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Abstract

Let G = (V, E) be a graph and N [X] denote the closed neighbourhood of
X ⊆ V , that is to say, the union of X with the set of vertices which are
adjacent to X. Given an integer t ≥ 1, a subset of vertices C ⊆ V is said
to be a code identifying sets of at most t vertices of G —or, for short, a
t-set-ID code of G —if the sets N [X] ∩ C are all distinct, when X runs
through subsets of at most t vertices of V . A graph G admits a t-set-ID
code if and only if N [X] 6= N [Y ] for all pairs X and Y which are distinct
subsets of at most t vertices of V .

Graphs admitting identifying codes is a recent topic. In this paper,
we show that for G1 admitting a t1-set-ID code, and G2 admitting a t2-
set-ID code, the cartesian product G1�G2 admits a max{t1, t2}-set-ID
code, and we show that this result is the best possible. We also study
the extremal question of minimizing the number of vertices of a graph
admitting a t-set-ID code. Asymptotically, this number is Ω(t2), and
we give an explicit construction of an infinite family of t-regular graphs
attaining this bound. The construction uses so-called distance-regular
graphs.
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1 Codes identifying sets of vertices

Let G = (V, E) be an undirected and connected graph and t ≥ 1 an integer. Denote
by d(u, v) the graphic distance between the vertices u and v, i.e., the number of
edges in any shortest path between u and v. We say that a vertex u covers a vertex
v if d(u, v) ≤ 1. Let us denote by N [X] the closed neighbourhood of X ⊆ V , that is,
the union of X with the set of vertices which are adjacent to an element of X. A
subset of vertices C ⊆ V is said to be a code identifying sets of at most t vertices

of G (or, for short, a t-set-ID code) if the sets N [X] ∩ C are distinct for all X ⊆ V
with |X| ≤ t.

A graph may not admit a t-set-ID code (that is, there does not exist any C ⊆ V
such that all of the sets N [X]∩C were different), for example, in the complete graph
Kn on n ≥ 2 vertices we have N [x] = N [y] for any two vertices x 6= y, so Kn does
not admit a t-set-ID code for any t ≥ 1. It is easy to see (by choosing C = V ) that
G admits a t-set-ID code if and only if N [X] 6= N [Y ] for all pairs of distinct subsets
X and Y of at most t vertices of V .

The notion of identifying codes was introduced in [10] to model a fault-detection
problem in multiprocessor systems. For another application to sensor networks con-
sult [16]. Identifying codes are closely related to other types of codes, like covering
codes (which are frequently used to construct identifying codes in Hamming spaces,
see e.g. [1, 2, 10]) or superimposed codes (see [6]). There is a large and fast-growing
bibliography on identifying codes, which can be found from Antoine Lobstein’s web-
page [17].

In [4], structural properties of graphs admitting t-set-ID codes are derived for
t = 1, but very little is known on these graphs for the general case t ≥ 1. In
particular, only few constructions of graphs admitting t-set-ID codes are known (see
[8, 14] for some constructions). In the next section, we show that if Gi admits
a ti-set-ID code, for i = 1, 2, then the cartesian product of G1 and G2 admits a
max{t1, t2}-set-ID code. We also prove that this result is the best possible. It should
be noticed that, for example, multiprocessor systems such as binary hypercubes and
certain grids are obtained using the cartesian product.

A question (posed in [8]) of finding the minimum number of vertices of a graph
admitting a t-set-ID code is studied in Section 3. Asymptotically, the number of
vertices of a graph admitting a t-set-ID code is Ω(t2) (for the usual notations Ω(.),
O(.) and Θ(.), we refer to [5]). In this paper, we give an infinite family of graphs
attaining this bound. This family has the additional property that all its graphs are
t-regular (that is, they satisfy an extremal degree property as well), which improves
a construction given in [11].

2 Structural properties and the cartesian product

First we derive two lemmas dealing with structural properties of graphs admitting
t-set-ID codes, which will be useful in the sequel. Let N(x) denote the set of vertices
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adjacent to x ∈ V .

Lemma 1 Let G be a graph admitting a t-set-ID code, and let x be a vertex of G.

Then N(x) contains a stable set of cardinality t, i.e., a set of cardinality t without

edges between vertices belonging to the set.

Proof: Let k ≤ t − 1, and let K be a subset of N(x) of cardinality k. Observe
that, since G admits a t-set-ID code, then K and K ∪ {x} have distinct closed
neighbourhoods, hence there exists y ∈ N(x) r N [K]. Now, K is a stable set if
and only if K ∪ {y} is a stable set, and the desired result is obtained by inductively
applying the above observation, starting with K reduced to any single point of N(x).

