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Abstract

In this note we show that the edge-connectivity λ(G × H) of the di-
rect product of graphs G and H is bounded below by min{λ(G)|E(H)|,
λ(H)|E(G)|, δ(G × H)} and above by min{2λ(G)|E(H)|, 2λ(H)|E(G)|,
δ(G × H)} except in some special cases when G is a relatively small bi-
partite graph, or both graphs are bipartite. Several upper bounds on the
vertex-connectivity of the direct product of graphs are also obtained.

1 Introduction

Let G and H be undirected graphs without loops or multiple edges. The direct
product G × H of graphs G and H is the graph with the vertex set V (G) × V (H),
two vertices (x, y) and (v, w) being adjacent in G × H if and only if xv ∈ E(G) and
yw ∈ E(H). The direct product is clearly commutative and associative.

Weichsel observed almost half a century ago that the direct product of two graphs
G and H is connected if and only if both G and H are connected and not both
are bipartite graphs [15]. Many different properties of direct product of graphs
have been studied since (unfortunately it appears under various different names,
such as cardinal product, tensor product, Kronecker product, categorical product,
conjunction etc.). The study encompasses for instance structural results [2, 3, 6, 9,
10, 11], hamiltonian properties [1, 12], and above all the well-known Hedetniemi’s
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conjecture on chromatic number of direct product of two graphs (for a comprehensive
picture see the book on graph products [8] and survey on Hedetniemi’s conjecture
[17]). Open problems in the area suggest that a deeper structural understanding of
this product would be welcome. Curiously, Weichsel’s result has been so far the only
one that considers connectivity of direct products.

Vertex- and edge-connectivity have been recently considered for two other com-
mutative graph products, namely for the Cartesian product [13, 16] and for the
strong product [4, 14]. In all cases explicit formulae have been obtained by which
the (vertex- or edge-) connectivity of a product of graphs is expressed in terms of
corresponding graph invariants of factor graphs. Our aim in this paper is to obtain
similar results for the direct product of graphs. As it turns out the situation is more
complex than with the Cartesian or the strong product, which is in part due to the
fact that the direct product of two bipartite graphs is already disconnected.

Let us recall some basic definitions. For a connected graph G, a set S of vertices
of G is called separating if G − S is not connected. The vertex-connectivity κ(G) of
a graph G is the size of a minimum separating set in G (except if G is a complete
graph Kn, when κ(G) is defined to be n − 1). Similarly a set S of edges of G is
called separating if G − S (the graph obtained from G by deletion of edges from S)
is not connected. The edge-connectivity λ(G) of a graph G is the size of a minimum
separating set (of edges) in G. The well-known theorem of Whitney states that
κ(G) ≤ λ(G) ≤ δ(G), where δ(G) denotes the minimum degree of vertices in G. We
will say that a separating set of vertices (resp. edges) S in a graph G is a κ-set (resp.
λ-set) in G if |S| = κ(G) (resp. |S| = λ(G)).

In the next section we prove our main theorem, a lower and an upper bound for
λ(G×H) where G and H are arbitrary connected graphs. We also present examples
of pairs of graphs that achieve each of the expressions from both bounds. In the last
section we present some partial results on the vertex-connectivity of direct product of
graphs, which show that the problem of finding a nice meaningful formula is difficult.

2 Edge-connectivity of the direct product

The fundamental result of Weichsel suggests that the connectivity of direct product
of graphs is in some way related to the distance of factor graphs from being bipartite.
Indeed we will make use of the following invariant.

For a graph G the minimum cardinality of a set of edges E such that G−E is a
bipartite graph is denoted by λb(G). Clearly λb(G) = 0 if and only if G is bipartite.
This invariant was introduced in [7], and studied also in [5] under the name bipartite
edge frustration of a graph.

Let G and H be graphs, and G × H their direct product. For x ∈ V (G) we let

xH = {(x, v) ∈ V (G) × V (H) | v ∈ V (H)} and call it the H-fiber with respect to x.
On Figure 1 the vertices of the fiber xH are colored black. Clearly the subgraph of
G × H induced by any H-fiber is totally disconnected. Analogously we define the
G-fiber with respect to a vertex y ∈ V (H) and we denote it Gy. In this section we
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Figure 1: The direct product of a path by a cycle.

prove the following (our main) result.

Theorem 1 Let G and H be graphs.

