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Abstract

We consider point sets in the affine plane F2
q where each Euclidean dis-

tance of two points is an element of Fq. These sets are called integral
point sets and were originally defined in m-dimensional Euclidean spaces
Em. We determine their maximal cardinality I(Fq, 2). For arbitrary
commutative rings R instead of Fq or for further restrictions as no three
points on a line or no four points on a circle we give partial results. Addi-
tionally we study the geometric structure of the examples with maximum
cardinality.

1 Introduction

Originally integral point sets were defined in m-dimensional Euclidean spaces Em

as a set of n points with pairwise integral distances in the Euclidean metric; see
[10, 14, 16, 17] for an overview on the most recent results. Here we transfer the
concept of an integral point set to modules Rm of a commutative ring with 1. We
equip those spaces with a squared distance

d2(u, v) :=
m∑

i=1

(ui − vi)
2 ∈ R,

for any two points u = (u1, . . . , um), v = (v1, . . . , vm) in Rm and say that they are
at integral distance if d2(u, v) is contained in the set �R := {r2 | r ∈ R} consisting
of the squares in R. A set of points P is called an integral point set if every pair of
points is at integral distance.

The concept of integral point sets over finite fields is not brand-new. There are
some recent papers and preprints [29, 27, 28, 30] by L.A. Vinh dealing with quadrance
graphs. These are in the author’s definition point sets in the affine plane F2

q where
the squared distances, there called quadrances, are elements of �Fq

\{0}. So for q ≡ 3
mod 4, quadrance graphs coincide with integral point sets over F2

q . For q ≡ 1 mod 4
we have the small difference that 0 = 02 is not considered as an integral distance.
So for instance the points (0, 0) and (2, 3) in F13 are not considered to be at an
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integral distance since d2((0, 0), (2, 3)) = 22 + 32 = 0. We would like to mention
that quadrance graphs and so integral point sets over finite fields are isomorphic to
strongly regular graphs and that there are some connections to other branches of
combinatorics including Ramsey theory and association schemes [23, 24, 31]. The
origin of quadrance graphs lies in the more general concept of rational trigonometry
and universal geometry by N.J. Wildberger; see [32] for more background.

Some related results on integral point sets over commutative rings can be found
in [1, 8, 13].

A somewhat older topic of the literature is also strongly connected to integral
point sets over finite fields. The Paley graph PGq has the elements of the finite
field Fq as its vertices. Two vertices u and v are connected via an edge if and only
if their difference is a non-zero square in Fq. For q = q′2 with q′ ≡ 3 mod 4 we
have a coincidence between the Paley graph PGq and integral point sets over PG2

q′

or quadrance graphs. It is somewhat interesting that these one-dimensional and
two-dimensional geometrical objects are so strongly connected. See e.g. [2, 28] for
a detailed description and proof of this connection. Actually one uses the natural
embedding of Fq2 in Fq

2.
So what are the interesting questions about integral point sets over finite fields?

From the combinatorial point of view one could ask for the maximum cardinality
I(R, m) of those point sets in Rm. For R = Fq with q ≡ 3 mod 4 and m = 2
this is a classical question about maximum cliques of Paley graphs of square order,
where the complete answer is given in [3]. See also [26] for some generalizations. A
geometer might ask for the geometric structure of the maximal examples. Clearly
the case where R is a finite field Fq is the most interesting one.

1.1 Our contribution

For primes p we completely classify maximal integral point sets in the affine planes
F2

p and for prime powers q = pr we give partial results. Since in an integral point set
not all directions can occur we can apply some Rédei-type results in this context.
Although these results are not at hand in general we can derive some results for
arbitrary rings R and special cases like R = Zp2 or rings with characteristic two.

It will turn out that most maximal examples or constructions in the plane consist
of only very few lines. So it is interesting to consider the case where we forbid
three points to be collinear. This means that we look at 2-arcs with the additional
integrality condition. Here we denote the maximal cardinality by I(R, m) where
we in general forbid that m + 1 points are contained in a hyperplane. We give a
construction and a conjecture for the case R = Fq, 2 ∤ q, and m = 2 using point sets
on circles.

Being even more restrictive we also forbid m + 2 points to be situated on a hy-
persphere and denote the corresponding maximal cardinality by İ(R, m). Although
in this case we have almost no theoretical insight so far, this is the most interesting
situation when we look from the viewpoint of integral point sets in Em. As a moti-
vation for further research the following open problem of P. Erdős and C. Noll [20]
may serve:
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Are there seven points in the plane, no three on a line, no four on a circle
with integral coordinates and pairwise integral distances?

If we drop the condition of integral coordinates the problem was recently solved in
[14]. As a connection to our problem one may use the ring homomorphism Zm → Zm

n ,
x 7→ x + (nZ)m, which preserves integral distances and coordinates. For lines and
circles the situation is a bit more complicated. We give some examples for various
primes p showing İ(Zp, 2) ≥ 7 and determine some exact numbers. Perhaps in the
future an application of the Chinese remainder theorem would help to construct the
desired example in Z2.

1.2 Organization of the paper

The paper is arranged as follows. In Section 2 we give the basic definitions and facts
on integral point sets over commutative rings R. In Section 3 we determine the
automorphism group of the affine plane F2

q with respect to ∆. For q ≡ 3 mod 4 it
is the well-known automorphism group of the Paley graph PGq2 which is isomorphic
to a subgroup of PGΓ(1, q2) of index 2; see [6, 12, 25]. For q ≡ 1 mod 4 the
automorphism group was not known. We give a proof for both cases and prove
some lemmas on integral point sets over finite fields which will be useful in the
following sections. Most of the automorphisms also exist in some sense for arbitrary
commutative rings R. In Section 4 we determine the maximum cardinality I(Fq, 2)
of an integral point set over F2

q and classify the maximal examples up to isomorphism
in some cases. Here we use a result of Blokhuis et al. on point sets with a restricted
number of directions. In Section 5 we give some results on I(Zn, 2) and give some
constructions which reach this upper bound. In Section 6 we determine the maximum
cardinality I(Fq, 2) of integral point sets over Fq where no three points are collinear
for q ≡ 3 mod 4. For q ≡ 1 mod 4 we give lower and upper bounds which are only
two apart. In Section 7 we consider the maximum cardinality İ(Fq, 2) of integral
point sets over F2

q where no three points are collinear and no four points are situated
on a circle. We determine some exact values via an exhaustive combinatorial search
and list some maximum examples.

2 Integral point sets

If not stated otherwise we assume that R is a commutative ring with 1 and consider
sets of elements of the R-module Rm. We speak of these elements as points with
a geometric interpretation in mind. For our purpose we equip the module Rm with
something similar to a Euclidean metric:

Definition 1 For two points u = (u1, . . . , um), v = (v1, . . . , vm) in Rm we define the
squared distance as

d2(u, v) :=
m∑

i=1

(ui − vi)
2 ∈ R.
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We are interested in those cases where d2(u, v) is contained in the set �R := {r2 |
r ∈ R} of squares of R.

Definition 2 Two points u = (u1, . . . , um), v = (v1, . . . , vm) in Rm are at integral
distance if there exists an element r in R with d2(u, v) = r2. As a shorthand we
define ∆ : Rm ×Rm → {0, 1},

(u, v) 7→
{

1 if u and v are at integral distance,
0 otherwise.

A set P of points in Rm is called an integral point set if all pairs of points are at
integral distance.

If R is a finite ring it makes sense to ask for the maximum cardinality of an
integral point set in Rm.

Definition 3 By I(R, m) we denote the maximum cardinality of an integral point
set in Rm.

Lemma 1

|R| ≤ I(R, m) ≤ |R|m.

