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Abstract

A bad function is a function f : V (G) → {−1, 1} satisfying
∑

v∈N(v) f(v)

≤ 1 for every v ∈ V (G), where N(v) = {u ∈ V (G) | uv ∈ E(G)}. The
maximum of the values of

∑

v∈V (G) f(v), taken over all bad functions f,

is called the negative decision number and is denoted by βD(G). In this
paper, several sharp upper bounds of this number for general graphs are
presented.

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. For a general
reference on graph theory, the reader is directed to [1].

Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G),
the open neighbourhood of v is N(v) = {u ∈ V (G) | uv ∈ E(G)}, and the closed
neighbourhood of v is N [v] = N(v) ∪ {v}. For a subset S ⊆ V (G), degS(v) denotes
the number of vertices in S adjacent to v. In particular, degV (G)(v) = deg(v), the
degree of v in G. For disjoint subsets S and T of vertices, we use E(S, T ) for the set
of edges between S and T , and let e(S, T ) = |E(S, T )|. The subgraph of G induced
by S is denoted by G[S]. For a fixed k ≥ 2, we call K1,k a k-star. A k∗-star is
the graph obtained from a k-star by subdividing each edge once. We call the vertex
with degree k in the original k-star the central vertex. See Figure 1 for a copy of
5∗-star. Let x : V (G) → R be a real-valued function. We write x(S) for

∑

v∈S x(v)

Figure 1: A copy of 5∗-star
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for S ⊆ V (G).

Domination in graphs is well studied in graph theory. The literature on this sub-
ject has been detailed in the two books [7, 8]. The signed domination has been
investigated in, for instance, [2, 3, 4, 5, 6, 9, 10, 11, 12, 14].

A signed total dominating function is a function f : V (G) → {−1, 1} satisfying
∑

v∈N(v) f(v) ≥ 1 for every v ∈ V (G). The minimum of the values of
∑

v∈V (G) f(v),
taken over all signed total dominating functions f, is called the signed total domina-

tion number and is denoted by γS
t (G).

In this paper, we initiate the study of a new graph parameter by changing “≥” to
“≤” in the definition of signed total domination number.

A function f : V (G) → {−1, 1} is called a bad function (BF) of G if f (N(v)) ≤ 1
for every v ∈ V (G). The maximum of the values of f (V (G)) , taken over all bad
functions f, is called the negative decision number and is denoted by βD(G).

The motivation for studying this new parameter may be varied from a modelling
perspective. For instance, by assigning the values −1 or 1 to the vertices of a graph
one can model networks of people in which global decisions must be made (e.g. pos-
itive or negative responses). In certain circumstances, a positive decision can be
made only if there are significantly more people voting for than those voting against.
We assume that each individual has one vote, and each has an initial opinion. We
assign 1 to vertices (individuals) which have a positive opinion and −1 to vertices
which have a negative opinion. A voter votes ‘good’ if there are two more vertices in
its open neighborhood with positive opinion than with negative opinion, otherwise
the vote is ‘bad’. We seek an assignment of opinions that guarantee a unanimous
decision; namely, for which every vertex votes ‘bad’. Such an assignment of opinions
is called a uniformly negative assignment. Among all uniformly negative assign-
ments of opinions, we are particularly interested in the minimum number of vertices
(individuals) which have a negative opinion. The negative decision number is the
maximum possible sum of all opinions, 1 for a positive opinion and −1 for a negative
opinion, in a uniformly negative assignment of opinions. The negative decision num-
ber corresponds the minimum number of individuals who can have negative opinions
and in doing so force every individual to vote bad.

Throughout this paper, if f is a BF of G, then we let P and Q denote the sets of
those vertices of G which are assigned (under f) the values 1 and −1, respectively,
and we let p = |P | and q = |Q|. Therefore, f(V (G)) = p − q.