• Let H be a nonbipartite graph. If G is a nonbipartite graph or |V (G)| > δ(H)
λb(H)

then λ(G × H) is greater or equal

min{λ(G)|E(H)|, λ(H)|E(G)|, δ(G × H)}

and less or equal

min{2λ(G)|E(H)|, 2λ(H)|E(G)|, δ(G × H)} .

• If G and H are both bipartite, then λ(G × H) = 0.

• Otherwise (i.e. if G is bipartite and H nonbipartite, with |V (G)| ≤ δ(H)
λb(H)

), then

λ(G × H) is greater or equal

min{2λb(H)|E(G)|, λ(G)|E(H)|, λ(H)|E(G)|, δ(G × H)}

and less or equal

min{2λb(H)|E(G)|, 2λ(G)|E(H)|, 2λ(H)|E(G)|, δ(G × H)} .

For the proof of Theorem 1 we need some preliminary observations. (Recall that
maximal connected subgraphs of a graph are called (connected) components. To
simplify the notation we will also call the set of vertices that induces a component
C – a component C.)

Lemma 2 Let G and H be connected graphs not both bipartite. Let S be a λ-set in
G × H and C1, C2 connected components of (G × H) − S. If xy ∈ E(G) is an edge
such that (x, t), (y, t) ∈ Ci for some t ∈ V (H) and xH ∪ yH * Ci then there are at
least λ(H) edges of the form (x, a)(y, b) from S.
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Proof. Let
Axy = {t ∈ V (H) | (x, t), (y, t) ∈ Ci} .

Since Axy 6= ∅ and Axy 6= V (H) the set

Sxy = {ab ∈ E(H) | a ∈ Axy, b ∈ V (H) − Axy}

is a separating set in H, and so |Sxy| ≥ λ(H). For every edge ab ∈ Sxy at least one
of the edges (x, a)(y, b) or (y, a)(x, b) is from S. Since |Sxy| ≥ λ(H), we find that S
contains at least λ(H) edges with first coordinates x and y. �

For a set of vertices Y ⊂ V (G) the open neighborhood NG(Y ) of Y is the set of
vertices x /∈ Y such that there exists y ∈ Y which is adjacent to x. We will write
simply N(Y ) when the graph is understood from the context.

Lemma 3 Let G and H be connected graphs not both bipartite. Let S be a λ-set in
G×H and C1, C2 connected components of (G×H)− S. Then one of the following
occurs:

(i) There is a G-fiber Gy and an H-fiber xH such that Gy ∪xH ⊆ Ci for some
i ∈ {1, 2}. In this case

λ(G × H) = δ(G × H) .

(ii) There is either a G-fiber Gy or an H-fiber xH such that Gy ⊆ Ci or xH ⊆ Ci

for some i ∈ {1, 2}. In this case

λ(G × H) ≥ min{λ(G)|E(H)|, λ(H)|E(G)|}.

(iii) There is no G-fiber Gy and no H-fiber xH such that Gy ⊆ Ci or xH ⊆ Ci for
some i ∈ {1, 2}. In this case one of the following occurs:

(a) There is an edge xy ∈ E(G) and an edge uv ∈ E(H) such that

(x, t) ∈ C1 ⇐⇒ (y, t) ∈ C2 (1)

(t, u) ∈ C1 ⇐⇒ (t, v) ∈ C2 (2)

If G and H are both nonbipartite, then

λ(G × H) ≥ min{λ(G)|E(H)|, λ(H)|E(G)|}.

If one of the factors, say G, is bipartite, then

λ(G × H) ≥ min{λ(H)|E(G)|, 2λb(H)|E(G)|} .

Moreover if 2λb(H)|E(G)| ≤ λ(H)|E(G)| then |V (G)| ≤ δ(H)
λb(H)

.
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(b) There is no edge xy ∈ E(G) such that (1) holds, or no edge uv ∈ E(H) such
that (2) holds. Then

λ(G × H) ≥ min{λ(G)|E(H)|, λ(H)|E(G)|} .

Proof. Case (i): Let δ(G) = δ1 and δ(H) = δ2. Without loss of generality assume
that δ1 ≥ δ2 and that there is a G-fiber and an H-fiber contained in C1. Let

X = {x ∈ V (G) | xH ⊆ C1} and Y = {y ∈ V (H) |Gy ⊆ C1} .

