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Abstract

A one-factorization of a regular graph G is perfect if the union of any
two one-factors is a Hamiltonian cycle. A graph G is said to be P1F if
it possess a perfect one-factorization. We prove that G is a P1F cubic
graph if and only if L(G) is a P1F quartic graph. Moreover, we give some
necessary conditions for the existence of a P1F planar graph.

1 Introduction

All graphs considered in this paper are finite, undirected and have no loops or multi-
ple edges. By V (G) and E(G) we denote the vertex-set and the edge-set, respectively,
of a graph G. A one-factorization of G is a partition of E(G) into one-regular span-
ning subgraphs. A perfect one-factorization of G is a one-factorization in which the
union of any pair of one-factors is a Hamiltonian cycle of G. A graph is said to
be perfectly one-factorable (P1F for short) if it admits a perfect one-factorization.
In [5] P1F graphs are called Hamilton graphs, while in [6] they are called strongly
Hamiltonian graphs and the perfect one-factorization is said to be a Hamilton decom-
position, [5, 6]. The large number of papers dedicated to perfect one-factorizations of
the complete graph K2n (see [10] for a survey) induces one to prefer the terminology
of P1F graphs.

In [7] Kotzig and Labelle present a number of open problems for P1F regular
graphs. The main result of this note is a partial solution to problem number 4 of
their list. In our terminology their problem claims:
“Let G be a graph with |E(G)| even. Prove that G is a P1F graph if and only if
L(G), the line-graph of G, is P1F”.

As far as we know a proof of this result has not been published yet. One partial
progress in this sense is the following result of Pike:

Proposition 1 [9] If G is a 2k-regular graph that has a perfect 1-factorization, then
L(G) is Hamilton decomposable.
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We propose a constructive proof of the problem posed by Kotzig and Labelle in
the particular case in which G is cubic and then we deduce two corollaries by the
technique used in the proof. When G is not cubic the question posed by Kotzig and
Labelle remains an open problem.

Finally, in section 3, we consider the classes of planar P1F graphs of degree 3
and 4 and we produce some necessary conditions of Grinberg type for the existence
of such graphs.

2 The main result

We denote by L(G) the line-graph of G, namely the graph having the edges of G

as vertices and with two vertices adjacent whenever the corresponding edges are
incident in G.

Moreover, we will make use of the standard operation on cubic graphs known as Y -
reduction and of its inverse (Y -extension), defined as in Figure 1. It is straightforward

Y−reduction

Y−extension

Figure 1: Y-operations

to see that Y -reduction and Y -extension are inner operations in the class of P1F cubic
graphs (see for instance [5]).

Proposition 2 Let G be a cubic graph with |E(G)| even. Then the graph G is P1F
if and only if the graph L(G) is P1F.

Proof. Set |E(G)| = 6n. The graph L(G) is 4-regular of order 6n and it admits a
one-factor, say f , by the main result in [8]. By the very definition of L(G), it can be
partitioned into 4n triangles Ti, each triangle corresponding to a vertex of G, in such
a way that no vertex of L(G) lies in more than two of the triangles. Denote by T the
set of these triangles. Obviously each triangle in T contains at most one edge of f .
More precisely we can partition T as the union of S and R, where S contains the 3n
triangles with an edge of f and R contains the n triangles without edges of f . The
graph obtained by removing the edges of f from L(G) is cubic and contains copies
of the n triangles in R. We can reduce each of these n triangles with a Y -reduction
to obtain a smaller graph, say H. In what follows we prove that the graph H is
isomorphic to G.
Let φ be the natural bijection between the vertices xi of G and the triangles Ti in
T . Define ϕf as follows: if Ti belongs to S then ϕf(Ti) is the unique vertex of Ti not
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belonging to the edge of f in Ti; if Ti belongs to R then ϕf (Ti) is the vertex of H in
which the Y -operation reduced Ti. It is easy to see that ϕf is a bijection between T

and V (H) and then the composition ϕf ◦ φ is a bijection between the vertices of G