2

Lemma 2 Let G be a graph admitting a t-set-ID code, and let x be a vertex of G.

Let us denote N2(x) the set of vertices which are at distance 2 of x. Let K be a

subset of N(x) ∪ N2(x), and let K ′ be any subset of vertices of V \ (N [x] ∪ N2(x)).
Then the number of vertices in N(x) left uncovered by K ∪ K ′ satisfies

|N(x) r N [K ∪ K ′]| ≥ t − |K|.

Proof: First observe that, by definition, N(x) r N [K ′] = ∅; hence only K con-
tributes to covering vertices of N(x), that is

N(x) r N [K ∪ K ′] = N(x) r N [K].

Now, by way of contradiction, if |N(x) r N [K]| < t − |K|, then the sets

K ∪ (N(x) r N [K])

and
K ∪ (N(x) r N [K]) ∪ {x}

would have the same closed neigbourhood, which is a contradiction to the fact that
G admits a t-set-ID code, since the larger set K∪(N(x)rN [K])∪{x} has cardinality
at most t. 2

Notice that this implies that the minimum degree of G is at least t (take K =
K ′ = ∅ in the lemma), which was already noticed in [13].

Now we focus on the cartesian product: Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), the cartesian product of G1 and G2, denoted by G1�G2, is the graph
on vertex set V1 × V2 such that

• (v1, v2)(v1, v
′

2) ∈ E(G1�G2) if and only if v2v
′

2 ∈ E(G2),

• (v1, v2)(v
′

1, v2) ∈ E(G1�G2) if and only if v1v
′

1 ∈ E(G1),

• and (v1, v2)(v
′

1, v
′

2) 6∈ E(G1�G2) if v1 6= v′

1 and v2 6= v′

2.
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We use a convenient notation vi,j to denote the vertex (vi, vj) of G1�G2. One
can visualize the cartesian product G1�G2 as a set of |V (G2)| copies of G1, such
that each copy of G1 corresponds to a vertex of G2, and such that there are edges
between two copies of G1 if and only if these copies correspond to adjacent vertices
in G2. The edge set which run between adjacent copies is a perfect matching, which
connects any vertex to its “copy”. Since the definition is symmetric, one can reverse
the role of G1 and G2.

The cartesian product is a useful operation in the theory of graphs in general (see
[9]), and, on the other hand, well-known multiprocessor architectures, such as binary
hypercubes and multidimensional grids, can be obtained using cartesian products.
The next theorem shows that using the cartesian product, we can guarantee that the
product graph admits a t-set-ID code for at least as large t as the better of the initial
graphs (notice that this is not true, for example, for the usual join product [9], in
which case the product graph never admits a t-set-ID code for t ≥ 2 no matter how
good the initial graphs are).

Theorem 1 Let t1 ≥ 1 and let t2 ≥ 1, and let G1 be a connected graph on at

least 2 vertices admitting a t1-set-ID code and G2 be a connected graph on at least

2 vertices admitting a t2-set-ID code. Then the cartesian product G1�G2 admits a

max{t1, t2}-set-ID code.

Proof: Let us denote vi,j the vertices of G1�G2 (here i runs through vertices of G1

and j runs through vertices of G2). Let X and Y be two distinct subsets of vertices
of G1�G2 such that N [X] = N [Y ]. We show that this implies |X| > max{t1, t2}
or |Y | > max{t1, t2}. Without loss of generality, we can assume that there exists
vi0,j0 ∈ X r Y , and that t1 ≥ t2. Let us denote

K1 := {vi,j ∈ Y | j = j0},

K2 := {vi,j ∈ Y | i = i0},

and, all the others of Y , by

K := Y r (K1 ∪ K2).

Note that K1 and K2 are disjoint, since vi0,j0 6∈ Y . Denote (see Figure 1)

N1 := {vi,j ∈ N(vi0,j0) | j = j0},

and
N2 := {vi,j ∈ N(vi0,j0) | i = i0}.

By Lemma 2, we know that

|N1 r N [K1]| ≥ t1 − |K1|, (1)

since G1 admits a t1-set-ID code. Similarly, we have

|N2 r N [K2]| ≥ t2 − |K2|.
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Figure 1: Illustration of the notations used in the proof of Theorem 1.

Note that, by the definition of the cartesian product, each vertex of K has at most
one neighbour in N1, and at most one neighbour in N2. Since K must cover all the
neighbours of vi0,j0 which are not covered by K1∪K2 (in order to have N [X] = N [Y ]),
then K must have at least

max{t1 − |K1|, t2 − |K2|}

vertices. Hence we have

|Y | = |K1| + |K2| + |K| ≥ |K1| + |K2| + max{t1 − |K1|, t2 − |K2|} ≥ t1 + |K2|.