We establish upper bounds of βD(G) for a bipartite graph and a general graph in
terms of their orders and we characterize the graphs attaining these bounds. We
present a sharp upper bound of βD(G) for a general graph in terms of its order and
size. We also establish a sharp upper bound of βD(G) for a k-regular graph in terms
of its order. Exact values of βD(G) for some familiar graphs such as cycles, paths,
cliques and bicliques are found.
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2 Upper bounds of βD(G)

2.1 General graphs

In this subsection, we first present an upper bound of βD(G) for a general graph
with minimum degree at least 2 in terms of its order and we characterize the graphs
attaining this bound.

We define a family F of graphs as follows. For k ≥ 2, let Fk be the set of the
graphs G obtained from the disjoint union of k k-stars by adding all possible edges
between their central vertices a1, a2, . . . , ak, and adding edges among vertices in V ′ =
V (G)\{a1, a2, . . . , ak} so that each vertex in the subgraph G[V ′] has degree between
1 and 2. See Figure 2 for two graphs in F4. In particular, when k is even, we use
Jk to denote all graphs in Fk satisfying that the induced subgraph G[V ′] is a perfect
matching. Let F =

⋃

k≥2 Gk.

Figure 2: Two graphs in F4.

Theorem 1. If G is a graph of order n with minimum degree at least 2, then

βD(G) ≤ n + 1 −
√

4n + 1.

The equality holds if and only if G ∈ F .

Proof. Let f be a BF such that βD(G) = f(V (G)). Then βD(G) = |P |−|Q| = n−2q.
Notice that every vertex in P must be joined to at least one vertex in Q. By the
pigeonhole principle, there exists a vertex v in Q joined to at least |P |/|Q| = (n−q)/q
vertices in P. Thus,

1 ≥ f (N(v))

≥ −(|Q| − 1) + (n − q)/q

≥ −q + 1 + (n − q)/q.

i.e.,
q2 + q − n ≥ 0.

Solving the above inequality for q, we obtain that

q ≥ 1

2
(−1 +

√
4n + 1).
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Therefore, βD(G) = n − 2q ≤ n + 1 −
√

4n + 1.

If βD(G) = n − 2q = n + 1 −
√

4n + 1, then n = q2 + q and p = q2. Furthermore,
each vertex of P is joined to a vertex of Q and has degree between 2 and 3, while
each vertex of Q is joined to all other q − 1 vertices of Q and to q vertices of P. It
follows that G ∈ F .

If G ∈ F , then G ∈ Fk for some k ≥ 2. Thus, G has order n = k2 + k, and so
k = 1

2
(−1 +

√
4n + 1). Assigning −1 to each of the k central vertices, and 1 to all

other vertices, we define a BF f of G satisfying f(V (G)) = k2−k = n+1−
√

4n + 1.
Thus, βD(G) ≥ n + 1 −

√
4n + 1. Consequently, βD(G) = n + 1 −

√
4n + 1.

We remark that Theorem 1 is not true for the graphs G with minimum degree
1. To see this, we define a family F ′ of graphs as follows. For k ≥ 2, let F ′

k be
the graph obtained from the disjoint union of k (k + 1)-stars and a copy of Kk by
adding all possible edges between central vertex bj of (k + 1)-star and the vertices
of Kk for each 1 ≤ j ≤ k. See Figure 3 for a copy of F ′

2. Clearly, F ′
k is a graph

Figure 3: A copy of F ′
2 with βD(F ′

2) = 6.

of order n = k2 + 3k with minimum degree 1. Assigning the value −1 to each of
the k vertices of Kk, and +1 to all other vertices, we define a BF f of G satisfying
f(V (G)) = k2 + k > n + 1 −

√
4n + 1. Thus, βD(G) > n + 1 −

√
4n + 1.

Next we establish an upper bound of βD(G) for a general graph with minimum degree
at least 2 in terms of its order and size.

Theorem 2. If G is a graph of order n and size m with minimum degree at least 2,
then

βD(G) ≤ 1

5
(4m − 3n),

and this bound is sharp.

Proof. Let f be a BF such that βD(G) = f(V (G)). Then βD(G) = |P |−|Q| = n−2q.
Let P0 = {v ∈ P |degP (v) = 0} and |P0| = t (0 ≤ t ≤ n − q).