and H. To prove that ϕf ◦ φ is an isomorphism between G and H we have to prove
that [x1, x2] is an edge of G if and only if [ϕf ◦ φ(x1), ϕf ◦ φ(x2)] is an edge in H.
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e e

x

x

2

1 1 1

2 2

y z
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The vertices of the edge [x1, x2] in G correspond to triangles T1 and T2 in
L(G). Since the vertex e in L(G) belongs to an edge of f , exactly one of the edges
[e, y1], [e, z1], [e, y2] and [e, z2] belongs to f . Without loss of generality we can suppose
[e, y1] ∈ f . This implies that ϕf ◦ φ(x1) = z1, by definitions of φ and ϕf . There
are two possibilities: either [y2, z2] belongs to f or it does not. If [y2, z2] belongs to
f then ϕf ◦ φ(x2) = e; otherwise [y2, z2] does not belong to f and ϕf ◦ φ(x2) is the
vertex of H obtained by T2 with a Y -reduction. In both cases the image of [x1, x2] is
an edge of H. The inverse argument can be used to prove the necessary condition.
Since we have proved that H is isomorphic to G, it admits a perfect one-factorization.
As proved in [5] the use of a Y -extension (and its inverse) on a vertex of a cubic
graph preserved the P1F property then the graph L(G) \ E(f) inherits a perfect
one-factorization F = {f1, f2, f3} by H. Now we prove that F = {f1, f2, f3} ∪ {f}
is a perfect one-factorization of L(G). It is straightforward to verify that F is a
one-factorization of L(G), moreover the unions fi ∪ fj , for i 6= j and i, j = 1, 2, 3 are
all Hamiltonian cycle by the fact that F is perfect for L(G) \ E(f). It remains to
prove that f ∪fi is a Hamiltonian cycle for i = 1, 2, 3. Note that if we walk on f1∪f2

from a prescribed vertex we meet the triangles Ti in the same order as on f3 ∪ f .
Since f1 ∪ f2 is a Hamiltonian cycle, then we meet each Ti and each vertex of L(G)
and then we return to the starting vertex, hence the same holds walking on f3 ∪ f

and this proves that f3 ∪ f is a Hamiltonian cycle. Repeating the same argument for
f1 ∪ f and f2 ∪ f we obtain that F is perfect. The inverse argument proves that if
L(G) is P1F then we can produce a perfect one-factorization of G. �

Note that in the proof of Proposition 2 we have used a completely arbitrary choice
of the one-factor f in L(G), this naturally leads to the following results:

Corollary 1 Let G be a P1F cubic graph with |E(G)| even. Each one-factor of L(G)
belongs to a perfect one-factorization of L(G).

Recall that a graph G is minimally one-factorable if every one-factor belongs to
precisely one one-factorization (see [3]) and G is uniquely edge colorable if it admits
a unique proper coloring of the edges.
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Corollary 2 Let G be a uniquely edge colorable cubic graph with |E(G)| even, then
L(G) is minimally one-factorable.

Proposition 2 can be also used to construct examples of P1F 4-regular graphs
starting from known P1F cubic graphs.

Example 1 The generalized Petersen graph GP (10, 2) is P1F (see [2]) then its line-
graph is P1F

Figure 2: GP (10, 2) and its line-graph are P1F

3 P1F planar graphs

In this section, G will always denote a planar regular graph.
In [4] Grindberg obtained a necessary condition for a planar graph G to be

Hamiltonian. Let X be a set of faces of G and let d(F ) be the degree of a face
F of G (that is, the number of edges in its boundary), we define the function g by
g(X) =

∑
F∈X(d(F ) − 2).

Theorem 1 (Grinberg) Let G be a planar graph which contains a Hamiltonian
cycle C. Denote by X1 the set of faces of G interior to C and by X2 the set of faces
exterior to C. Then g(X1) = g(X2).

Bondy and Haggkvist (see [1]) establish, using the result of Grinberg, a similar
necessary condition for a 4-regular planar graph to admit a Hamiltonian decompo-
sition.

