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Abstract

Let n(G) and α(G) be the order and the independence number of a
graph G, repsectively. If G is bipartite graph, then it is well-known and
easy to see that α(G) ≥ n(G)

2
. In this paper we present a constructive

characterization of bipartite graphs G for which

α(G) =

⌈

n(G)

2

⌉

.

1 Terminology and introduction

We consider finite, undirected, and simple graphs G with the vertex set V (G) and
the edge set E(G). The number of vertices |V (G)| of a graph G is called the order

of G and is denoted by n = n(G). The neighborhood N(v) = NG(v) of the vertex
v in a graph G consists of the vertices adjacent to v. The vertex v is a leaf of G if
dG(v) = 1, where d(v) = dG(v) = |NG(v)| is the degree of v ∈ V (G). We write Kn

for the complete graph of order n. If G is a graph and A ⊆ V (G), then we denote by
q(G − A) the number of odd components in the subgraph G − A.

If M is a maximum matching in a graph G, then α0(G) = |M | is the edge indepen-

dence number. A matching M of a graph G is perfect or almost perfect if 2|M | = n(G)
or 2|M | = n(G) − 1, respectively.

A set D ⊆ V (G) is a covering of G if every edge of G has at least one end in D. The
covering number β = β(G) of G is the cardinality of a smallest covering of G.

A set I of vertices in a graph G is independent if every two vertices of S are not
adjacent in G. The independence number α = α(G) of a graph G is the maximum
cardinality among the independent sets of vertices in G.



220 LUTZ VOLKMANN

For detailed information on domination, irredundance, and related topics see the
comprehensive monograph [3] by Haynes, Hedetniemi, and Slater.

If G is a bipartite graph with the partite sets V1 and V2, then V1 as well as V2 are
independent sets and coverings. Thus

α(G) ≥
n(G)

2
≥ β(G)

for each bipartite graph. In this paper we will discuss the question, for which bipartite

graphs G the identity α(G) =
⌈

n(G)
2

⌉

holds.

Theorem 1.1 (König [4] 1931) If G is a bipartite graph, then β(G) = α0(G).

Theorem 1.2 (Gallai [2] 1959) If G is a graph, then α(G) + β(G) = n(G).

Proofs of Theorems 1.1 and 1.2 can also be found in the book by Volkmann [5].
These two results imply easily the next corollary.

Corollary 1.3 If G is a bipartite graph, then

α(G) =

⌈

n(G)

2

⌉

if and only if G has a perfect matching if n(G) is even and G has an almost perfect

matching if n(G) is odd.

In addition, Chunghaisan (cf. [1], p. 80) has shown that a tree T has a perfect match-
ing if and only if q(G − v) = 1 for every v ∈ V (T ).

So far as I know, no one has given a contructive characterization of bipartite graphs
G for which α(G) = ⌈n(G)

2
⌉. In this note we will present such a constructive charac-

terization.

2 The characterizations

For a constructive characterization of trees T for which α(T ) = ⌈n(T )
2

⌉, we introduce
the following operation.

Operation: Let w be an arbitrary vertex of a tree Tw and let v be a vertex of the
complete graph K2. Let T be obtained from Tw ∪ K2 by adding the edge vw.

We now define the families T1 and T2 as follows:

T ∈ T1 if and only if T = K2 or T is obtained from K2 by a finite sequence of
operations above.

T ∈ T2 if and only if T = K1 or T is obtained from K1 by a finite sequence of
operations above.
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Theorem 2.1 Let T be a tree of even order n. Then α(T ) = n

2
if and only if T ∈ T1.

Proof. Assume that T ∈ T1. The definition of T1 easily shows that T has a perfect
matching. Therefore Corollary 1.3 implies the desired result.

Conversely, assume that α(T ) = n(T )
2

. According to Corrolary 1.3, the tree T has
a perfect matching M . We proceed by induction on the order n = n(T ). If n = 2,
then T = K2 ∈ T1. Now assume that n ≥ 4 is an even integer and that α(T ) = n

2
.

Let P = x1x2 . . . xt be a longest path in T . Since T has a perfect matching M and
as P is a longest path in T , we conclude that dT (x2) = 2 and thus x1x2 ∈ M . This
implies that T ′ = T − {x1, x2} is also a tree of even order with the perfect matching

M − {x1x2} and so α(T ′) = n(T ′)
2

. In view of the induction hypothesis, T ′ belongs
to the family T1. By the definition of T1, it follows that T ∈ T1, and the proof is
complete. �

Theorem 2.2 Let T be a tree of odd order n. Then α(T ) = n+1
2

if and only if

T ∈ T2.

Proof. Assume that T ∈ T2. The definition of T2 shows that T has an almost perfect
matching. Therefore Corollary 1.3 implies the desired result.

Conversely, assume that α(T ) = n(T )+1
2

. According to Corrolary 1.3, the tree has an
almost perfect matching M . We proceed by induction on the order n = n(T ). If
n = 1 or n = 3, then T ∈ T1. Now assume that n ≥ 5 is an odd integer and that
α(T ) = n+1

2
. Let P = x1x2 . . . xt be a longest path in T . Since T has an almost

perfect matching M and as P is a longest path in T , we conclude that dT (x2) ≤ 3 and
dT (xt−1) ≤ 3. In addition, we observe that dT (x2) = 2 or dT (xt−1) = 2. Otherwise,
let y2 6= x1 and y3 6= yt be a leaf adjacent with x2 and xt−1, respectively. This is a
contradiction to the hypothesis that T contains an almost perfect matching. Now
we assume, without loss of generality, that dT (x2) = 2. If dT (xt−1) = 3, then it
follows that x1x2 ∈ M . This implies that T ′ = T − {x1, x2} is also a tree of odd

order with the almost perfect matching M −{x1x2} and so α(T ′) = n(T ′)+1
2

. In view
of the induction hypothesis, T ′ belongs to the family T2. By the definition of T2, it
follows that T ∈ T2. In the remaining case that dT (x2) = 2 and dT (xt−1) = 2, we can
assume, without loss of generality, that x1x2 ∈ M , and we obtain the desired result
analogously. �

Observation 2.3 If G is a connected graph with a maximum matching M , then G

contains a spanning tree with the maximum matching M .

Proof. If G is itself a tree, then this observation is trivial. If G is not a tree, simply
remove edges lying on cycles in G − M , one at time, until only bridges remain. �

Theorem 2.4 Let G be a bipartite graph of even order n. Then α(G) = n

2
if and

only if G has a spanning tree T ∈ T1.

Proof. If α(G) = n

2
, then it follows from Corollary 1.3 that G has a perfect matching

M . Combining this with Observation 2.3, we find that there exists a spanning tree
T of G with the perfect matching M . According to Corollary 1.3, we conclude that
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α(T ) = n(T )
2

= n

2
, and hence Theorem 2.1 implies that T ∈ T1.

Conversely, assume that G has a spanning tree T ∈ T1. In view of Theorem 2.1,
we have α(T ) = n(T )

2
. Since α(G) ≥ n

2
= n(T )

2
, we can immediately deduce that

α(G) = n

2
. �

Applying Theorem 2.2 instead of Theorem 2.1, we can prove the next result analo-
gously to the proof of Theorem 2.4.

Theorem 2.5 Let G be a bipartite graph of odd order n. Then α(G) = n+1
2

if and

only if G has a spanning tree T ∈ T2.

Remark 2.6 The complete graph and other examples show that that neither The-
orem 2.4 nor Theorem 2.5 is valid for non-bipartite graphs in general.
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