Note that δ(G) ≥ 2, so we have

e(P, Q) ≥ p + t ≥ n − q,

and
|E(G[P ])| ≥ (n − q − t)/2.
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For each vertex v of Q, degQ(v) ≥ degP (v) − 1. Hence,

n − q ≤ e(P, Q) =
∑

v∈Q

degP (v) ≤
∑

v∈Q

(

degQ(v) + 1
)

.

i.e.,
n − q ≤ 2 |E(G[Q])|+ q.

So,
|E(G[Q])| ≥ (n − 2q)/2.

Thus, the total number of edges in G is

m = |E(G[Q])| + e(P, Q) + |E(G[P ])|
≥ (n − 2q)/2 + (n − q + t) + (n − q − t)/2

≥ (n − 2q)/2 + 3(n − q)/2.

Solving the above inequality for q, we obtain that

q ≥ 2

5
(2n − m).

Thus,

βD(G) = n − 2q ≤ 1

5
(4m − 3n).

To see this bound is sharp, let k be an even positive integer and let G ∈ Jk ⊂ F .
Thus, G has order n = k2 + k and size m = 3

2
k2 + 1

2
k(k − 1) = 2k2 − k/2. As seen in

the proof of Theorem 1, βD(G) = n + 1 −
√

4n + 1 = k2 − k = 1
5
(4m − 3n).

2.2 Bipartite graphs

In this subsection, we present an upper bound of βD(G) for a general bipartite
graph and we characterize the graphs attaining this bound. We define a family H of
bipartite graphs as follows.

For k ≥ 2, let Hk be the bipartite graph obtained from the disjoint union of 2k
(k + 1)∗-stars with centres {x1, x2, . . . , xk, y1, y2, . . . , yk} by adding all edges of the
type xiyj, 1 ≤ i ≤ j ≤ k. Let H = {Hk|k ≥ 2}.

Theorem 3. If G is a bipartite graph of order n, then

βD(G) ≤ n + 3 −
√

4n + 9.

The equality holds if and only if G ∈ H.

Proof. Let f be a BF of G such that βD(G) = f(V (G)). Let X and Y be the partite
sets of G. Further, let X+ and X− be the sets of vertices in X that are assigned
the value +1 and −1 (under f), respectively. Let X+

1 ⊆ X+ be the vertices which
are joined to none of Y −. Hence, each vertex in X+

1 is joined to exactly one vertex
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in Y + which is also joined to some vertex(vertices) in X−. Let Y +, Y − and Y +
1

be defined analogously. Then P = X+ ∪ Y + and Q = X− ∪ Y −. For convenience,
let |X+| = k, |X+

1 | = k1, |X−| = s, |Y +| = l, |Y +
1 | = l1 and |Y −| = t. Hence,

βD(G) = k + l − s − t = n − 2(s + t).

Every vertex in X+\X+
1 must be joined to at least one vertex in Y −. Therefore, by

the pigeonhole principle, there is a vertex v in Y − joined to at least |X+\X+
1 |/|Y −| =

(k − k1)/t vertices in X+\X+
1 . Hence,

1 ≥ f (N(v)) ≥ −|X−| + |X+\X+
1 |/|Y −| = −s + (k − k1)/t.

i.e.,

t(s + 1) ≥ k − k1. (1)

By a similar argument, one may show that

s(t + 1) ≥ l − l1. (2)

We observe that

k − k1 ≥ l1, (3)

as otherwise there is a vertex u ∈ Y +
1 joined to at least two vertices in X+, which is

a contradiction.

Similarly,

l − l1 ≥ k1. (4)

Adding (3) and (4), we obtain that

k + l ≥ 2(k1 + l1). (5)

By (1), (2) and (5), we have that

2st + s + t ≥ k + l − (k1 + l1) ≥
1

2
(k + l). (6)

Thus,

n = k + l + s + t

≤ 2(2st + (s + t)) + s + t

= 4st + 3(s + t)

≤ (s + t)2 + 3(s + t).