Let v ∈ N(Y ) be any vertex from the open neighborhood of Y and let (u, v) be any
vertex from C2 (note that since v /∈ Y such a vertex (u, v) exists). If all neighbors
of (u, v) are from C1 then we are done, since then |S| ≥ deg(u, v) ≥ δ(G × H).
Similarly, if every neighbor of (u, v) is either contained in C1 or has a neighbor in
C1 we find that |S| ≥ deg(u, v) ≥ δ(G × H). If there is a neighbor (u′, v′) ∈ C2

of (u, v) which has all neighbors from C2 then we find that there are at least δ1

neighbors of (u′, v′) which are from C2 ∩ Gv. Since v ∈ N(Y ) we find that each of
them has at least δ1 neighbors in V (G) × Y and hence at least δ1 neighbors in C1.
Thus |S| ≥ δ2

1 ≥ δ1δ2 = δ(G × H).

Case (ii): Suppose that there is a G-fiber Gt contained in Ci. Thus for every edge
xy ∈ E(G) we have (x, t), (y, t) ∈ Ci and since xH ∪y H 6⊆ Ci we derive by Lemma 2,
there are at least λ(H) edges from S between xH and yH. Hence altogether there are
at least λ(H)|E(G)| edges from S. If there is an H-fiber contained in Ci, we find anal-
ogously that |S| ≥ λ(G)|E(H)|, which implies |S| ≥ min{λ(G)|E(H)|, λ(H)|E(G)|}.

Case (iii)(a): Let X ⊆ E(G) be the set of edges for which (1) is true. For every
edge xy ∈ X there are at least λb(H) edges uv ∈ E(H) such that (x, u), (x, v) ∈ Ci

for some i ∈ {1, 2}. Since for every xy ∈ X and every uv ∈ E(H) such that
(x, u), (x, v) ∈ Ci there are two edges, namely (x, u)(y, v) and (x, v)(y, u), from S,
we find that |S| ≥ 2λb(H)|X|. Consider the edges xy /∈ X. For each xy /∈ X there
exists a t ∈ V (H) such that (x, t), (y, t) ∈ Ci for some i ∈ {1, 2}. From Lemma 2 we
infer that there are at least λ(H)|E(G)−X| such edges in S. Summing up the edges of
S coresponding to X and to E(G)−X, we get |S| ≥ 2λb(H)|X|+ λ(H)|E(G)−X|.
Let Y ⊆ E(H) be the set of edges for which (2) is true. Arguing as above, by
interchanging the roles of G and H, we derive |S| ≥ 2λb(G)|Y | + λ(G)|E(H) − Y |
and therefore

|S| ≥ max{2λb(H)|X| + λ(H)|E(G) − X|, 2λb(G)|Y | + λ(G)|E(H) − Y |} . (3)

Note that from λ(H) ≤ 2λb(H) or λ(G) ≤ 2λb(G) we derive using (3) that

|S| ≥ min{λ(H)|E(G)|, λ(G)|E(H)|}.

In the case when both G and H are nonbipartite we can indeed show that λ(H) ≤
2λb(H) or λ(G) ≤ 2λb(G). Suppose to the contrary that 2λb(H) < λ(H) and
2λb(G) < λ(G). Since 2λb(H) < λ(H) we find that |S| > 2λb(H)|X|+2λb(H)|E(G)−
X| = 2λb(H)|E(G)|. By the hand-shaking lemma, 2|E(G)| ≥ |V (G)|δ(G) and
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hence |S| > λb(H)|V (G)|δ(G). Since δ(G)δ(H) ≥ |S| > λb(H)|V (G)|δ(G) we infer
λb(H)|V (G)| < δ(H). Analogously, if 2λb(G) < λ(G), we have λb(G)|V (H)| < δ(G).
Since G and H are not bipartite λb(H), λb(G) ≥ 1, and therefore |V (G)| < δ(H) and
|V (H)| < δ(G) which is a contradiction.

If G is bipartite and H is nonbipartite, then the expression

2λb(H)|X| + λ(H)|E(G) − X|

from (3) is at least min{λ(H)|E(G)|, 2λb(H)|E(G)|}. Moreover if 2λb(H)|E(G)| ≤
λ(H)|E(G)| then 2λb(H) ≤ λ(H) and thus λb(H)|V (G)| ≤ δ(H) as shown in the
previous paragraph.

