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Abstract

The classical combinatorial problem of counting domino tilings of a
2n × 2m rectangle was solved by P.W. Kasteleyn and also by H.N.V.
Temperley and M.E. Fisher in 1961. We shall consider the similar prob-
lem for T-tetrominoes, that is, pieces formed by 4 unit squares in the
shape of a T. We give explicit formulae for the number of tilings with
T-tetrominoes for the 4n × 4m rectangle when n = 1, 2, 3 and 4, and a
computational method for values of n up to 8.

1 Introduction

One of the classical results in enumerative combinatorics is the formula for the num-
ber of domino tilings of a 2n × 2m chess-board. The formula is the following:
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.

This was obtained originally by Kasteleyn [7], and also by Temperley and Fisher [14].
Later Lieb [10] and more recently V. Strehl [13] gave different methods to obtained
the same formula.

In order to state our problem we give some definitions first. A tetromino is a two-
dimensional shape made by connecting 4 unit squares along their edges. There are
5 possible tetrominoes (up to rotations and reflections) of which one has a T-shape,
and we called it T-tetromino. A tiling of a plane region R is a covering of R using a
given set of tiles, completely and without any overlap. We have the following:
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Theorem 1 (D.W. Walkup 1965). An r × s rectangular board has a tiling with

T-tetrominoes as tiles if and only if r and s are multiples of 4.

Our problem is to count the number of tilings of a 4n × 4m rectangular board
with T-tetrominoes or T-tilings, which we denote by f(n, m). We use f(n) for the
number of T-tilings of the square board.

The rectangular lattice Ln,m is a well-known graph (see Biggs [2]), but for ref-
erence we include the definition here. The graph Ln,m has as vertices the set
{0, . . . , n − 1} × {0, . . . , m − 1} where two vertices (i, j) and (i′, j′) are adjacent
if |i − i′| + |j − j′| = 1. This definition also gives a natural planar embedding of
Ln,m, in which each bounded face is a unit square. We consider the region defined
by this planar embedding of Ln+1,m+1 as the n×m rectangular board. For the basic
graph theory required in this paper the reader is referred to the book of Bondy and
Murty [3].

2 T-tilings and The Tutte polynomial

For a graph G = (V, E), we identify a subset of edges A ⊆ E of G with the subgraph
of G that A spans, that is, the spanning subgraph (V, A). Then the number of
connected components of A is denoted by k(A) and the rank of A is defined by
r(A) = |V | − k(A). When we have a planar embedding of G, any subgraph of G
has an induced planar embedding. In this case, we defined the number f(A), as the
number of bounded faces of A.

The Tutte polynomial T (G; x, y) of a graph G = (V, E) is a two variable polyno-
mial and has the following expansion

T (G; x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A). (2.1)

If G is a connected plane graph, r(E) − r(A) = k(A) − 1 and |A| − r(A) =
f(A). The last equality is obtained by applying Euler’s formula to each connected
component of A.

When evaluating the Tutte polynomial along different curves and points we get
several interesting invariants of graphs. Among them we have the chromatic and
flow polynomials of a graph, the all terminal reliability probability of a network and
the partition function of the Q-state Potts model. Further details of many of the
invariants can be found in the survey article of Brylawski and Oxley [4] and in the
book of Welsh [17].

Theorem 2 (Korn and Pak, 2003). The number of T-tilings of a 4n × 4m board

satisfy

f(n, m) = 2T (Ln,m; 3, 3). (2.2)

Sketch. We defined the top of a T-tetromino as the line segment of length 3 on its
boundary and its bottom as the unit line segment on the boundary opposite to the
top.
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Consider the lattice induced by the points (a,b) such that a, b ≡ 2 (mod 4) in a
4n × 4m board. We obtain a graph isomorphic to Ln,m, where each edge has length
4. Now, let us take any subset of edges A in Ln,m and let C be the set of boundary
points of a bounded (unbounded) face F in A. Then, let R be the region inside
(outside) F made of by all the points at Chebyshev distance at most 2 from C. Here
the Chebyshev distance is the one induced by the l∞-norm. The left-hand side of
Figure 1 shows a set A of edges of L6,5 with 4 bounded faces and 3 unbounded faces.

Figure 1: The figure on the left shows a partial T-tiling of a 24 by 20 rectangular
board. The figure on the right shows a complete T-tiling of the board.

In general, the region R can be tiled with T-tetrominoes in many different ways.
But there are exactly two T-tilings of R where the top and bottom of the tiles
alternatively intersect the set C. An example is shown on the left-hand side of
Figure 1.

For a fixed A, the union of these regions is the 4n×4m rectangular board. Thus,
to each subset A of edges of the lattice Ln,m we have associated 2f(A)+k(A) T-tilings.

Clearly, from different edge-sets we get different tilings. Also, each tiling can be
obtained b this procedure from an edge-set A and a choice of T-tilings o each region.
Summing up these quantities for all the subsets of edges in Ln,m we get that the
number of T-tilings is

f(n, m) =
∑

A⊆E(Ln,m)

2k(A)+f(A)

= 2
∑

A⊆E(Ln,m)

2k(A)−1 2f(A)

= 2
∑

A⊆E(Ln,m)

2r(E)−r(A) 2|A|−r(A) = 2T (Ln,m; 3, 3).