Solving for s + t, we obtain that

s + t ≥ 1

2

(

−3 +
√

4n + 9
)

.
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Thus, βD(G) = n − 2(s + t) ≤ n + 3 −
√

4n + 9.

If βD(G) = n + 3 −
√

4n + 9, then by the above analysis, we have s = t, k = l =
2s(s + 1) and k1 = l1 = s(s + 1). Moreover, each vertex of X+\X+

1 (respectively,
Y +\Y +

1 ) has degree 2 and is joined to one vertex of Y − and Y +
1 (respectively, X−

and X+
1 ), while each vertex of Y − is joined to all vertices of X− and s + 1 vertices

of X+\X+
1 and each vertex of X− is joined to all vertices of Y − and s + 1 vertices

of Y +\Y +
1 . Thus, βD(G) = n + 3 −

√
4n + 9 implies that G ∈ H.

If G ∈ H, then G = Hk for some k ≥ 2. As G has order n = 2k(2k + 3), k =
1
4

(√
4n + 9 − 3

)

. Assigning −1 to the 2k central vertices of the (k + 1)∗-stars, and
+1 to all other vertices, we define a BF f of G satisfying f(V (G)) = 2k(2k + 1) =
n + 3−

√
4n + 9. Hence, βD(G) ≥ n + 3−

√
4n + 9. It follows that βD(G) = n + 3−√

4n + 9.

2.3 Regular graphs

We establish an upper bound of βD(G) for a regular graph in this subsection.

Theorem 4. If G is k-regular graph of order n, then

βD(G) ≤
{

0 for k even;
n/k for k odd.

The upper bound in Theorem 4 is sharp, as will follow from Theorem 7.

Proof of Theorem 4. Let f be any BF of G. As G is a k-regular graph,

∑

v∈V (G)

f(N(v)) = kf(V (G)). (7)

We discuss the following two cases.

C ase 1. k is odd.

As f(N(v)) ≤ 1 for each v ∈ V (G), by (7), it follows that

kf(V (G)) ≤ n.

Hence, βD(G) ≤ n/k.

C ase 2. k is even.

In this case, |N(v)| is even for each v ∈ V (G). So, for each v ∈ V (G), f(N(v)) ≤ 1
implies that f(N(v)) ≤ 0. Thus,

∑

v∈V (G)

f(N(v)) ≤ 0.

By (7), it follows that f(V (G)) ≤ 0. Hence, βD(G) ≤ 0.
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2.4 Classes of graphs

As the parameter β′
S(G) is new, it is important to determine its values for some

familiar graphs. For example, for cliques Kn when n ≥ 3, we have that

βD(Kn) =

{

0 for n even;
−1 for n odd.

The exact values of βD(G) for cycles, paths and bicliques are found in this final
subsection.

Theorem 5. For any integer n ≥ 3, we have

βD(Cn) =







0 if n ≡ 0 (mod 4);
−2 if n ≡ 2 (mod 4);
−1 otherwise.

Proof. As Cn is a 2-regular graph, by Theorem 4, we have βD(Cn) ≤ 0. Let v1, v2, . . . ,
vn be n vertices of Cn in a clockwise order. We discuss the following four cases.

C ase 1. n = 4k for some integer k. To show that βD(Cn) = 0, it suffices to show that
there is a BF f of Cn such that f(V (Cn)) = 0. In fact, assigning +1, +1,−1,−1, . . . ,
+1, +1,−1,−1 starting with v1 clockwisely, we produce a BF f of Cn satisfying
f(V (Cn)) = 0.

C ase 2. n = 4k + 1 for some integer k. To show that βD(Cn) ≥ −1, it suffices
to show that there is a BF f of Cn such that f(V (Cn)) = −1. In fact, if we as-
sign 1, 1,−1,−1,−1 to the vertices in a clockwise order when n = 5, or assign
1, 1,−1,−1, . . . , 1, 1,−1,−1,−1 starting with v1 clockwisely when n ≥ 9, then we
produce a BF f of Cn satisfying f(V (Cn)) = −1.