Proof: For the lower bound we consider the line P = {(r, 0, . . . , 0) | r ∈ R}. �

Lemma 2 If R has characteristic 2, meaning that 1 + 1 = 0 holds, then we have
I(R, m) = |R|m.

Proof: For two points u = (u1, . . . , um), v = (v1, . . . , vm) in Rm we have

d2(u, v) =
m∑

i=1

(ui − vi)
2 =

(
r∑

i=1

ui + vi

)

︸ ︷︷ ︸
∈R

2

.

�

So in the remaining part of this article we consider only rings with characteristic
not equal to two. If a ring R is the Cartesian product of two rings R1, R2, where
we define the operations componentwise, then we have the following theorem:

Theorem 1

I(R1 ×R2, m) = I(R1, m) · I(R2, m).

Proof: If P is an integral point set in R1 × R2 then the projections into R1 and
R2 are also integral point sets. If on the other hand P1 and P2 are integral point
sets over R1 and R2, respectively, then P := P1 × P2 is an integral point set over
R1 ×R2. �
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Lemma 3 If N is an additive subgroup of {n ∈ R | n2 = 0} or {n ∈ R | 2n2 =
0 ∧ n2 = n4} then we have for m ≥ 2

|N |m−1 · |R| ≤ I(R, m) ≤ |R|m.

Proof: We can take the integral point set P = {(r, n1, . . . , nm−1) | r ∈ R, ni ∈ N}

and have r2 +
m−1∑
i=1

n2
i = r2 or r2 +

m−1∑
i=1

n2
i =

(
r +

m−1∑
i=1

n2
i

)2

. �

If we specialize these general results to rings of the from R = Z/Zn =: Zn then
we have the following corollaries:

Corollary 1

I(Zn, 1) = n and I(Z2, m) = 2m.

Corollary 2 For coprime integers a and b we have I(Zab, m) = I(Za, m) · I(Zb, m).

Corollary 3 For a prime p > 2 we have

I(Zpr , m) ≥ pr · pm−1⌊ r
2⌋.

To be able to do some algebraic calculations later on we denote the set of invertible
elements of R by R∗ and derive a ring R′ from the module R2.

Definition 4

R′ := R[x]/(x2 + 1).

With i being a root of x2 + 1 we have the following bijection

̺ : R2 → R′, (a, b) 7→ a + bi.

The big advantage of the ring R′ is that we naturally have an addition and mul-
tiplication. The construction of the ring is somewhat a reverse engineering of the
connection between Paley graphs of square order and integral point sets over the
affine plane F2

q for q ≡ 3 mod 4. With the similar construction of the complex
numbers in mind we define:

Definition 5

a + bi = a − bi.

Lemma 4 For p, p1, p2 ∈ R′ we have

1. d2(p1, p2) = (p1 − p2) · (p1 − p2),

2. pp ∈ R,

3. p1 + p2 = p1 + p2,

4. p1 · p2 = p1 · p2, and

5. p = p.
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3 Automorphism group of the plane R2

Since we want to classify maximal integral point sets up to isomorphism we have to
define what we consider as an automorphism.

Definition 6 An automorphism of R′ with respect to ∆ is a bijective mapping ϕ of
R′ with

1. ∆(a + bi, c + di) = ∆(ϕ(a + bi), ϕ(c + di)) and

2. there exist a′, b′, c′, d′ ∈ R such that
{ϕ(a + bi + r(c + di)) | r ∈ R} = {a′ + b′i + r(c′ + d′i) | r ∈ R}

for all a, b, c, d in R.

In words this definition says that ϕ has to map points to points, lines to lines, and
has to preserve the integral distance property. There is a natural similar definition
for R2 instead of R′.

Lemma 5 We have the following examples of automorphisms:

1. ϕs(r) = r + s for s ∈ R′,

2. ϕ̃(a + bi) = b + ai,

3. ϕ̃y(r) = ry for y ∈ R′∗ with ∃r′ ∈ R∗ : yy = r′2, and

4. ϕ̂j(a + bi) = apj

+ bpj

i for j ∈ N and p being the characteristic of a field R.

Proof: The first two cases are easy to check. For the third case we consider

d2(r1y, r2y) = (r1y − r2y) · (r1y − r2y),

= (r1 − r2) · (r1 − r2)yy,

= d2(r1, r2) · yy.

For the fourth case we have

d2(ϕ̂j(a1 + b1i), ϕ̂j(a2 + b2i)) = (apj

1 − apj

2 )2 + (bpj

1 − bpj

2 )2,

= (a1 − a2)
pj ·2 + (b1 − b2)

pj ·2,

=
(
(a1 − a2)

2 + (b1 − b2)
2
)pj

,

= d2(a1 + b1i, a2 + b2i)
pj

Thus integral point sets are mapped onto integral point sets. That lines are mapped
onto lines can be checked immediately. Since we have requested that R is a field for
the fourth case, the mappings are injective. �
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After this general definition of automorphisms we specialize to the case R = Fq

with 2 ∤ q. As shorthand we use �q := �Fq
. We remark that the case (4) is the set of

Frobenius automorphisms of the field Fq which is a cyclic group of order r for q = pr.

Theorem 2 For q = pr, p 6= 2, q 6= 5, 9 the automorphisms of F′
q with respect to ∆

are completely described in Lemma 5.

For q ≡ 3 mod 4 this is a well-known result on the automorphism group of Paley
graphs as mentioned in the introduction. If we consider the set of automorphisms
from Lemma 5 in F2

q instead of F′
q then they form a group with its elements being

compositions of the following four mappings:

1.

(
x
y

)
7→
(

x
y

)
+

(
a
b

)
where a, b ∈ Fq,

2.

(
x
y

)
7→
(

a b
−b a

)
·
(

x
y

)
where a, b ∈ Fq, a2 + b2 ∈ �q\{0},

3.

(
x
y

)
7→
(

0 1
1 0

)
·
(

x
y

)
, and

4.

(
x
y

)
7→
(

xp

yp

)
.

In the remaining part of this section we will prove Theorem 2. For the sake of
completeness we also give the proof for q ≡ 3 mod 4. If we forget about respecting
∆ then the automorphism group of F2

q is the well-known group AΓL(2, Fq). It is
a semi-direct product of the translation group, the Frobenius group Aut(Fq), and
GL(2, Fq), the group of multiplications with invertible 2 × 2 matrices over Fq. So if
G′ is the automorphism group of F2

q with respect to ∆ it suffices to determine the
group G := G′ ∩ GL(2, Fq) because every translation and every element in Aut(Fq)

respects ∆. So all elements of G can be written as

(
x
y

)
7→
(
x y

)
· M with M

being an invertible 2× 2-matrix. As a shorthand we say that M is an element of the
automorphism group G.

Lemma 6 If M =

(
a b
c d

)
is an element of the automorphism group G then we

have ad − bc 6= 0 and a2 + b2, a2 + c2, b2 + d2, c2 + d2 ∈ �q.

Proof: Since M is also an element of GL(2, Fq) its determinant does not vanish.
By considering the points (0, 0) and (0, y) which are at an integral distance we obtain
that b2 + d2 must be a square in Fq. Similarly we obtain that a2 + c2, a2 + b2, and
c2 + d2 must be squares in Fq. �

To go on we need some facts about roots in Fq and the set of solutions of quadratic
equations in Fq.
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Definition 7 For pr ≡ 1 mod 4 we denote by ωq an element with ω2
q = −1.

Lemma 7 For a finite field Fq with q = pr and p 6= 2 we have −1 ∈ �q if and only
if q ≡ 1 mod 4, ωq ∈ �q if and only if q ≡ 1 mod 8, and 2 ∈ �q if and only if
q ≡ ±1 mod 8.