Case (iii)(b): Suppose there is no edge uv ∈ E(H) such that (2) holds. Then
for every edge uv ∈ E(H) there is a t ∈ V (G) such that (t, u), (t, v) ∈ Ci for some
i ∈ {1, 2}. Using Lemma 2 again we infer that |S| ≥ λ(G)|E(H)|. If there is no edge
xy ∈ E(G) such that (1) holds, we derive |S| ≥ λ(H)|E(G)|. �

We are now ready to prove Theorem 1.

Proof. First let us verify some upper bounds for λ(G×H). Obviously λ(G×H) ≤
δ(G)δ(H). Next we show that λ(G × H) ≤ 2λ(G)|E(H)|. It is straightforward to
see, that for a λ-set S in G, the set of edges (x, u)(y, v) and (x, v)(y, u), where xy ∈
S, uv ∈ E(H) is a separating set of G×H. Hence indeed λ(G×H) ≤ 2λ(G)|E(H)|.
Analogously one checks that λ(G × H) ≤ 2λ(H)|E(G)|.

Let us now consider three cases with respect to bipartiteness of G and H. If G
and H are both bipartite, then G×H is not connected by [15], and so λ(G×H) = 0.

Suppose that G is bipartite and H is nonbipartite. We claim that then

λ(G × H) ≤ 2λb(H)|E(G)|.

Let R ⊆ E(H) be a set of edges such that |R| = λb(H) and (V (H), E(H)−R) is bipar-
tite. Then the set of edges (x, u)(y, v) and (x, v)(y, u), for xy ∈ E(G), uv ∈ R is a sep-
arating set of G×H. Hence λ(G×H) ≤ 2λb(H)|E(G)|. If the case (iii)(a) of Lemma
3 occurs and 2λb(H)|E(G)| ≤ λ(H)|E(G)| then λ(G × H) = 2λb(H)|E(G)| and

|V (G)| ≤ δ(H)
λb(H)

. In all other cases λ(G×H) ≥ min{λ(G)|E(H)|, λ(H)|E(G)|, δ(G×

H)}. It follows that

λ(G × H) ≥ min{2λb(H)|E(G)|, λ(G)|E(H)|, λ(H)|E(G)|, δ(G × H)}

and

λ(G × H) ≤ min{2λb(H)|E(G)|, 2λ(G)|E(H)|, 2λ(H)|E(G)|, δ(G × H)} .

Otherwise both of the graphs G and H are nonbipartite or |V (G)| > δ(H)
λb(H)

. In
any case the upper bound is

λ(G × H) ≤ min{2λ(G)|E(H)|, 2λ(H)|E(G)|, δ(G × H)} ,
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Figure 2: G = Kn,n and H = Kn,n ∪ {e}.

and the lower bound is

λ(G × H) ≥ min{λ(G)|E(H)|, λ(H)|E(G)|, δ(G × H)} . �

We shall now present examples that show each of the bounds from Theorem 1
can be attained. Let G be the complete bipartite graph Kn,n and H the graph
Kn,n with an additional edge ab. Since H − ab is bipartite, we have λb(H) = 1
(see Figure 2). Consider the direct product G × H and note that deleting all the
edges (x, y)(z, w), where y, w ∈ {a, b} results in a disconnected graph. Therefore
λ(G × H) ≤ 2λb(H)|E(G)|, and it is straightforward to see there are no separating
sets with fewer edges, hence λ(G × H) = 2λb(H)|E(G)| = 2n2.

A

G

B

Kn Kn,n

H

u v

Figure 3: G = Kn,n and H is the graph obtained from Kn,n ∪ Kn by adding bridge uv.

Let G be the complete bipartite graph Kn,n and H the graph obtained from the
disjoint union of Kn,n and Kn by adding a bridge uv between them. Let A and B be
the parts of bipartition of G. It is straightforward to see that deleting all the edges
(x, u)(y, v), where x ∈ A and y ∈ B results in a disconnected graph (see Figure 3).
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Hence λ(G×H) ≤ λ(H)|E(G)|. Clearly this is a minimum separating set, therefore
λ(G × H) = λ(H)|E(G)|.

In the case G = C2n and H = C2m+1, the edge-connectivity of G× H is equal to
the smallest degree in the product, that is λ(G × H) = δ(G × H) = 4. If G = Kn

and H is the graph obtained from two disjoint copies of Kn by adding an edge, we
get λ(G × H) = 2λ(H)|E(G)| = n(n − 1).