If K2 is nonempty, then we are done, since we assumed that t1 = max{t1, t2}. Now
let us assume that |K2| = 0. In this case, we have |Y | = |K1| + |K| ≥ t1, and we
are done if the inequality is strict. Let us then assume that |K1| + |K| = t1. To
summarize, we may now assume that

|K1| = t1 − |K|, |K2| = 0, and |K| ≥ t2. (2)

If t1 = t2, then this implies that K1 is empty, and vi0,j0 can not be covered by
Y = K, a contradiction. Hence it suffices to consider t1 ≥ t2 + 1.

Since, by (1), we have |N1 r N [K1]| ≥ t1 − |K1| = |K|, and because, by the
definition of the cartesian product, each vertex of K covers at most one vertex of
N1, then we actually have |N1 r N [K1]| = |K|, and each vertex of K covers exactly
one vertex of N1. Hence,

the edges running between K and N1 r N [K1] is a perfect matching. (3)
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Moreover, this implies that the set of copies of G1 which contain vertices of Y cor-
responds exactly to the closed neighbourhood of vj0 in G2, that is to say

{j | ∃i, vi,j ∈ Y } = {j0} ∪ {j | vi0,j0vi0,j ∈ E(G1�G2)}. (4)

Note that if Y ⊂ X, then we are done since |X| ≥ |Y | + 1 ≥ t1 + 1. So we
can assume that there exists vi′,j′ ∈ Y r X. Using similar notations as for vi0,j0 ,
let us denote N ′

1 := {vi,j ∈ N(vi′,j′) | j = j′}, N ′

2 := {vi,j ∈ N(vi′,j′) | i = i′},
K ′

1 := {vi,j ∈ X | j = j′}, K ′

2 := {vi,j ∈ X | i = i′}, and K ′ := X r (K ′

1 ∪ K ′

2).

Analogously, we are done, unless K ′

2 = ∅, |K ′

1| = t1 −|K ′| and |K ′| ≥ t2 (see (2)).
Now we examine separately the following two cases depending on whether j0 = j′ or
not.

Case 1 : j0 = j′.
In this case, we have

K ∩ K ′ = ∅. (5)

Indeed, the set of neighbours of vi0,j0 which are not covered by K1 is disjoint from
the set of neighbours of vi′,j′ which are not covered by K ′

1 (since vi0,j0 ∈ K ′

1 and
vi′,j′ ∈ K1), and each vertex of K ∪ K ′ has one and only one neighbour in N1 ∪ N ′

1

(see (3)).

Now, take a vertex vi1,j1 ∈ K ′ (note that this is possible since |K ′| ≥ t2, and that
this implies j1 6= j0). From (5) we know that vi1,j1 6∈ Y . Hence, by considering vi1,j1

in the role of vi0,j0 , we can get for vi1,j1 the following equality, which is analogous to
the one we obtained for vi0,j0 (see (4)):

{j | ∃i, vi,j ∈ Y } = {j1} ∪ {j | vi1,j1vi1,j ∈ E(G1�G2)}.

Putting this together with (4), we must have

{j0} ∪ {j | vi0,j0vi0,j ∈ E(G1�G2)} = {j1} ∪ {j | vi1,j1vi1,j ∈ E(G1�G2)}.

Since j0 6= j1, this equality implies the existence of two distinct vertices a and b in
G2 which have the same closed neighbourhood in G2, which contradicts the fact that
G2 admits a t2-set-ID code (take a as the projection of vi0,j0 onto G2, and b as the
projection of vi1,j1 onto G2). Hence we are done in the case where j0 = j′.

Case 2 : j0 6= j′.
In this case, we may assume that there is no vi,j, vk,j such that vi,j ∈ X r Y and
vk,j ∈ Y r X, because else we could apply instead Case 1 to these vertices. Since
j0 6= j′, we must have

{j0} ∪ {j | vi0,j0vi0,j ∈ E(G1�G2)} 6= {j′} ∪ {j | vi′,j′vi′,j ∈ E(G1�G2)},

else it would contradict the fact that G2 admits a t2-set-ID code (more precisely, again
as above, the projection of vi0,j0 onto G2 would have the same closed neighbourhood
as the projection of vi1,j1 onto G2). Since

{j0} ∪ {j | vi0,j0vi0,j ∈ E(G1�G2)} = {j | ∃i, vi,j ∈ Y }
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and

{j′} ∪ {j | vi′,j′vi′,j ∈ E(G1�G2)} = {j | ∃i, vi,j ∈ X}

(see (4)), we may assume that there exists vi1,j1 ∈ X rY such that j1 6∈ {j | ∃i, vi,j ∈
Y }. But then vi1,j1 can only be covered by some vertex vi1,j ∈ Y , which contradicts
the condition K2 = ∅ applied to vi1,j1 (see (2)), which plays the same role as vi0,j0. 2

Actually, the result of this theorem is, in general, the best possible according to
the following observation.