Proof: The multiplicative group of the units F∗
q is cyclic of order q − 1. Elements

of order 4 are exactly those elements x with x2 = −1. A similar argument holds
for the the fourth roots of −1. The last statement is the second Ergänzungssatz of
the quadratic reciprocity law generalized to Fq. For a proof we may consider the
situation in Fp and adjungate x modulo the ideal (x2 − 2). �

Lemma 8 For a fixed c 6= 0 and 2 ∤ q the equation a2 + b2 = c2 in Fq has exactly
q + 1 different solutions if −1 6∈ �q and exactly q − 1 different solutions if −1 ∈ �q.

Proof: If b = 0 then we have a = ±c. Otherwise

a2 + b2 = c2 ⇔ a − c

b
· a + c

b
= −1.

Here we set t := a+c
b

∈ F∗
q (t = 0 corresponds to b = 0). We obtain

2
a

b
= t − t−1, 2

c

b
= t + t−1 6= 0,

yielding

t2 6= −1, b =
2c

t + t−1
, and a = c · t − t−1

t + t−1
.

If t and t′ yield an equal b then we have t′ = t−1. For t 6= t−1 we have different values
for a in these cases. Summing up the different solutions proves the stated result. �

Lemma 9 In F′
q the set C = {z ∈ F′

q | zz = 1} forms a cyclic multiplicative group.

Proof: If −1 6∈ �q then F′
q is a field and thus C must be cyclic. For the case

−1 ∈ �q we utilize the bijection

ρq : F∗
q → G, t 7→ 1 + t2

2t
+ ωq

1 − t2

2t
x.

Now we only have to check that the mapping is a group isomorphism, namely

ρq(i · j) = ρq(i) · ρq(j).

�

Our next ingredient is a classification of the subgroups of the projective special
linear group PSL(2, q).

Theorem 3 (Dickson [7]) The subgroups of PSL(2, pr) are isomorphic to one of the
following families of groups:
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1. elementary abelian p-groups;

2. cyclic group of order z, where z is a divisor of pr±1
k

and k = gcd(pr − 1, 2);

3. dihedral group of order 2z, where z is defined as in (2);

4. alternating group A4 (this can occur only for p > 2 or when p = 2 and r ≡ 0
mod 12);

5. symmetric group S4 (this can only occur if p2r ≡ 1 mod 16);

6. alternating group A5 (for p = 5 or p2r ≡ 1 mod 5);

7. a semidirect product of an elementary abelian group of order pm with a cyclic
group of order t, where t is a divisor of pm − 1 and of pr − 1; or

8. the group PSL(2, pm) for m a divisor of r, or the group PGL(2, pm) for 2m a
divisor of r.

By Z := ±E we denote the center of SL(2, q), where E is the identity matrix. Our
strategy is to consider H := (G ∩ SL(2, q))/Z = G ∩ PSL(2, q) and to prove H ≃ H ′

for q ≥ 13 where H ′ is the group of those automorphisms of Lemma 5 which are also

elements of PSL(2, q). For −1 6∈ �q we set H̃ :=

{(
a b
−b a

)
| a2 + b2 = 1

}
and for

−1 ∈ �q we set H̃ :=

{(
a b
−b a

)
| a2 + b2 = 1

}
∪
{(

−b a
a b

)
| a2 + b2 = −1

}
.

Lemma 10 For q ≡ 3 mod 4 we have H̃ ≃ Zq+1 and for q ≡ 1 mod 4 we have
H̃ ≃ Dq−1, where Dq−1 is the dihedral group of order 2(q − 1).

Proof: Utilizing Lemma 8 and checking that both sets are groups we get

|H̃| =

{
q + 1 if q ≡ 3 mod 4,

2(q − 1) if q ≡ 1 mod 4.

In the first case the group is cyclic due to Lemma 9. In the second case it contains a
cyclic subgroup of order q−1. By checking the defining relations of a dihedral group
we can conclude H̃ ≃ Dq−1 for q ≡ 1 mod 4. �

Now we define H ′ := H̃/Z.

Lemma 11 For q ≥ 13, q ≡ 3 mod 4 we have H ′ ≃ Z q+1

2

and for q ≥ 13, q ≡ 1

mod 4 we have H ′ ≃ D q−1

2

.
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Proof: We have |H ′| = |H̃|
2

. It remains to show that H ′ is not abelian for q ≡ 1
mod 4. Therefore we may consider the sets {±M1} and {±M2} where a, b, c, d are
elements of F∗

q with a2 + b2 = 1, c2 + d2 = −1 and where

M1 =

(
a b
−b a

)
and M2 =

(
−d c
c d

)
.

�

Lemma 12 For q ≥ 13 we have H ≃ H ′.

Proof: Since H is a subgroup of PSL(2, q) we can utilize Theorem 3. We run
through the subgroups of PSL(2, q), identify H ′ and show that H is none of the
subgroups of PSL(2, q) containing H ′ as a proper subgroup. With the numbering
from the theorem we have the following case distinctions. We remark that for q ≡ 1
mod 4 the group H ′ is the group of case (3) and for q ≡ 3 mod 4 the group H ′ is
the group of case (2).

1. H is not an elementary abelian p-group since |H ′| is not a p-power.

2. For q ≡ 1 mod 4 the order of H ′ is larger than pr±1
2

and for q ≡ 3 mod 4 the
characterized group must be H ′ itself.

3. For q ≡ 1 mod 4 the characterized group must be H ′ itself due to the order of
the groups. For q ≡ 3 mod 4 we must have a look at the elements of order 2

in PSL(2, q). These are elements M · Z where M =

(
a b
c b

)
with ad − bc = 1

and M 2 = E or M 2 = −E. Solving this equation system yields M = ±E which

corresponds to an element of H ′ and M =

(
a b

−a2+1
b

−a

)
where a ∈ Fq and

b ∈ F∗
q. Now we choose a matrix N =

(
u v
−v u

)
with u2 + v2 = 1 and u, v 6= 0.

So N · Z = {±N} ∈ H ′ and since 〈H ′, N〉 would be a dihedral group we have
the following relation:

MZ · NZ · MZ = N−1Z

⇔ {±M} · {±N} · {±M} = {±N−1} =

{
±
(

u −v
v u

)}

⇔
{
±
(

−ab2v−a3v−av−bu
b

−v(a2 + b2)
v(a2b2+a4+2a2+1)

b2
−bu+ab2v+a3v+av

b

)}
=

{
±
(

u −v
v u

)}
.

By comparing the diagonal elements we get av(a2 + b2 + 1) = 0 and v(b4 −
a4 − 2a2 − 1) = 0. Due to v 6= 0 this is equivalent to a(a2 + b2 + 1) = 0 and
(a2 + b2 + 1) · (a2 − b2 + 1) = 0. Together with a2 + b2 ∈ �q we conclude a = 0
and b = ±1. Since these solutions correspond to an element of H ′ we derive
that case (3) is not possible for q ≡ 3 mod 4.
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4. If H ′ < H ≤ A4 then H ′ must be contained in a maximal subgroup of A4. Since
the order of a maximal subgroup of A4 is at most 4 and q ≥ 13 this case cannot
occur.

5. Since we have q ≥ 13 and the maximal subgroups of the S4 are isomorphic to
A4, D4, and S3, this case cannot occur.

6. The maximal subgroups of A5 are isomorphic to D5, S3, and A4. So this case
cannot occur for q ≥ 13.

7. We have that |H| divides (q− 1) · pm. Since gcd
(

q+1
2

, (q − 1) · pm
)
≤ 2 and |H ′|

divides |H|, only q ≡ 1 mod 4, |H ′| = q − 1, t = q − 1, and r|m is possible. If
m ≥ 2r then |H| ≥ q2(q−1) > |PSL(2, q)| = 1

2
(q2−1)q, which is a contradiction.