For example, the Tutte polynomial of the square lattice L3,3 is

T (L3,3; x, y) = x8 + 4x7 + 10x6 + 16x5 + 19x4 + 16x3 + 10x2 + 3x

+ 4x5y + 12x4y + 20x3y + 20x2y + 13xy + 3y

+ 4x3y2 + 10x2y2 + 12xy2 + 6y2 + 4xy3 + 4y3 + y4;

and so, the number of T-tilings of a 12-by-12 board is 78696.
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3 The number of T-tilings

Using Equation 2.2, we can easily compute the number of T-tilings for the 4 × 4m
board, as the corresponding lattice L1,m is a path of length m − 1, whose Tutte
polynomial is just xm−1. Thus, for the 4x4 board we get f(1, 1) = 2 and, in general,
we have that

f(1, m) = 2(3)m−1.

This sequence is already known as A008776 [11] and could have been obtained more
easily by direct counting. However, direct counting is not so straightforward for the
8 × 4m board. But the corresponding lattice in Theorem 2 is a ladder, and it is
easy to find the recurrence relation f(2, m) = 16f(2, m − 1) − 27f(2, m − 2), for
m ≥ 3, with initial conditions f(2, 1) = 6 and f(2, 2) = 84. After solving we get the
following formula:

f(2, m) =

(

3 − 18√
37

)

(8 −
√

37)m−1 +

(

3 +
18√
37

)

(8 +
√

37)m−1. (3.1)

For the board of width 12 we have to evaluate T (L3,m; 3, 3) that could still be
done by finding a recurrence relation and solving it. This method is going to give
a formula for the boards of fixed width n for small n; but it is bound to fail for
the general case. There is another way to compute T (Ln,m; x, y) for a fixed width n
at point (x,y) which is described in Calkin et al. [6] and it is an application of the
transfer-matrix method. In this case we have the same restriction as before, a fixed
width n for small values of n, but it has the advantage of being easily automatized.

Theorem 3 (Calkin et al. 2001). For real values x and y with x 6= 0 and integers

n, m ≥ 2, we have

T (Ln,m; x + 1, y + 1) = xnm−1X t
n · (Λn)m−1 · ~1,

where Xn, a vector of length cn, and Λn, a cn × cn matrix, depend on x,y and n but

not m. And ~1 is the vector of length cn with all entries equal to 1.

The quantity cn is the n-Catalan number, so the method is just practical for small
values of n. Computing the vectors Xn and the matrix Λn can be easily done in a
computer. Following the example in Calkin et al. [6] we get

T (L2,m; 3, 3) = 22m−1
(

1, 1/2
)

(

9/4 9/8
2 7/2

)m−1 (

1
1

)

.

In the above equation we can get integer entries by multiplying by an appropriate
power of 2. Thus, by using Equation 2.2 we get the formula

f(2, m) =
1

2m−2

(

2, 1
)

(

18 9
16 14

)m−1 (

1
1

)

.
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The method applied to the rectangular lattice L3,m gives

f(3, m) =
1

22m−4

(

4, 2, 0, 2, 1
)













108 54 0 54 27
96 84 0 48 42
96 48 12 48 48
96 48 0 84 42
80 64 8 64 96













m−1 











1
1
1
1
1













.

The first 5 terms of the sequence are 18, 1182, 78696, 5253822, 350950482.
In general, we have the formula

f(n, m) =
1

2(n−1)(m−1)
~vnA

m−1
n

~1,

where Am = 22m−1Λn and ~vn = 2m−1Xn. For n = 4 the matrix A4 is the 14-by-14
matrix

















































648 324 0 0 324 162 0 0 0 324 162 0 162 81
576 504 0 0 288 252 0 0 0 288 252 0 144 126
576 288 72 0 288 288 0 0 0 288 144 36 144 144
576 288 0 72 288 144 36 0 36 288 144 36 144 162
576 288 0 0 504 252 0 0 0 288 144 0 252 126
480 384 48 0 384 576 0 0 0 240 192 24 192 288
512 256 0 64 448 224 56 0 32 256 128 32 224 240
576 288 0 0 288 144 0 72 36 288 144 0 288 144
480 384 0 48 240 192 24 48 120 240 192 24 216 348
576 288 0 0 288 144 0 0 0 504 252 0 252 126
512 448 0 0 256 224 0 0 0 448 392 0 224 196
480 240 48 48 240 216 24 0 24 384 192 120 192 348
480 240 0 0 384 192 0 48 24 384 192 0 576 288
384 288 32 32 288 400 16 32 80 288 192 80 400 776

















































and the vector ~v4 is (8, 4, 0, 0, 4, 2, 0, 0, 0, 4, 2, 0, 2, 1). The first 5 terms of the sequence
are 54, 16644, 5253822, 1668091536, 530454033510.