Theorem 2 Let integers t1 ≥ 1, t2 ≥ 1, and δ2 be such that δ2 ≥ t2 + 1 and

t1 ≥ δ2 + 1. Then for every connected graphs G1 and G2 on at least 2 vertices

such that G1 has minimum degree t1 and admits a t1-set-ID code, G2 has minimum

degree δ2 and admits a t2-set-ID code, G1�G2 does not admit a (t1 + 1)-set-ID code.

Moreover, there exist graphs which satisfy the conditions.

Proof: Let vi0,j0 be a vertex having exactly t1 neighbours in {vi,j | j = j0}. Such
a vertex exists since G1 has minimum degree t1. Let {vi1,j0 , . . . , vit1 ,j0} be the set
of neighbours of vi0,j0 in {vi,j | j = j0}, and let {vi0,j1 , . . . , vi0,jδ2

} be the set of
neighbours of vi0,j0 in {vi,j | i = i0}. Now, set

K := {vi1,j1, . . . , viδ2 ,jδ2
}

and

K1 := {viδ2+1,j0 , . . . , vit1 ,j0}.

Since t1 ≥ δ2 + 1, we obtain K1 6= ∅, and hence

N [K ∪ K1] = N [K ∪ K1 ∪ {vi0,j0}].

Thus, G1�G2 does not admit a (t1 + 1)-set-ID code, since |K| + |K1| + 1 = t1 + 1.

There exists G2 for all t2 (for instance one could take G2 as the binary hypercube
of dimension 2t2, see [12]), and the existence of G1 is ensured by Proposition 1 in [8]
for all t1. 2

However, we know certain graphs G1 and G2 such that G1�G2 admits even a
(t1 + t2)-set-ID code. For example, let us take the hypercube of dimension n (n odd)
for G1 and G2, which we know admits an (n + 1)/2-set-ID code but does not admit
an (n+3)/2-set-ID code [12]. Then the graph G1�G2 is the hypercube of dimension
2n, which admits an (n + 1)-set-ID code.

3 Minimizing the number of vertices of a graph admitting

an identifying code

In this section we investigate the question of minimizing the number of vertices of a
graph admitting a t-set-ID code. First we give a general result.



88 TERO LAIHONEN AND JULIEN MONCEL

Theorem 3 Let (Gt)t∈N be a family of graphs such that Gt admits a t-set-ID code

for all t ∈ N. Let nt denotes the number of vertices of Gt. Then we have nt = Ω(t2).

Proof: From [6], we know that in any graph Gt on nt vertices admitting a t-set-ID
code C, we have

|C| = Ω

(

t2

log t
log nt

)

.

By inserting nt ≥ |C| into this inequality, we get

nt

log nt

= Ω

(

t2

log t

)

,

and by writing nt = tn′, we get

n′ log t = Ω(t log(tn′)) ,

which gives n′ = Ω(t), hence nt = Ω(t2), which is the desired result. 2

This bound is tight, as a construction given in [8] shows it with graphs whose
minimum degree is strictly greater than t; minimum degree equal to t is, how-
ever, the bound one could hope to achieve for a graph admitting t-set-ID code,
see [13]. In [8], it was asked whether there existed t-regular graphs admitting t-set-
ID codes. It was shown in [11] that the answer is positive, providing a family of
graphs (Gq)q prime power such that Gq has Θ(q3) vertices, admits a q-set-ID code,
and is q-regular for all q. In the rest of this section we show how to improve this
construction, by giving an infinite family of t-regular graphs achieving the bound
Ω(t2) of Theorem 3.

For a graph G = (V, E), denote Si(v) = {w ∈ V | d(w, v) = i}, i ≥ 0. A
connected graph G is called distance-regular, if there are integers bi and ci (i ≥ 0) such
that for any two vertices v and u at distance i = d(u, v), we have ci = |Si−1(v)∩N(u)|
and bi = |Si+1(v) ∩ N(u)|. Let D denote the diameter of G. It is known [3], that a
distance regular graph is regular with degree equal to b0. The sequence

ι(G) = {b0, b1, . . . , bD−1; c1, c2, . . . , cD}

is called the intersection array of G. The numbers ci, bi and ai, where ai = |Si(v) ∩
N(u)| = b0 − bi − ci (i = 0, 1, . . . , D), are called the intersection numbers of G.
Obviously, c0 = 0 and c1 = 1.