So only m = r is possible and H must be the semidirect product of an abelian
group of order q and a cyclic group of order q − 1. Using Zassenhaus’ theorem
[11, I.18.3] we can deduce that all subgroups of order q − 1 of H are conjugates
and so isomorphic. Since H ′ is not abelian (for q ≡ 1 mod 4) it is not cyclic
and so at the end case (7) of Theorem 3 is impossible.

8. Clearly H 6≃ PSL(2, q). Since |H ′| does not divide |PSL(2, pm)| = (p2m−1)pm

2

only the second possibility is left. Since |H ′| divides |PGL(2, pm)| = (p2m −
1)(p2m − pm) we have 2m = r, pm =

√
q, and q ≡ 1 mod 4. But for q ≥ 13 we

have D q−1

2

6≤ PGL(2,
√

q), see e.g. [5]; thus case (8) is also not possible.

�

To finish the proof of the characterization of the automorphisms of F2
q with respect

to ∆ we need as a last ingredient a result on the number of solutions of an elliptic
curve in Fq.

Theorem 4 (Hasse [22]) Let f be a polynomial of degree 3 in Fq without repeated
factors then we have for the number N of different solutions of f(t) = s2 in F2

q the
inequality |N − q − 1| ≤ 2

√
q.

Proof of Theorem 2. For the cases q = 3, 7, 11 we utilize a computer to check that
there are no other automorphisms. So we can assume q ≥ 13.

If M ∈ G is an automorphism for q ≡ 3 mod 4 then there exists an element

x ∈ F∗
q so that either x ·M or x ·M ·

(
0 1
1 0

)
has determinant 1. Thus with the help

of Lemma 12 and Lemma 5 the theorem is proven for q ≡ 3 mod 4. With the same
argument we can show that for q ≡ 1 mod 4 any possible further automorphism
which is not contained in the list of Lemma 5 must have a determinant which is a

non-square in Fq. Let M =

(
a b
c d

)
be an element of G with det(M) = ad−bc 6∈ �q.

So M 2 =

(
a2 + bc b(a + d)
c(a + d) bc + d2

)
is also an element of G. Since we have det(M 2) =

det(M)2 ∈ �q we have a2 +bc = bc+d2, b(a+d) = −c(a+d) or a2 +bc = −(bc+d2),
b(a + d) = c(a + d) due to Lemma 12. This leads to the four cases



14 SASCHA KURZ

1. a = d, b = −c,

2. a = d = 0,

3. a = −d, and

4. b = c, a2 + d2 = −2b2.

Now we consider the derived matrix M ′ := M ·
(

0 1
1 0

)
=

(
b a
d c

)
with det(M ′) 6∈ �q

which must be also an automorphism. So each of the matrices M and M ′ must be
one of the four cases. From this we can conclude some equations and derive a
contradiction for each possibility. Here we assume that the number of the case of M ′

is at least the number of the case of M .

1. M as in (1): With the help of Lemma 6 we get det(M) = a2 + b2 ∈ �q, which
is a contradiction.

2. M as in (2): Since det(M) 6∈ �q the only possibility for M ′ is case (4). Thus
we have b2 + c2 = 0 ⇔ b = ±ωqc, where we can assume c = 1 and b = ωq

without loss of generality. Since det(M ′) must be a non-square in Fq we have
q ≡ 5 mod 8. If we apply M ′ onto the points (0, 0) and (1, 1) then we can
conclude that 2 must be a square in Fq, which is not the case if q ≡ 5 mod 8.

3. M as in (3): Due to det(M) 6∈ �q the matrix M ′ must be in case (4). So we
have a = d = 0, a situation already treated in case (2).

4. M as in (4): Thus also M ′ has to be in case (4). Here we have a = d, b = c,
2a2 = −2b2. Without loss of generality we can assume a = 1 and b = ωq.
Due to det(M) = 2 6∈ �q we have q ≡ 5 mod 8. For two elements x, y ∈ Fq

with x2 + y2 being a square we have that also M̃ :=

(
1 ωq

ωq 1

)
·
(

x y
−y x

)
=

(
x − ωqx xωq + y
xωq − y x + yωq

)
is an automorphism. Thus with Lemma 6 we get that

(xωq + y)2 + (x + yω)2 = 22xyωq must be a square in Fq for all possible values
x, y 6= 0. So for q ≡ 5 mod 8 for all possible x, y the product xy 6= 0 must
be a non-square. We specialize to x2 + y2 = 12 and so can get with the help
of Lemma 8 that x = 2

t+t−1
and y = t−t−1

t+t−1
with t2 6= −1, t 6= 0. If we require

t4 6= 1 instead of t2 6= −1 we get x, y 6= 0. Thus xy = 2(t−t−1)
(t+t−1)2

must be a

non-square for all t ∈ F∗
q with t4 6= 1. Since 2 is a non-square we have that

t− t−1 and so also t3 − t = t(t − 1)(t + 1) must be a square for all t ∈ F∗
q with

t4 6= 1. By checking the five excluded values we see that f(t) := t(t− 1)(t + 1)
must be a square for all t ∈ Fq. So f(t) = s2 has exactly N := 2q − 3 solutions
in Fq. Since f has no repeated factors and degree 3, we can apply Theorem 4
to get a contradiction to q ≥ 13.

�
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Lemma 13 For two points p1 6= p2 ∈ F′
q at integral distance there exists an isomor-

phism ϕ with either ϕ(p1) = 0, ϕ(p2) = 1 or ϕ(p1) = 0, ϕ(p2) = 1 + ωqi.

Proof: Without loss of generality we assume p1 = 0. Since the points p1 and p2 are
at integral distance there exists an element r ∈ Fq with p2p2 = r2 and since p2 6= p1

we have p2 ∈ F′
q
∗. If p2p2 6= 0 we choose ·p−1

2 as the isomorphism ϕ. Otherwise we

have p2 = a + bi with a2 + b2 = 0 where a, b 6= 0. Thus
(

b
a

)2
= −1 and ϕ = ·a−1. �

We remark that Lemma 13 can be sharpened a bit. For three pairwise different
non-collinear points p1, p2, p3 ∈ F′

q with pairwise integral distances there exists an
isomorphism ϕ with {0, 1} ⊂ {ϕ(p1), ϕ(p2), ϕ(p3)}.

Via a computer calculation we can determine the automorphism groups of the
missing cases q = 5, 9.

Lemma 14 For q = 5 the group G ≤ GL(2, F5) is given by

{
M =

(
a b
±b ±a

)
| a, b ∈ F5, a2 + b2 ∈ �5, det(M) 6= 0

}

where the two signs can be chosen independently.

Lemma 15 For q = 9 the group G ≤ GL(2, F9) is given by

〈{
M =

(
a b
±b ±a

)
| a, b ∈ F9, a2 + b2 ∈ �9, det(M) 6= 0

}
,

(
1 0
0 y2

)〉

where the two signs can be chosen independently and where y is a primitive root in
F∗

9.

For q = 5 there are exactly 32 such matrices and for q = 9 there are exactly 192
such matrices. For q = 5, 9, Lemma 13 can be sharpened. Here the automorphism
group acts transitively on the pairs of points with integral distance, as for q ≡ 3
mod 4.

We would like to remark that also for q ≡ 3 mod 4 the automorphism group
of F2

q with respect to ∆ is isomorphic to the automorphism group of the quadrance
graph over F2

q . This can easily be verified be going over the proof of Theorem 2 again
and by checking the small cases using a computer.