3 Vertex-connectivity

In this section we present various upper bounds on the vertex-connectivity of the
direct product of graphs. As in the case of edge-connectivity, some bounds are related
to some type of distance of factor graphs from bipartite graphs. We introduce two
such concepts.

For a graph G let κb(G) be the smallest size of a set S ⊆ V (G) such that G − S
is a bipartite graph. By κ′

b(G) we denote the smallest size of a set S ⊂ V (G) of
endvertices of edges from F ⊂ E(G) such that G − F is bipartite. In what follows
we use A1

G(S) and A2
G(S) to denote the two parts of the bipartite graph G − S.

Proposition 4 For any graphs G and H,

κ(G × H) ≤ κb(G)|V (H)| + κb(H)|V (G)| − κb(G)κb(H) .

Proof. Let S1 ⊆ V (G) and S2 ⊆ V (H) be such that G−S1 and H−S2 are bipartite
and |S1| = κb(G), |S2| = κb(H) respectively. Note that (S1×V (H))∪(V (G)×S2) is a
separating set in G×H. Indeed removing it from G×H results in a graph isomorphic
to (G−S1)×(H−S2) which is clearly disconnected (since it is a direct product of two
bipartite graphs). Hence the result follows since the set (S1 × V (H)) ∪ (V (G) × S2)
has the desired size. �

Proposition 5 Let G = (V1, E1) and H = (V2, E2) and let

A = {u1v1, . . . , ukvk} ⊆ E1

B = {w1z1, . . . , wℓzℓ} ⊆ E2

such that G′ = (V1, E1 \ A) and H ′ = (V2, E2 \ B) are bipartite. Let X1 ∪ Y1 be the
bipartition of G′ and X2 ∪ Y2 the bipartition of H ′. Let C ⊆ V (G×H) be a set such
that

(i) For every i ∈ {1, . . . , k} either {ui, vi} × X2 ⊆ C or {ui, vi} × Y2 ⊆ C.

(ii) For every i ∈ {1, . . . , ℓ} either {wi, zi} × X1 ⊆ C or {wi, zi} × Y1 ⊆ C.

Then the graph (G × H) − C is not connected, moreover κ(G × H) ≤ |C|.
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Proof. Suppose that C ⊆ G × H is a set such that (i) and (ii) is true. We claim
that (X1 × X2) ∪ (Y1 × Y2) and (X1 × Y2) ∪ (Y1 × X2) are (at least) two connected
components of (G ×H) \ C. Since (i) is true there is no edge with one endvertex in
X1×X2 and other in X1×Y2. Analogously (ii) implies that there is no edge with one
endvertex in X1 × X2 and other in Y1 × X2. With similar arguments we prove that
there is no edge with one endvertex in (Y1 × Y2) and other in (X1 × Y2)∪ (Y1 ×X2),
hence the result follows. �

Corollary 6 Let G and H be any graphs and S1 ⊆ V (G), S2 ⊆ V (H) be endvertices
of edges F1 ⊂ E(G) and F2 ⊂ E(H) respectively, such that G − F1 and H − F2 are
bipartite. Furthemore, let |S1| = κ′

b(G) and |S2| = κ′
b(H). Then

κ(G × H) ≤ min
1≤i,j≤2

{|Ai
G(S1)|κ

′
b(H) + |Aj

H(S2)|κ
′
b(G)} .

To demonstrate Proposition 4 and Corollary 6 consider the following example.
Let G be the graph obtained from Kn,n to which two edges uv, uw with a common
endvertex u are added, and let H be Kr,s. Then κb(G) = 1 and κ′

b(G) = 3, while
κb(H) = κ′

b(H) = 0. Suppose r = s. Then it is easy to see that {u} × V (H) is a
minimum separating set, and so κ(G×H) = κb(G)|V (H)| = 2r. On the other hand
if 3r < s, and we denote by Y the maximal independent set of H with r vertices,
then it is not hard to see that {u, v, w}× Y is a separating set of G×H. Moreover,
κ(G × H) = κ′

b(G) · |Y | = 3r.

H C I

S
G

G

HS2

S1

Bi

Aj

L

C

Figure 4: An I-set and an L-set in G ⊠ H. A connected component of (G ⊠ H) − I
and (G ⊠ H) − L is denoted by C.