Theorem 4 If the intersection numbers of a distance-regular graph G satisfy b0 = t,
b1 = t − 1, b2 = t − 1, b3 ≥ 1 and c2 = 1, then G admits a t-set-ID code.

Proof: Suppose that G = (V, E) is such that b0 = t, b1 = t − 1, b2 = t − 1,
b3 ≥ 1 and c2 = 1. Assume to the contrary, that N [X] = N [Y ] for two distinct
sets X, Y ⊆ V where |X| ≤ t and |Y | ≤ t. Without loss of generality, we can take
x ∈ X r Y . Now x has exactly t neighbours, say v1, v2, . . . , vt, and since they belong
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to N [X], they must also be in N [Y ] (otherwise we get a contradiction). To that end,
each set Ai := N [vi] \ {x} ⊆ S1(x) ∪ S2(x), i = 1, 2, . . . , t, contains an element of Y .
The assumption b1 = t − 1 implies that a1 = 0, which combined with c2 = 1 yields
that Ai ∩ Aj = ∅ for any i 6= j. Consequently, each Ai has a unique element of Y
and thus |Y | = t. The element of Y in Ai covers a vertex (at least one), say v′

i, in
Ai ∩ S2(x). Hence v′

i ∈ N [Y ], and subsequently, we must also have v′

i ∈ N [X] or
we are done. Because there are t different vertices v′

i and only t − 1 members of X
left to cover them (note that x itself cannot cover any v′

i), some z ∈ X must cover
at least two of them. Since a2 = t − b2 − c2 = 0, the vertex z cannot be in S2(x)
(from above we also know that z cannot be in S1(x) either). Therefore, z ∈ S3(x).
However, since b3 ≥ 1, N(z) ∩ S4(x) contains a vertex which is in N [X] but not in
N [Y ], a contradiction. This completes the proof. 2

Theorem 5 There exists a family of graphs (Gq), q a prime power, such that for

all q the graph Gq admits a q-set-ID code and has nq vertices, where nq = Θ(q2).
Moreover, Gq is always q-regular.

Proof: Due to Gardiner [7] (see also Brouwer-Cohen-Neumaier [3]), we know that
for every prime power q, there exists a distance-regular graph Gq on Θ(q2) vertices
with

ι(Gq) = {q, q − 1, q − 1, 1; 1, 1, q − 1, q}.

By the previous theorem, Gq admits a q-set-ID code. 2

Theorem 3 shows that the construction of Theorem 5 is optimal, but one can
easily prove that, restricted to the class of graphs having minimum degree t + O(1),
the minimum number of vertices of a graph admitting a t-set-ID code is indeed Ω(t2).
As a complement of Theorem 3, we give here a simple proof of this result. As we
shall see, its proof is elementary, and does not involve superimposed codes or deep
results like the one of [15].

Theorem 6 Let (Gt)t∈N be a family of graphs such that Gt admits a t-set-ID code

and has minimum degree δt for all t ∈ N. Let nt denotes the number of vertices of

Gt. If δt = t + O(1), then we have nt = Ω(t2).

Proof: Let x be a vertex of degree δt. By Lemma 1, we know that N(x) contains a
stable set T of cardinality t. Now let us denote N2(x) the set of vertices at distance
2 of x. Using Lemma 2, we know that any vertex of N2(x) can be adjacent only to
a constant number of vertices of T . Now we are done since any vertex of T has at
least t − 1 neighbours in N2(x), since the minimum degree is δt = t + O(1): N2(x)
must contain at least Ω(t2) vertices. 2

4 Conclusion

In this paper we gave some structural properties of graphs admitting t-set-ID codes
for the general case t ≥ 1. The two main results are Theorems 1 and 5. Theorem 1
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shows that the cartesian product of two graphs admits a t-set-ID code, given that
at least one of the initial graphs admits a t-set-ID code. As shown in Theorem 2,
this result is, in general, the best possible. However, it would be interesting to give
conditions on the two graphs such that their cartesian product has a t-set-ID code
with a t greater than the one in Theorem 1.

Theorem 5 answers in an optimal way a question of [8]. It shows that there exists
a family of graphs Gt such that Gt has Θ(t2) vertices, is t-regular, and admits a
t-set-ID code. This also improves a previous result of [11].
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