4 Maximal integral point sets in the plane F2
q

Very nice rings are those which are integral domains. These are in the case of finite
commutative rings exactly the finite fields Fq where q = pr is a prime power. So far
we only have the lower bound I(Fq, 2) ≥ q. In this section we will prove I(Fq, 2) = q
for q > 2. In the case of Fp we will even classify the maximum integral point sets
up to isomorphism. One way to prove I(Fq, 2) = q for 2 ∤ q is to consider the graph
Gq with the elements of Fq as its vertices and pairs of points at integral distance as
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edges. For q ≡ 3 mod 4 the graph Gq is isomorphic to the Paley graph of order
q2. From [3] we know that in this case a maximum clique of Gq has size q and is
isomorphic to a line. Also for q ≡ 1 mod 4 the graph Gq is a strongly regular graph.
So we can apply a result from [18, 19] on cliques of strongly regular graphs. It turns
out that a maximum clique has size q and that every clique C of size q is regular,
in the sense of [18, 19]; this means in our special case that every point not in C is
adjacent to q+1

2
points in C. To start with our classification of maximum integral

point sets over Fq we need the concept of directions.

Definition 8 For a point p = a + bi ∈ F′
q the quotient b

a
∈ Fq ∪ {∞} is called the

direction of p. For two points p1 = a1 + b1i, p2 = a2 + b2i the direction is defined as
b1−b2
a1−a2

∈ Fq ∪ {∞}. We call a direction d integral if two points p1, p2 with direction
d have an integral distance.

Point sets of cardinality q in F2
q with at most q+3

2
directions are more or less

completely classified:

Theorem 5 (Ball, Blokhuis, Brouwer, Storme, Szőnyi, [4]) Let f : Fq → Fq, where
q = pn, p prime, f(0) = 0. Let N = |Df |, where Df is the set of directions determined
by the function f . Let e (with 0 ≤ e ≤ n) be the largest integer such that each line
with slope in Df meets the graph of f in a multiple of pe points. Then we have the
following:

1. e = 0 and q+3
2

≤ N ≤ q + 1,

2. e = 1, p = 2, and q+5
3

≤ N ≤ q − 1,

3. pe > 2, e|n, and q

pe + 1 ≤ N ≤ q−1
pe−1

,

4. e = n and N = 1.

Moreover, if pe > 3 or ( pe = 3 and N = q

3
+1), then f is a linear map on Fq viewed

as a vector space over Fpe. (All possibilities for N can be determined in principle.)

Here a function f : Fq → Fq determines a point set P = {(x, f(x)) | x ∈ Fq}
of cardinality q. In the case N = 1 the point set is a line. In the case e = 0 and
N = q+3

2
then P is affine equivalent to the point set corresponding to x 7→ x

q+1

2 .
We remark that affine equivalence is a bit more than our equivalence because

we have to respect ∆. The next thing to prove is that integral point sets cannot
determine too many directions.

Lemma 16 For 2 ∤ q an integral point set over F2
q determines at most q+3

2
different

directions if −1 ∈ �q and at most q+1
2

different directions if −1 6∈ �q.

Proof: We consider the points p = a+bi at integral distance to 0. Thus there exists
an element c′ ∈ Fq with a2 + b2 = c′2. In the case a = 0 we obtain the direction ∞.
Otherwise we set d := b

a
and c := c′

a
, yielding 1 = c2 − d2 = (c− d)(c + d), where d is

the direction of the point. Now we set c + d =: t ∈ F∗
q yielding c = t+t−1

2
, d = t−t−1

2
.

The two values t and −t−1 produce an equal direction. Since t = −t−1 ⇔ t2 = −1
we get the desired bounds. �
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We need a further lemma on the number of points on a line in a non collinear
integral point set:

Lemma 17 If 2 ∤ q and P is a non collinear integral point set over F2
q, then each

line l contains at most q−1
2

points for −1 /∈ �q and at most q+1
2

points for −1 ∈ �q.

Proof: If l is a line with an integral pair of points on it, then its slope is an
integral direction. Now we consider the intersections of lines with integral directions
containing a point p /∈ l, with l. �

We remark that there would be only q−1
2

integral directions for q ≡ 1 mod 4 if
we would not consider 0 as a square as for quadrance graphs. In this case there could
be at most q−3

2
points on l for q ≡ 1 mod 4 in Lemma 17.

To completely classify maximum integral point sets over F′
q we need the point set

Pq := (1 ± ωqi)�q.

Lemma 18 Pq is an integral point set of cardinality q.

Proof:

d2(r2
1 + r2

1ωqi, r
2
2 + r2

2ωqi) = 02,

d2(r2
1 + r2

1ωqi, r
2
2 − r2

2ωqi) = (2ωqr1r2)
2,

d2(r2
1 − r2

1ωqi, r
2
2 − r2

2ωqi) = 02.

�

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
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•

•

•

•
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•

•
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•

Figure 1: The maximum integral point set P29.

In Figure 1 we have depicted P29 as an example. By construction the points of
Pq are located on the two lines (1, ωq) · Fq and (1,−ωq) · Fq which intersect in (0, 0)
with an angle of 90 degree, but this fact seems not that obvious by looking at Figure
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1. We remark that this construction of Pq works in any commutative ring R where
−1 ∈ �R and that none of these point sets corresponds to a quadrance graph. If
we apply this construction on R = Zpr we obtain an integral point set of cardinality
φ(pr) + 1 = (p − 1) · pr−1 + 1, where φ is the Euler-function defined by φ(n) = |Z∗

n|.

Lemma 19 For 2 | r the point set P := {(a, b) | a, b ∈ F√
q} is an integral point set.

Proof: We have F√
q ⊂ �q. �

We remark that for
√

q ≡ 1 mod 4 also the point set P := {(a, ωqb) | a, b ∈ F√
q}

is integral.
We say that an integral point set is maximal if we cannot add a further point

without destroying the property integral point set. All given examples of integral
point sets of size q are maximal. This could be proved be applying results on cliques
of strongly regular graphs or in the following way.

Lemma 20 The lines 1 · Fq and (1 + ωqi) · Fq are maximal.

Proof: We apply Lemma 17. �

Lemma 21 The integral point set P = (1 ± ωqi) · �q is maximal.

Proof: Let us assume there is a further point (a + bi) 6∈ P with a, b ∈ Fq such that
P ∪ {(a + bi)} is also an integral point set. We know that (a + bi) cannot lie on one
of the lines (1 + ωqi) · Fq or (1 − ωqi) · Fq. Thus a2 + b2 6= 0. The points of P are
given by (1 + ωqi)r

2
1 and (1 − ωqi)r

2
2 for arbitrary r1, r2 ∈ Fq. We define functions

f1, f2 : Fq → Fq via

f1(r1) = (a − r2
1)

2 + (b − r2
1ωq)

2 = a2 + b2 − 2r2
1(a + bωq),

f2(r2) = (a − r2
2)

2 + (b + r2
2ωq)

2 = a2 + b2 − 2r2
2(a − bωq).

Since these are exactly the squared distances of the points of P to the point (a+bi) we
have Bi(f1), Bi(f2) ⊆ �q. Using a counting argument we have Bi(f1), Bi(f2) = �q.
The term −2(a + bωq) is a fixed number. Let us assume that it is a square. Then
for each square r2 and c = a2 + b2 6= 0 the difference r2 − c must be a square. But
the equation r2 − c = h2 has q+1

2
< q solutions for r, which is a contradiction. Thus

−2(a + bωq) and −2(a − bωq) are non-squares. But r2 − c 6∈ �q has q−1
2

solutions,
thus we have a contradiction �

Theorem 6 For q = pr > 9 with p 6= 2, r = 1 or q ≡ 3 mod 4 an integral point set
of cardinality q is isomorphic to one of the stated examples.