The vectors and matrices for n up to 8 can be found in http://www.matem.

unam.mx/~merino/e_publications.html. All the matrices are nonnegative real
matrices, in fact all are nonnegative primitive matrices. So in principle, we can get
a formula similar to Equation 3.1 that involves the eigenvalues of the matrix. Also,
the asymptotic behaviour can be obtained by computing the spectral radius of the
aforementioned matrix Λn and then taking the n-root. Thus, for n = 2, 3 and 4 we
have

lim
n→∞

f(2, m)
1

2m =

√

8 +
√

37 = 3.75270 . . . ,

lim
n→∞

f(3, m)
1

3m = 4.05769 . . . ,

lim
n→∞

f(4, m)
1

4m = 4.22351 . . . .

The values of the limits for n from 5 to 8 are respectively 4.32788. . . , 4.39966. . . ,
4.45208. . . and 4.49199. . . .
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4 The square board

To compute f(n) we used the above method and obtained the values for n up to 8,
that is, for the square board of side 32. There are also computer programs which com-
pute the Tutte polynomial of moderated size graphs. One is TuLiC by Rodolfo Conde
which is freely available at http://ada.fciencias.unam.mx/~rconde/tulic/. Us-
ing this program we computed the Tutte polynomial for all the square lattices from
L2,2 to L12,12. The values for the number of T-tilings are given in the following list:

f(1) = 2

f(2) = 84

f(3) = 78696

f(4) = 1668091536

f(5) = 804175873700640

f(6) = 8840889502844537044800

f(7) = 2219885416449546846322852561536

f(8) = 12743498392347171159734108119436194009344

f(9) = 1673655934365810075982323780364346176451059139240448

f(10) = 5031230898942160933982250013114536314591579141675092922832

491520

f(11) = 3463131467175532420109700259258995693571631028572354110874

72918271870994016256

f(12) = 5459704314008539845990741829270093470430155282377357168707

98525852987071373589503117526536192

The values up to n = 8 were checked with both methods. All these numbers have
the form 2n q, for an odd integer q. This is true in general.

Proposition 4. The number f(n, m) = 2gcd(n,m) q, where q is an odd integer.

Proof. Las Vergnas [9] proved that if G is a plane graph with medial graph H, then
T (G; 3, 3) = 2c(H)−1 q, where q is an odd integer. Given a connected plane graph G,
its medial graph H is constructed by putting a vertex on each edge of G and two
vertices of H are joined by an edge if the corresponding edges in G are neighbours
in the cyclic order of edges around a vertex. Thus, H is an Eulerian 4-regular graph.
The medial graph of L9,3 is shown in Figure 2. The graph invariant c(H) is the
number of crossing circuits of H, see Las Vergnas [9], that is, the number of circuits
in the Eulerian partition of the edges of H defined by choosing at each vertex opposite
edges to be on the same circuit. An example of one crossing circuit for the medial
graph of L9,3 is shown in Figure 2.

In the case of Ln,m, a crossing circuit of its medial graph corresponds to the
trajectory of a ball thrown at 45◦ in a billiard table of 2n by 2m from a point with
integer coordinates (0, j), for some odd integer j with 1 ≤ j ≤ 2m− 1. The 2n + 2m
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points in the boundary with integer coordinates (i, j) such that i + j is an odd
integer are partitioned by the trajectories. The points in the same equivalent class
will be those that correspond to rebounds of the ball of a particular trajectory. The
same method as for the classical billiard problem, see Steinhaus [12], gives that the
number of rebounds in a trajectory is 2r+2s, where r and s are the integers satisfying
the equation lcm(n, m) = rm = sn. Thus, the number of different trajectories is
gcd(n, m). The proposition follows from Theorem 2.

Figure 2: The medial graph of L9,3 where the big dots are the vertices of the graph.
Also one of its 3 crossing circuits is in thick line.

Corollary 5. The number f(n) = 2n q, where q is an odd integer.

The asymptotic behaviour for the square lattice is known; the value corresponds
to the free energy of the 4-Potts model and the result is due to Baxter [1]:

lim
n→∞

f(n)
1

n2 =

(

Γ(1/4)

2 Γ(3/4)

)4

= 4.78926 . . . .

5 Conclusion

We used Korn and Pak’s result [8] to obtain general formulae for the number of
T-tilings of a rectangular board of 4n× 4m, when n is at most 4 and m is arbitrary.
The same method gives formulae when n is at most 8. We also give some numerical
values for f(n), the number of T-tilings of a square board of side 4n. A generalization
of Theorem 2 is given by Jacobsen in [5]. There each tile is assigned a weight that
depends on its orientation and position on the board and, for a particular choice of
the weights, the generating function of weighted tilings is shown to be the evaluation
of the multivariate Tutte polynomial ZG(Q, v).

For this approach, it is necessary to evaluate the Tutte polynomial of Ln,m at the
point (3, 3). Evaluating T (G; 3, 3) is #P-hard, even for planar bipartite graphs, see
Vertigan and Welsh [15], so better understanding about the Tutte polynomial of the
lattice is needed to extend our results. However, it is possible that using a different
method a similar formula to Kasteleyn’s could be found.
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