, but the
problem is not solved for other values of p. Bollobas and Leader [4] have proved that,
on the 3-dimensional grid, the angel can always escape if p is large enough. They
indicate that p = 50 is provably large enough, and conjecture that in fact p = 1 is
large enough.

In the Cops and Robber game, the question is whether k cops can trap a robber
who moves along the edges of a graph. Different assumptions lead to different vari-
ations of the game. In each of them, the cops play a similar role to the fire (or the
devil), in that they are trying to contain the robber (trap the robber on an edge or
vertex). One difference from the Firefighter Problem is that the vertices occupied by
the cops are not permanently destroyed and may later be occupied by the robber.
The case where the robber is arbitrarily fast and invisible is related to searching and
sweeping [2, 28]. When the robber is arbitrarily fast and visible, the number k of
cops needed to catch the robber is the tree-width of G [37]. (For variations involving
width parameters for digraphs or hypergraphs, see [1, 5, 18].) Otherwise it is typ-
ically studied as a perfect information game in which the players move alternately,
from vertex to vertex along edges of the graph (or digraph) [8, 26, 34]. The graphs
on which one cop has a winning strategy are precisely the retracts of products of
paths [34]. Finding a characterization of the graphs on which two (or k) cops have
a winning strategy is a long standing open problem.

According to Snatzke [38], the game of Amazons was invented in 1988 by W. Zam-
kauskas. It is a 2-player game, normally played on a 10×10 chessboard. Each player
has a number of Amazons, normally four, which move like a Queen in chess and
which also shoot arrows that “move” in the same way as a chess Queen. Each arrow
permanently burns the square on which it lands. A move in the game consists of
relocating an Amazon and then shooting an arrow with that same Amazon. Neither
Amazons nor arrows can jump over any piece. The last player to be able to move
wins. The authors thank R. K. Guy for pointing out this game.

In 1979, Gunther and Hartnell considered the problem of establishing a commu-
nication network among members of an underground resistance movement such that
the betrayal of members, as a consequence of treachery or subversion by one or more
members of the group, is minimized [20]. The members of the movement are mod-
elled by the vertices of a graph. The edges of the graph represent communication
links. If a vertex is subverted, then all of its neighbours are betrayed. Given two
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natural numbers b and n, the problem is to find connected graphs on n vertices such
that the number of betrayals resulting from b subversions is minimum. In particular,
for a given graph G and positive integer b, the quantity K(G, b) is the maximum,
over all b-subsets B ⊆ V (G), of |N(B)|. The quantity K(n, b) is the minimum, over
all connected graphs G on n vertices, of K(G, b) (pun intended, no doubt). This
problem can be viewed as minimizing the maximum damage that be done by b fires
that are never defended but spread for only one time unit.

In 1989, A. Finbow and Hartnell considered the related problem of designing
graphs so that the expected damage done by (in the terminology of the previous
paragraph) the betrayals resulting from b subversions is minimum [14]. This can
be viewed as minimizing the expected damage done by b fires that break out at a
random set of vertices and are never defended, but spread for only one time unit.

8 Open problems and possible future directions

In this section some open problems and possible directions for future study are listed.
We believe that this list contains projects at all levels of difficulty.

1. Study the function �(G, F ), the minimum number of time units needed to
contain f fires that break out at vertices in F , where this quantity is defined
to be infinity if the fires can not be contained.

2. Find algorithms and complexity results for the natural extension of S-FIRE in
which there are d ≥ 2 firefighters.

3. Given a weighted graph (G, r) of maximum degree three and in which r has de-
gree two, is there a polynomial-time algorithm that finds the maximum weight
subset of vertices that can be saved?

4. Is there a constant c ∈ (0, 1] such that the “greedy” strategy of defending
the vertex of highest degree adjacent to a burning vertex saves at least c ·
MVS(T, r; 1) vertices of a rooted tree (T, r)?

5. For a subset S ⊆ V (G) − {r} of vertices of a rooted graph (G, r), define
F(G,r)(S) to be the minimum number of firefighters needed to save all vertices
in S. Find a theorem that gives F(T,r)(S), where S is the set of leaves of the
tree T . Under what conditions is this number Δ − 1? More generally, study
the S-FIRE number of trees and graphs, especially in the case when f = 1.

6. Investigate the Firefighter Problem on trees in the cases where there is more
than one fire and more than one firefighter. Determine the the approximation
ratio of the greedy algorithm on trees for an arbitrary number f of fires and d
of firefighters.

7. Is Conjecture 3.5 true?
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8. Find classes of trees for which the Firefighter Problem can be solved in poly-
nomial time. Find a structural characterization of the trees for which the LP
relaxation of the 0-1 integer program in Figure 5 gives an optimum solution,
or identify non-trivial classes of such trees.

9. B. Alspach suggested a heuristic for trees in which the LP relaxation of the 0-1
integer program in Figure 5 is solved, and then the resulting solution vector
is used as a probability distribution for a randomized algorithm for defending
the tree. Investigate the performance of such a heuristic experimentally and
theoretically.

10. [30] Does one firefighter suffice to contain a fire in the infinite hexagonal grid?
What about any finite number of fires?

11. For each of the cases in Theorem 4.6, determine the minimum number of time
units needed to contain a single fire, and the minimum number of vertices that
must burn over all strategies that use a given number of firefighters.

12. For n ≥ 3, find the number of fractional firefighters needed to contain a single
fire in the n-dimensional square grid and the n-dimensional strong grid.

13. Is Conjecture 4.7 true?

14. Improve the upper bound on the maximum number of vertices that can be
saved when a fire in Pn�Pn breaks out at (r, c), 1 ≤ r ≤ c ≤ 
n/2�. Does the
strategy in Proposition 5.1 save the maximum number of vertices?

15. Is Conjecture 5.3 true?

16. Investigate optimal graphs (with respect to expected damage) in situations
other than f = d = 1 and f = d = 2. In particular, what about f = 1 and
d > f?

17. Is Conjecture 6.4 true?

18. [7] Determine the minimum d, if it exists, such that there is a positive constant
c such that every planar graph G satisfies ρ(G, 1, d) ≥ c.

19. [7] Improve the lower bounds in Theorem 6.3.

20. [7] Is it true that, for outerplanar graphs G, lim
n→∞

ρ(G, 1, 1) = 1? What about

for Halin graphs?

21. [7] Is it true that, for every n vertex tree T , ρ(T, 1, 1) ≥ 1 − Θ( log n
n

)?

22. [7] Prove that it is NP-hard to determine ρ(T, 1, 1) for a given tree T .

23. [7] Determine the approximation ration for the greedy algorithm for the sur-
viving rate ρ(T, 1, 1) of a tree T . Is it 1 − Θ( log n

n
)?
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24. What are the mmd-graphs when f = d = 2 and the number of vertices is less
than 10?

25. Find a theorem that describes the structure of mmd-graphs and use it to deter-
mine whether there are other mmd-graphs besides the ones listed in Theorem
6.5.

26. Directed graphs can be used to model situations where a fire can spread from
x to y but not from y to x (say because of topography or wind direction).
Investigate the Firefighter Problem for (weighted) digraphs.
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