A characterization of minimum separating sets in a strong product of graphs from
[14] says that every minimum separating set in G⊠H of graphs G and H is either an
I-set or an L-set. Let us recall definitions of I-sets and L-sets (see Figure 4). Let S
be a separating set in G = (V1, E1) or H = (V2, E2) and let I = S×V2 or I = V1 ×S,
respectively. Then I is called an I-set in G ∗H (here ∗ denotes any graph product).
Let S1 and S2 be separating sets in G and H respectively and let A1, . . . , Ak be
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connected components of G−S1 and B1, . . . , Bℓ be connected components of H−S2.
Then for any i ≤ ℓ and j ≤ k

L = (S1 × Bi) ∪ (S1 × S2) ∪ (Aj × S2)

is called an L-set in G ∗ H (see Figure 4).

Since E(G×H) ⊆ E(G ⊠ H), every separating set in G ⊠ H is also a separating
set in G×H. Thus any I-set or L-set is a separating set in G×H. Since the direct
product of two bipartite graphs is disconnected, it is not surprising that in the case
when S = S1 × V2 and a connected component of G − S1 and H are bipartite, the
I-set S is not a minimal separating set (with respect to inclusion). This leads to the
following two definitions.

Let S be a separating set in G = (V1, E1) such that a connected component of
G− S is bipartite with the bipartition A∪B and let H = (V2, E2) be bipartite with
the bipartition C ∪ D. Let A′ = NG(A) ∩ S and B′ = NG(B) ∩ S. Then the sets

(A′ × C) ∪ (B′ × D) ⊆ S × V2 and (A′ × D) ∪ (B′ × C) ⊆ S × V2

are called almost I-sets. Analogously we define an almost I-set when S is a separating
set in H and G is bipartite.

D

H

C

A B A’ B’

S

G

A B A’ B’

G

D
H

C

D’
C’ S2

S1

Figure 5: An almost I-set and almost L-set in G × H.

Let S1 be a separating set in G = (V1, E1) such that a connected component
of G − S1 is bipartite with the bipartition A ∪ B and let S2 be a separating set
in H = (V2, E2) such that a connected component of H − S2 is bipartite with the
bipartition C ∪ D. Let A′ = NG(A) ∩ S1, B

′ = NG(B) ∩ S1, C
′ = NH(C) ∩ S2 and

D′ = NH(D) ∩ S2. Then the sets

L1 = (A′ × D) ∪ (A′ × C ′) ∪ (B × C ′) ∪ (A × D′) ∪ (B′ × C) ∪ (B′ × D′) (4)

and

L2 = (B′ × D) ∪ (B′ × C ′) ∪ (A × C ′) ∪ (A′ × C) ∪ (A′ × D′) ∪ (B × D′) (5)
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are called almost L-sets (see Figure 5). Note that on Figure 5 intersections A′ ∩ B′

and C ′ ∩ D′ are empty; however, in general they can be nonempty.

Proposition 7 For any graphs G and H every I-set, L-set, almost I-set, and almost
L-set in G × H is a separating set in G × H.

Proof. Clearly, every I-set and every L-set in the direct product is a separating
set. Suppose S is a separating set in G and A ∪ B is the bipartition of a connected
component of G − S1. Suppose also that H is bipartite with the bipartition C ∪ D.
Consider the set X = (A × C) ∪ (B × D). It is straighforward to see that all
the neighbors of X in G × H are in (A′ × D) ∪ (B′ × C), where A′ and B′ are
defined as above. Similarly all the neighbors of (A × D) ∪ (B × C) are contained in
(A′ × C) ∪ (B′ × D).

If S1 is a separating set in G = (V1, E1) such that a connected component of G−S1

is bipartite with the bipartition A∪B and S2 is a separating set in H = (V2, E2) such
that a connected component of H − S2 is bipartite with the bipartition C ∪D, then
consider the set X = (A×C)∪ (B ×D) and observe that all the neighbors of X are
contained in L1 as defined in (4). Analogously the neighbors of (A × D) ∪ (B × C)
are contained in L2 as defined in (5). �

Propositions 4 and 7 and Corollary 6 present different upper bounds on the
vertex-connectivity of the direct product of graphs. A more compact (lower and
upper) bound has yet to be found. The results and examples of this section indicate
this could be very difficult.
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