To show the other direction, we let f be a BF of Cn such that f(V (Cn)) = βD(Cn).
Thus, βD(Cn) = |P | − |Q| = 2p − n ≤ 0. Therefore, p ≤ 2k. It turns out that
βD(Cn) = 2p − n ≤ 2 ∗ 2k − (4k + 1) = −1.

C ase 3. n = 4k+2 for some integer k. It is straightforward to show that βD(Cn) = 0
is impossible. Hence, βD(Cn) ≤ −2. To show that the equality holds, it suffices
to show that there is a BF f of Cn such that f(V (Cn)) = −2. In fact, if we as-
sign 1, 1,−1,−1,−1,−1 to the vertices in a clockwise order when n = 6, or assign
1, 1,−1,−1 . . . , 1, 1, −1,−1,−1,−1 starting with v1 clockwisely when n > 6, then
we produce a BF f of Cn satisfying f(V (Cn)) = −2.

C ase 4. n = 4k + 3 for some integer k. Similar to Case 2, so we omit it.

Theorem 6. For any integer n ≥ 2, we have

βD(Pn) =







0 if n ≡ 0 (mod 4);
2 if n ≡ 2 (mod 4);
1 otherwise.
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Proof. Theorem 6 is obviously true for 2 ≤ n ≤ 4. So we may assume that n ≥ 5.
Let v1, v2, . . . , vn be n vertices of Pn with endvertices v1 and vn. We first show that
βD(Pn) ≤ 2. To do so, we take any BF f of Pn. For i = 1 or n, as deg(vi) = 1, we
have that

f(N(vi)) ≤ 1.

For 1 < i < n, as deg(vi) = 2, we have that

f(N(vi)) ≤ 0.

Thus,
∑

v∈V (G)

f(N(v)) ≤ 2.

Note that
∑

v∈V (G) f(N(v)) = 2f(V (G)) − f(v1) − f(vn). So,

2f(V (G)) − f(v1) − f(vn) ≤ 2,

implying that f(V (G)) ≤ 2. Thus, βD(Pn) ≤ 2.

Now we discuss the following four cases.

Case 1. n = 4k for some positive integer k. The proof is straightforward, so is
omitted.

Case 2. n = 4k + 1 for some positive integer k. In this case, βD(Pn) ≤ 2 implies
that βD(Pn) ≤ 1. To show that the equality holds, it suffices to show there exists
a BF f of Pn satisfying f(V (G)) = 1. In fact, we can produce such f by assigning
+1, +1,−1,−1, . . . , +1, +1, −1,−1, 1 to the vertices v1, v2, . . . , vn, respectively.

Case 3. n = 4k + 2 for some positive integer k. To show that βD(Pn) = 2, it
suffices to show there exists a BF f of Pn satisfying f(V (G)) = 2. In fact, we can
produce such f by assigning +1, +1,−1, −1, . . . , +1, +1,−1,−1, 1, 1 to the vertices
v1, v2, . . . , vn, respectively.

Case 4. n = 4k + 3 for some positive integer k. Similar to Case 2, so we omit it.

Theorem 7. For any integer n ≥ 2, we have

βD(Kn,n) =

{

0 for n even;
2 for n odd.

Proof. Let X = {u1, u2, . . . , un} and Y = {v1, v2, . . . , vn} be the partite sets of Kn,n.
Observe that Kn,n is an n-regular graph. We discuss the following two cases.

Case 1. n is even. By Theorem 4, βD(Kn,n) ≤ 0. To show that βD(Kn,n) = 0, it
suffices to there exists a BF f of Kn,n such that f(V (Kn,n)) = 0. In fact, we can
produce such f by assigning f(vi) = f(ui) = (−1)i, 1 ≤ i ≤ n.

Case 2. n is odd. By Theorem 4, βD(Kn,n) ≤ 2. To show that βD(Kn,n) = 2, it
suffices to there exists a BF f of Kn,n such that f(V (Kn,n)) = 2. In fact, we can
construct such f by assigning f(vi) = f(ui) = (−1)i+1, 1 ≤ i ≤ n.
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