Proof: We consider a point set P of Fq of cardinality q with at most q+3
2

directions
and utilize Theorem 5. If e = r and N = 1 then P is a line. If e = 1 then P
is affine equivalent to X := {(x, x

q+1

2 ) | x ∈ Fq}. This is only possible for q ≡ 1
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mod 4. The set X consists of two orthogonal lines. Since there are only two types
of non-isomorphic integral lines in F2

q and each point p not on a line l is at integral

distance to q+1
2

points on l we have two unique candidates of integral point sets
of this type. One is given by (1 ± ωqi) · �q. For the other possibility we may
assume that (0, 0), (1, 0) ∈ P. Thus (0,±ωq) ∈ P, (−1, 0), (±ωq, 0), (0,±1) ∈ P.
So P must be symmetric in the following sense: There exists a set S ⊂ F∗

q such
that P = (0, 0) ∪ {(0, a), (a, 0) | a ∈ S}. The elements s of S must fulfill s ∈ F∗

q ,

s2 + 1 ∈ �q and s2 − 1 ∈ �q. Each condition alone has only q−1
2

solutions. Fulfilling

both conditions, meaning |S| = q−1
2

is possible only for q ≤ 9. For q = 5, 9 there are
such examples. For q ≡ 3 mod 4 we refer to [3]. �

We remark that there may be further examples of integral point sets of cardinality
q for q = pr ≡ 1 mod 4 and r > 1. Those examples would correspond to case (3) of
Theorem 5.

Theorem 7 For q = pr with p 6= 2 we have I(Fq, 2) = q.

Proof: Let P be an arbitrary integral point set of cardinality q. Now we show that
P is maximal. If we assume that there is another integral point set P ′ with P ⊂ P ′

and |P ′| = q + 1 then we can delete a point of P ′ in such a way that we obtain an
integral point set P ′′ with e = 1 in the notation of 5. Thus P ′′ ≃ (1±ωqi) ·�q. Since
P ′′ is maximal due to Lemma 4 we have a contradiction. �

5 Maximal integral point sets in the plane Z2
n

Due to Theorem 1 for the determination of I(Zn, 2) we only need to consider the
cases n = pr.

Lemma 22

I(Zpr+1, 2) ≤ p2 · I(Zpr , 2).

Proof: We consider the natural ring epimorphism ν : Zpr+1 → Zpr . If P is an
integral point set in Z2

pr+1 then ν(P) is an integral point set in Z2
pr . �

For p ≥ 3 we have the following examples of integral point sets in Z2
pr with big

cardinality (with some abuse of notation in the third case).
{(

i, j · p⌈ r
2⌉
)
| i, j ∈ Zpr

}
,

{(
i, iωZpr + j · p⌈ r

2⌉
)
| i, j ∈ Zpr

}
, and

(1,±ωZp
) · �Zp

+ {(p · a, p · b) | a, b ∈ Zpr} for r = 2.

Each of these examples has cardinality pr · p⌊ r
2⌋.

Conjecture 1 The above list is the complete list of maximum integral point sets in
Z2

pr up to isomorphism.
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Figure 2: Three maximal integral point sets over Z2
25 of cardinality 125.

So far we do not even know the automorphism group of Z2
n with respect to ∆. But

with Definition 6, Conjecture 1 is well defined. Using Lemma 5 we know at least a
subgroup of the automorphism group. Whether there are any further automorphisms
is an open question which has to be analyzed in the future.

Theorem 8 For p ≥ 3 we have I(Zp2, 2) = p3 and the above list of extremal exam-
ples is complete.

Proof: With I(Zp, 2) = p, Lemma 22 and the examples we get I(Zp2 , 2) = p3. Let
P be a maximum integral point set in Zp2 . By S denote the lower left p × p-square
of Zp2

S := {(i, j) + Z2
p2 | 0 ≤ i, j ≤ p − 1, i, j ∈ Z}.

Using Theorem 7 and Lemma 22 we can deduce that for each (u, v) ∈ Z2
p2 we have

|P ∩ ((u, v) + S) | ≤ p.

Since we can tile Zp2 with p2 such sets (including S + (u, v)) equality must hold.
After a transformation we can assume that P ∩ S equals one of the three following
possibilities

1. {(i, 0) | 0 ≤ i ≤ p − 1},
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2. {(i, ωZp
i) | 0 ≤ i ≤ p − 1}, or

3. (1,±ωZp
) · �Zp

.

In the first case we consider P ∩ (S + (1, 0)). With Lemma 17 we get (p, 0) ∈ P
and iteratively we get (i, 0) ∈ P for all i ∈ Zp2 . Now we consider P ∩ (S + (0, 1))
and conclude P = {(i, j · p) | i, j ∈ Zp2}. With the same argument we can derive
P =

{(
i, iωZp

+ j · p
)
| i, j ∈ Zp2

}
in the second case and P = (1,±ωZp

) · �Zp
+

{(p · a, p · b) | a, b ∈ Zpr} in the third case. �

6 Maximal integral point sets with no three collinear points

In this and the next section we study the interplay between the integrality condition
for a point set and further common restrictions for lines and circles.

Definition 9 A set of r points (ui, vi) ∈ R2 is said to be collinear if there are
a, b, t1, t2, wi ∈ R with

a + wit1 = ui and b + wit2 = vi.

There is an easy necessary criterion to decide whether three points are collinear.

Lemma 23 If three points (u1, v1), (u2, v2), and (u3, v3) ∈ R2 are collinear then it
holds ∣∣∣∣∣∣




u1 v1 1
u2 v2 1
u3 v3 1




∣∣∣∣∣∣
= 0.

If R is an integral domain the above criterion is also sufficient. The proof is easy
and left to the reader.

Definition 10 By I(R, 2) we denote the maximum cardinality of an integral point
set with no three collinear points.

Lemma 24

I(R, 2) ≤ 2 · |R|.

Proof: We ignore the integrality condition and consider the lines li = {(i, r) | r ∈
R} for all i ∈ R. �

Lemma 25 If −1 ∈ �q we have I(Fq, 2) ≤ q+3
2

and for −1 6∈ �q we have I(Fq, 2) ≤
q+1
2

.

Proof: Let P be an integral point set over Fq without a collinear triple. We choose
a point p ∈ P. The directions of p to the other points p′ of P are pairwise different.
Since there are at most q+3

2
or q+1

2
different directions in an integral point set over Fq

(Lemma 16), we obtain |P| ≤ q+5
2

for −1 ∈ �q and |P| ≤ q+3
2

for −1 6∈ �q. Suppose
that this upper bound is achieved. So all points must have exactly one neighbor in
direction 0 and one in direction ∞. Thus |P| must be even in this case, which is a
contradiction due to Lemma 7. �



22 SASCHA KURZ

Using an element z ∈ R′ with zz = 1 we can describe a good construction for
lower bounds. Actually this equation describes something like a circle with radius
one. An example for q = 31 is depicted in Figure 3.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3: Integral point set corresponding to the construction from Lemma 26 for
q = 31.

Lemma 26 For z ∈ R′ with zz = 1 the set P = {z2i | i ∈ N} is an integral point
set.

Proof: With c := a − b we have

d(z2a, z2b) = (z2a − z2b) · (z2a − z2b) = (z2c − 1) · z2c − 1

= 2 − z2c2 − z2c = (zci − zci︸ ︷︷ ︸
∈R

)2

�

We remark that the set P ′ = {z2i+1 | i ∈ N} is an isomorphic integral point set.
The set of solutions of zz = 1 forms a cyclic multiplicative group G due to Lemma 9.
From Lemma 8 we know that G has size q +1 for −1 6∈ �q and size q−1 if −1 ∈ �q.
So by Lemma 26 we get a construction of an integral point set in Fq which is near
the upper bound of Lemma 25. We only have to prove that our construction does
not produce three collinear points in Fq.