Theorem 2 (Bondy-Haggkvist) Let G be a 4-regular planar graph which is de-
composable into two edge-disjoint Hamiltonian cycles C and D. Denote by X11, X12,
X21, and X22 the sets of faces of G interior to both C and D, interior to C but exte-
rior to D, interior to D but exterior to C, and exterior to both C and D, respectively.
Then g(X11) = g(X22) and g(X12) = g(X21).
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Each 4-regular P1F planar graph is decomposable into edge-disjoint Hamiltonian
cycles. In fact the union of two disjoint pairs of the four one-factors of a perfect one-
factorization gives rise to a Hamilton decomposition. The converse is false. There
exist examples of Hamilton decomposable graphs that are not P1F. For instance the
graph in Figure 3 is Hamilton decomposable and is not P1F, since it is the line-graph
of the cube that is not P1F (see [2] and Proposition 2).

Figure 3: A 4-regular planar graph that is Hamilton decomposable but not P1F

In the following propositions we obtain two results similar to the statement of
Bondy and Haggkvist.

Let G be a cubic P1F planar graph. Denote by F = {f1, f2, f3} a perfect one-
factorization of G. Denote by C1, C2, C3 the three Hamiltonian cycles obtained by
pairwise union of one-factors of F . Finally denote by Xi1i2i3 , where i1, i2, i3 ∈ Z2, the
sets of faces of G such that a face is interior to Cj if and only if ij = 1, (j = 1, 2, 3).
For instance X010 contains the faces of G which are interior to C2 and exterior to C1

and C3. In what follows we can suppose without loss of generality that the external
face of G is in X000.

Proposition 3 Let G be a cubic P1F planar graph of order 2n.
Then g(Xi1i2i3) = n − 1 when i1 + i2 + i3 is even.

Proof. A-priori there are eight possible sets of faces: nevertheless since we have sup-
posed that the external face of G is in X000, then one can verify that X100, X010, X001,

X111 are empty sets: let F be a face and define a vector (j1, j2, j3) such that F is
external to cycle Ci if and only if ji = 1. Let e be an edge of F and let F ′ be the face
on the other side of e. Then for each of the 2 cycles that contain edge e, the vector
for F ′ will have its corresponding two entries be opposite of the respective values for
the vector for F . The entry for the cycle that does not contain e is the same for
both F and F ′. It follows that the parity for every face’s vector will be the same,
and since the parity for the external face of the graph is an even number of 1’s, then
every face must have an even number of 1’s in its vector. Thus each face is internal
to an even number of cycles, and therefore X100, X010, X001, X111 are empty.
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By application of Grinberg’s Theorem on each of the Hamiltonian cycles C1, C2,
C3, we obtain the relations:

g(X000) + g(X011) = g(X101) + g(X110)

g(X000) + g(X101) = g(X011) + g(X110)

g(X000) + g(X110) = g(X011) + g(X101)

Combining them pairwise gives rise to g(X000) = g(X110), g(X000) = g(X101) and
g(X000) = g(X011). Then g(Xi1i2i3) is constant when i1+i2+i3 is even. The assertion
follows from the fact that for each planar regular graph g(X) = 4(n−1) holds (where
X is the set of all faces of G). �

The same idea can be applied for 4-regular P1F planar graphs. We denote by
C1 = f1 ∪ f2, C2 = f1 ∪ f3, C3 = f1 ∪ f4, C4 = f2 ∪ f3, C5 = f2 ∪ f4 and C6 = f3 ∪ f4

the six Hamiltonian cycles obtained by a perfect one-factorization of a graph G. We
suppose also in this case that the external face of G is in X000000. The following
proposition holds:

Proposition 4 Let G be a 4-regular P1F planar graph of order 2n. Then
g(X000000) = g(X011110) = g(X101101) = g(X110011) and
g(X111000) = g(X100110) = g(X010101) = g(X001011).

Proof. This is by application of Grinberg’s Theorem on each of the Hamiltonian
cycles Cj. �

Note: The case g(X000000) 6= g(X111000) really occurs; see for instance the graph in
the figure below where the faces in X111000 are denoted by a circle and the unique
face in X000000 by a square; then g(X000000) = 3 and g(X111000) = 2.
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