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Abstract

A (v, K, λ) difference family ((v, K, λ)-DF in short) can be used to con-
struct a (v, K, λ)-PBD. A lot of work has been done on the existence
of (v, k, 1) difference families ((v, k, 1)-DF in short) when K = {k} is a
singleton. For K = {3, 4}, partial results have been obtained by Buratti.
In this paper, it is proved that there exists a balanced (q, {3, 4}, 1)-DF
for each prime power q ≡ 1 (mod 18).

1 Introduction

Given an additive group G of order v and a set K of positive integers, a (v, K, λ)
difference family over G is a family of subsets of G (base blocks) having sizes belonging
to K and such that each non-zero element of G can be represented as the difference of
two elements of some base block in exactly λ ways. When K = {k}, we simply speak
of a (v, k, λ) difference family. When K contains at least two distinct elements, we
say that a (v, K, λ)-DF is balanced if the number of base blocks of size k is constant
for each k ∈ K.

Much work has been done on the existence of (v, k, λ)-DFs (see [1, 2, 4, 5, 6, 7, 8]).
When |K| ≥ 2, some results were obtained in [3]. When K = {3, 4}, it is easy to
see that the necessary conditions for the existence of a balanced (v, K, 1)-DF is that
v ≡ 1 (mod 18). The following result was stated in [3].

Lemma 1.1 Let q = 18t + 1 be a prime power and let 3e be the highest power of

3 dividing t. Then, if 3 is not a 3e+1th power in GF (q), there exists a balanced

(q, {3, 4}, 1)-DF.
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In this paper, the following result is obtained.

Theorem 1.2 There exists a balanced (q, {3, 4}, 1)-DF for each prime power q ≡
1 (mod 18).

2 Proof of Theorem 1.2

The following result was stated in [3].

Lemma 2.1 Let k1, k2, . . . , kt, λ be positive integers such that λ(q−1) ≡ 0 (mod m)
where m = (1/2λ)(k1(k1 − 1) + k2(k2 − 1) + · · · + kt(kt − 1)) is also an integer.

Let q ≡ 1 (mod m) be an odd prime power and let Ah = {ah1, ah2, · · · , ahkh
} be a

kh-subset of GF (q), h = 1, 2, · · · , t. If the list L = {ahr − ahs|1 ≤ r < s ≤ kh} is

evenly distributed over the mth power cosets of GF (q), then there exists a balanced

(q, K, λ)-DF, where K = {k1, k2, · · · , kt}.

Applying Lemma 2.1 with t = 2, k1 = 4, k2 = 3, m = 9, A1 = {0, 1, c, c2},
A2 = {0, c3, c4}, one can easily obtain the following result.

Lemma 2.2 Let q = 18t+1 be a prime power, k1 = 4, k2 = 3, and A1 = {0, 1, c, c2},
A2 = {0, c3, c4}. If the list L = {1, c, c2, c−1, c2−1, c2−c, c3, c4, c4−c3} is evenly dis-

tributed over the 9th power cosets of GF (q), then there exists a balanced (q, {3, 4}, 1)-
DF.

Lemma 2.3 Let q = 18t+1 be a prime power and A1 = {0, 1, c, c2}, A2 = {0, c3, c4}.
Let c ∈ GF (q) satisfy one of the following conditions:

(1) c ∈ C1, c − 1 ∈ C5 and c + 1 ∈ C2; (2) c ∈ C2, c − 1 ∈ C1 and c + 1 ∈ C4;

(3) c ∈ C4, c − 1 ∈ C2 and c + 1 ∈ C8; (4) c ∈ C8, c − 1 ∈ C4 and c + 1 ∈ C7;

(5) c ∈ C5, c − 1 ∈ C7 and c + 1 ∈ C1; (6) c ∈ C7, c − 1 ∈ C8 and c + 1 ∈ C5.

Then, there exists a balanced (q, {3, 4}, 1)-DF.

Proof It is not difficult to see that, if one of the conditions stated in this lemma
is satisfied, then the list L = {1, c, c2, c − 1, c2 − 1, c2 − c, c3, c4, c4 − c3} is evenly
distributed over the 9th power cosets of GF (q), and hence from Lemma 2.1, there
exists a balanced (q, {3, 4}, 1)-DF.

One can apply Weil’s theorem as done in [4] to prove that there exist elements c
satisfying one of the conditions stated in Lemma 2.3 when q ≥ 1479680. So, we have
the following result.

Theorem 2.4 If q ≡ 1 (mod 18) is a prime power, q ≥ 1479680, then there exists

a balanced (q, {3, 4}, 1)-DF.
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For q < 1479680, and q 6= 73, 271, with the aid of a computer, one can also find
elements c satisfying one of the conditions stated in Lemma 2.3. So, we have the
following result.

Lemma 2.5 Suppose that q ≡ 1 (mod 18) is a prime power, q ∈ [19, 1479680), and

q 6= 73, 271. Then there exists a balanced (q, {3, 4}, 1)-DF.

Lemma 2.6 There exists a balanced (q, {3, 4}, 1)-DF for q = 73 and 271.

Proof In the two cases of q = 73 and q = 271 we have found a quadruple A1 and a
triple A2 satisfying the conditions of Lemma 2.1:

q = 73: A1 = {0, 4, 16, 52}, A2 = {0, 1, 3}.
q = 271: A1 = {0, 2, 13, 34}, A2 = {0, 1, 5}.

This completes the proof.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Lemma 2.4 takes care of all large values of q ≥ 1479680.
The small values are dealt with in Lemmas 2.5 and 2.6. This completes the proof.
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