Lemma 27 For R = Fq with 2 ∤ q the point set from Lemma 26 contains no collinear
triple.

Proof: We assume that we have three pairwise different points p1, p2, p3 in R′ which
are collinear. So there exist a, b, c, d, t1, t2, and t3 in R fullfilling

p1 = a + bt1 + (c + dt1)i,

p2 = a + bt2 + (c + dt2)i,

p3 = a + bt3 + (c + dt3)i,
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and ti 6= tj for i 6= j. Since pipi = 1 we have

a2 + 2abt1 + b2t21 + c2 + 2cdt1 + d2t21 = 1,

a2 + 2abt2 + b2t22 + c2 + 2cdt2 + d2t22 = 1,

a2 + 2abt3 + b2t23 + c2 + 2cdt3 + d2t23 = 1.

Subtracting the first two and the last two equations yields

2ab(t1 − t2) + b2(t1 − t2)(t1 + t2) + 2cd(t1 − t2) + d2(t1 − t2)(t1 + t2) = 0,

2ab(t2 − t3) + b2(t2 − t3)(t2 + t3) + 2cd(t2 − t3) + d2(t2 − t3)(t2 + t3) = 0.

Since t1 6= t2, t2 6= t3 and R is an integral domain we obtain

2ab + b2(t1 + t2) + 2cd + d2(t1 + t2) = 0,

2ab + b2(t2 + t3) + 2cd + d2(t2 + t3) = 0.

Another subtraction yields

b2(t1 − t3) + d2(t1 − t3) = 0 ⇒ b2 + d2 = 0.

Inserting yields
2ab + 2cd = 0 ⇔ 2ab = −2cd

and
a2 + c2 = 1.

Thus
4a2b2 = 4c2d2 ⇐ (a2 + c2)4b2 = 0 ⇔ b = 0.

In the same way we obtain d = 0 and so p1 = p2 = p3, which is a contradiction. �

Corollary 4 For −1 6∈ �q we have I(Fq, 2) = q+1
2

and for −1 ∈ �q we have q−1
2

≤
I(Fq, 2) ≤ q+3

2
.

Conjecture 2 For −1 ∈ �q we have I(Fq, 2) = q−1
2

.

We remark that Conjecture 2 would be true for quadrance graphs. Following the
proof of Lemma 25 we would get q−1

2
as an upper bound for q ≡ 1 mod 4. Since

zc−zc = 0 would imply 2c = q−1 the construction from Lemma 26 does not contain
a pair of points with squared distance 0.

7 Integral point sets in general position

Our best construction for integral point sets where no three points are collinear
consists of points on a circle. So it is interesting to study integral point sets where
additionally no four points are allowed to be situated on a circle.
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Definition 11 Points pi = (xi, yi) in R2 are said to be situated on a circle if there
exist a, b, r ∈ R with (xi − a)2 + (yi − b)2 = r for all i.

We have the following condition:

Lemma 28 Four distinct points pi = (xi, yi) in F2
q which contain no collinear triple

are situated on a circle if and only if
∣∣∣∣∣∣∣∣




x1 y1 x2
1 + y2

1 1
x2 y2 x2

2 + y2
2 1

x3 y3 x2
3 + y2

3 1
x4 y4 x2

4 + y2
4 1




∣∣∣∣∣∣∣∣
= 0.

Proof: If there exist a, b, r ∈ Fq with (xi − a)2 + (yi − b)2 = r for all 1 ≤ i ≤ 4 then
the determinant clearly vanishes since r = (xi − a)2 +(yi − b)2 = (x2

i + y2
i )− 2a ·xi −

2b · yi + (a2 + b2). For the other direction we consider the unique circle C through
the points (x1, y1), (x2, y2), (x3, y3) described by the parameters a, b, r ∈ Fq. With
the same idea as before we get

∣∣∣∣∣∣∣∣




x1 y1 0 1
x2 y2 0 1
x3 y3 0 1
x4 y4 (x4 − a)2 + (y4 − b)2 − r 1




∣∣∣∣∣∣∣∣
= 0.

If (x4, y4) is not on the circle C then we can develop the determinant after the third
column and obtain ∣∣∣∣∣∣




x1 y1 1
x2 y2 1
x3 y3 1




∣∣∣∣∣∣
= 0.

which is a contradiction to the fact that (x1, y1), (x2, y2), and (x3, y3) are not collinear,
see Lemma 23. �

We remark that for arbitrary commutative rings R the determinant criterion from
Lemma 28 is a necessary condition.

Definition 12 By İ(R, 2) we denote the maximum cardinality of an integral point
set in R2 which is in general position, this means that it contains no collinear triple
and no four points on a circle.

As a shorthand for the conditions of Definition 12 we also say that the points are
in general position. An example of seven points over F2

29 in general position which
pairwise integral distances is depicted in Figure 4. As trivial upper bound we have
İ(R, 2) ≤ I(R, 2). By applying the automorphisms of F2

q with respect to ∆ we see
that they conserve circles.

Via an exhaustive combinatorial search we have determined İ(Fp, 2) for small
values of p, see Table 1. Since it is a non-trivial task to determine these numbers
exactly, at least for p ≥ 100, we give an outline of the algorithm we used.



INTEGRAL POINT SETS OVER FINITE FIELDS 25

•

•

•

•

•

•

•

Figure 4: A maximum integral point set in general position over F2
29.

n İ(n, 2) n İ(n, 2) n İ(n, 2) n İ(n, 2) n İ(n, 2)
2 4 17 5 41 9 67 9 97 11
3 2 19 5 43 8 71 11 101 13
5 4 23 5 47 7 73 10 103 11
7 3 29 7 53 9 79 11 107 11

11 4 31 6 59 9 83 11 109 12
13 5 37 7 61 10 89 11 113 12

Table 1: Values of İ(Fp, 2) = İ(Zp, 2) for small primes p.

Algorithm 1 (Generation of integral point sets in general position over
Fq)
Input: q

Output: Integral point sets P ⊂ Fq in general position
begin

P = [(0, 0), (0, 1)]
blocked[(0, 0)] = blocked[(0, 1)] = true
loop over d ∈ Fq Ld = [] end

loop over x ∈ F2
q\{(0, 0), (0, 1)}

blocked[x] = false
if ∆((0, 0), x) = 0 or ∆((0, 1), x) = 0 then blocked[x] = true end

if collinear((0, 0), (0, 1), x) then blocked[x] = true end

if blocked[x] = true then Lget direction(x).append(x) end

end

add point(P , 0)
end

So far almost nothing is done. We restrict our search to integral point sets P
of cardinality at least 3. So we may assume that P contains the points (0, 0) and
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(0, 1). For each x ∈ F2
q the variable blocked[x] says whether x can be appended to

P without destroying the property integral point set or general position. The lists
Ld cluster the points of F2

q according to their direction. The fact that P can contain
besides (0, 0) and (0, 1) at most one member from each Ld can be used to prune the
search tree if one searches only for integral point sets with maximum cardinality.

Algorithm 2 (add point)
Input: Lower bound l on the direction and an integral point set P
Output: Integral point sets P ⊂ Fq in general position
begin

loop over d ∈ Fq with d ≥ l
loop over x ∈ Ld with blocked[x] = false

if canon check(P , x) = true then

P .append(x)
block all y ∈ F2

q where ∆(y, x) = 0 or collinear(p1, x, y) = true
or on circle(p1, p2, x, y) = true for p1, p2 ∈ P
output P
add point(P , d + 1)
unblock
P .remove(x)

end

end

end

end

The subroutine add point simply adds another point to the point set P and
maintains the set of further candidates for adding a further point. Some lookahead
is possible to implement. Since the automorphism group of F2

q with respect to ∆ is
very large we would obtain lots of isomorphic integral point sets if we do without
isomorphism pruning. With the framework of orderly generation, see [21], it is
possible to write a subroutine canon check that lets our algorithm output a complete
list of pairwise non-isomorphic integral point sets in general position. For our purpose
it suffices to have a subroutine canon check that rejects the majority of isomorphic
copies but as a return has a good performance. Let m : F2

q → F2
q , (x, y) 7→ (−x, y)

the automorphism that mirrors at the y-axis and let � be a total ordering on the
points of F2

q if u ≺ v for direction(u) < direction(v). ! For the latter comparison
we use an arbitrary but fix total ordering of Fq, where 0 is the smallest element and
which is also used for the looping over Fq. By P [2] we denote the third point of a
list P .

Algorithm 3 (canon check)
Input: An integral point set P
Output: Returns false if P should be rejected due to isomorphism pruning
begin

loop over some disjoint triples (u, v, w) ∈ P × P × P with δ2(u, v) 6= 0
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determine an automorphism α with α(u) = (0, 0) and α(v) = (0, 1)
if α(w) ≺ P [2] or m(α(w)) ≺ P [2] then return false end

end

return true
end

For further examples we refer to [15] where we list the coordinates of one extremal
example for p ≤ 113.

A formal proof of the correctness of the proposed algorithm is not difficult but
a bit technical and so left to the reader. We remark that there are several non-
isomorphic integral point sets in general position which achieve the upper bound
İ(Zn, 2). So far we have no insight in their structure or in the asymptotic behavior
of İ(Zn, 2). It seems that we have İ(Zp, 2) ≥ 7 for all sufficiently large primes p.
This is interesting because the question whether İ(Z, 2) ≥ 7 is unsolved so far. In
other words, there is no known 72-cluster [9]. This is a set of seven points in the
plane, no three points on a line, no four points on a circle, where the coordinates
and the pairwise distances are integral.

Conjecture 3 For each l there is a p′ so that for all p ≥ p′ we have İ(Zp, 2) ≥ l.

8 Conclusion and outlook

In this paper we have considered sets of points P in the affine plane AG(2, q) with
pairwise integral distances. We have presented several connections to other discrete
structures and problems. Some questions concerning maximum cardinalities and
complete classifications of extremal examples remain open. Clearly similar questions
could be asked in AG(3, q) or higher dimensional spaces.
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of slopes of the graph of a function defined on a finite field, J. Combin. Theory
Ser. A 86 (1999), no. 1, 187–196.

[5] P.J. Cameron, G.R. Omidi, and B. Tayfeh-Rezaie, 3-designs from PGL(2, q),
Electron. J. Combin 13 (2006), no. 1.

[6] L. Carlitz, A theorem on permutations in a finite field, Proc. Amer. Math. Soc.
11 (1960), 456–459.

[7] L.E. Dickson, Linear groups, New York: Dover Publications, Inc. XVI, 312 p.,
1958.

[8] S. Dimiev, A setting for a Diophantine distance geometry, Tensor (N.S.) 66

(2005), no. 3, 275–283.

[9] R.K. Guy, Unsolved problems in number theory, 2nd ed., Unsolved Problems in
Intuitive Mathematics. 1. New York, NY: Springer- Verlag. xvi, 285 p., 1994.

[10] H. Harborth, Integral distances in point sets, Butzer, P. L. (ed.) et al., Karl der
Grosse und sein Nachwirken. 1200 Jahre Kultur und Wissenschaft in Europa.
Band 2: Mathematisches Wissen. Turnhout: Brepols, 1998, pp. 213–224.

[11] B. Huppert, Endliche Gruppen. i, Die Grundlehren der mathematischen Wis-
senschaften in Einzeldarstellungen. 134. Berlin-Heidelberg-New York: Springer-
Verlag. XII, 793 S. mit 15 Abb., 1967.

[12] T. Khoon Lim and C.E. Praeger, On generalised paley graphs and their auto-
morphism groups, ArXiv Mathematics math/0605252 (2006).

[13] A. Kohnert and S. Kurz, Integral point sets over Zm
n , Electron. Notes Discrete

Math. 27 (2006), 65–66.

[14] T. Kreisel and S. Kurz, There are integral heptagons, no three points on a line,
no four on a circle, Discrete Comput. Geom. 39 (2008), 786–790.

[15] S. Kurz, Coordinates of maximal integral point sets over F2
q in general position,

http://www.wm.uni-bayreuth.de/index.php?id=322.

[16] S. Kurz, Konstruktion und Eigenschaften ganzzahliger Punktmengen, Ph.D. the-
sis, Bayreuth. Math. Schr. 76. Universität Bayreuth, 2006.

[17] S. Kurz and A. Wassermann, On the minimum diameter of plane integral point
sets, Ars Combin. (to appear).

[18] A. Neumaier, Cliques and claws in edge-transitive strongly regular graphs, Math.
Z. 174 (1980), 197–202.



INTEGRAL POINT SETS OVER FINITE FIELDS 29

[19] A. Neumaier, Regular cliques in graphs and special 1,5-designs, Finite geometries
and designs, Proc. 2nd Isle of Thorns Conf. 1980, Lond. Math. Soc. Lect. Note
Ser. 49, 244–259, 1981.

[20] L.C. Noll and D.I. Bell, n-clusters for 1 < n < 7., Math. Comput. 53 (1989),
no. 187, 439–444.

[21] R.C. Read, Every one a winner or how to avoid isomorphism search when cat-
aloguing combinatorial configurations, Ann. Discrete Math. 2 (1978), 107–120.

[22] W.M. Schmidt, Equations over finite fields. an elementary approach, 2nd ed.,
Heber City, UT: Kendrick Press. x, 333 p., 2004.

[23] J. Sheehan, Finite ramsey theory is hard, Combinatorial mathematics VIII,
Proc. 8th Aust. Conf., Geelong/Aust. 1980, Lect. Notes Math. 884, 99-106,
1981.

[24] S.Y. Song, Commutative association schemes whose symmetrizations have two
classes, J. Algebr. Comb. 5 (1996), no. 1, 47–55.

[25] D.B. Surowski, Automorphism groups of certain unstable graphs, Math. Slovaca
53 (2003), no. 3, 215–232.

[26] P. Sziklai, On subsets of GF(q2) with dth power differences, Discrete Math. 208-

209 (1999), 547–555.

[27] L.A. Vinh, On chromatic number of unit-quadrance graphs (finite euclidean
graphs), ArXiv Mathematics math/0510092 (2005).

[28] L.A. Vinh, Quadrance polygons, association schemes and strongly regular graphs,
ArXiv Mathematics math/0509598 (2005).

[29] L.A. Vinh, Quadrance graphs, Austral. Math. Soc. Gaz. 33 (2006), no. 5, 330–
332.

[30] L.A. Vinh, Some colouring problems for unit-quadrance graphs, ArXiv Mathe-
matics math/0606482 (2006).

[31] N. Wage, Character sums and ramsey properties of generalized paley graphs,
INTEGERS: Electronic Journal of Combinatorial Number Theory 6 (2006).

[32] N.J. Wildberger, Divine proportions. rational trigonometry to universal geome-
try, Kingsford: Wild Egg. xx, 300 p., 2005.

(Received 28 Apr 2007; revised 29 Aug 2008)


