
AUSTRALASIAN JOURNAL OF COMBINATORICS

Volume 41 (2008), Pages 37–44

Resolvable modified group divisible designs

with higher index

Peter Danziger∗

Department of Mathematics

Ryerson University

Toronto, ON M5B 2K3

Canada

danziger@ryerson.ca

Chengmin Wang

School of Science

Jiangnan University

Wuxi 214122

China

chengmin wang@163.com

Abstract

A resolvable modified group divisible design (RMGD) is a modified group
divisible design whose blocks can be partitioned into parallel classes. We
show that the necessary conditions for the existence of a 3-RMGDDλ of
type gu, namely g ≥ 3, u ≥ 3, gu ≡ 0 mod 3 and λ(g−1)(u−1) ≡ 0 mod
2, are sufficient with the two exceptions of (g, u, λ) ∈ {(6, 3, 1), (3, 6, 1)}.

1 Introduction

A group divisible design K-GDDλ is a triple (X, G, B) where X is a finite set of
points, G is a partition of X into subsets (called groups), and B is a family of subsets
of X with sizes from K (called blocks) such that any pair of distinct points of X
which are not from the same group occur together in exactly λ blocks of B. We use
the usual “exponential” notation to describe the type of a GDD; a GDDλ of type∏

gui

i means that it has ui groups of size gi. When K = {k}, we simply write k
for K.

A K-GDDλ is called resolvable, denoted by K-RGDDλ, if its blocks can be par-
titioned into classes, called parallel classes, such that every point of X occurs in
exactly one block of each class. The following result appears in [1, 4, 5]; see also [2].

∗ supported by NSERC research grant #OGP0170220



38 PETER DANZIGER AND CHENGMIN WANG

Theorem 1.1. A 3-RGDD of type gu exists if and only if u ≥ 3, gu ≡ 0 (mod 3),
g(u − 1) ≡ 0 (mod 2) and (g, u) /∈ {(2, 3), (2, 6), (6, 3)}.

A transversal design, TDλ(k, n), is a k-GDDλ of type nk. A resolvable transversal
design, denoted by RTDλ(k, n), is a TDλ(k, n) whose blocks can be partitioned into
parallel classes. It is well known that an RTD(k, n) is equivalent to k − 1 mutually
orthogonal Latin squares of order n. The following result is given in [2].

Theorem 1.2. An RTD2(7, t) exists if and only if t ≥ 7.

A GDDλ is called incomplete, denoted IGDDλ, if it contains a hole, that is a set
of points H ⊆ X such that no pair of points from H appears in any block of the
GDDλ. If the blocks of an IGDD can be partitioned into parallel classes and partial
parallel classes, which patition X\H it is called resolvable, denoted IRGDD. As with
GDDs we use an exponential notation to denote these designs. By a k-IRGDDλ of
type

∏
(gi, ei)

ui we mean an IRGDDλ with blocks of size k and ui groups of size gi

which intersect the hole in ei points. We note that when H = ∅ a k-IRGDDλ of type∏
(gi, 0)ui is just a k-RGDD of type

∏
gui

i .

2 Resolvable Modified Group Divisible Designs

A resolvable modified group divisible design k-RMGDλ of type gu is a quadruple
(X,M,N ,B) where

1. X is a set of gu points.

2. M and N are collections of subsets of X, called groups. Each member of M
is of size g and each member of N is of size u. M and N each partition the
points of X, and |M ∩ N | = 1 for all M ∈ M and N ∈ N .

3. B is a collection of subsets of X of size k, called blocks, such that for any pair
of points of X exactly one of the following holds:

i they are both in M,

ii they are both in N , or

iii they appear together in a block B ∈ B exactly λ times.

Further the blocks may be partitioned into resolution classes such that each point of
X occurs exactly once in each resolution class.

As with GDDs an RMGDλ is called incomplete if it contains a hole. The symme-
try of the roles of u and g in the definition of RMGDD’s implies the following fact
that will be employed extensively in what follows.

Lemma 2.1. A k-RMGDDλ of type gu exists if and only if a k-RMGDDλ of type ug

exists.

It is straightforward to obtain the following necessary conditions.
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Theorem 2.2. The necessary conditions for the existence of a k-RMGDDλ of type

gu are g ≥ k, u ≥ k, gu ≡ 0 mod k and λ(g − 1)(u − 1) ≡ 0 mod (k − 1).

The following is evident by taking multiple copies of the blocks of a design.

Lemma 2.3. If there exists a k-RMGDDλ of type gu then there exists a k-RMGDDλµ

of type gu for every µ > 0.

Recently, in [3] the necessary conditions for a 3-RMGDDλ of type gu were shown
to be sufficient when λ = 1. Applying Lemma 2.3 to the result of [3] gives the
following Theorem.

Theorem 2.4. There exists a 3-RMGDDλ of type gu whenever g ≥ 3, u ≥ 3, gu ≡
0 mod 3 and (g − 1)(u − 1) ≡ 0 mod 2 except when (g, u, λ) = (3, 6, 1) or (6, 3, 1).

In this paper we consider the case when λ > 1. Considering the necessary con-
ditions from Theoerem 2.2, Lemma 2.3 and the result of Theorem 2.4 it suffices to
solve the case of a 3-RMGDD2 of type gu with g ≡ 0 mod 6 and u even as well as
3-RMGDDλ of type 63 for λ > 1.

We begin by giving the constructions to be used, we then give some small designs
which are required for the recursion. Finally, we prove the main result, that the
necessary conditions above are sufficient.

3 Constructions

In this section we give some constructions that we shall use to create the designs.
We start by giving several weighting or multiplicative constructions. Here In =
{0, 1, 2, . . . , n − 2}, the independent set on n vertices.

Lemma 3.1. If there is an l-RGDDµ of type mg, a k-RMGDλ of type mg and a

k-RMGDDλ of type nl, then there exists a k-RMGDDλµ of type (mn)g.

Proof. Let X be the point set of the l-RGDDµ of type mg. The point set of the new
design will be X×In. On each expanded block of size l, B say, we place a k-RMGDλ

of type nl in such a way that the groups of size n are the expansion of each point
and the groups of size l are {(x, j) | x ∈ B} for j = 1 . . . n. The resolution classes
of the original RGDD give rise to resolution classes in the new design. Each pair
of the form (x, i)(y, j) i 6= j, x and y not in the same group, occurs λ times in the
expansion of the block containing x, y. There are no pairs of the form (x, i)(y, i),
x, y ∈ X, i ∈ In, as these are the size l groups of the RMGDs. For each i ∈ In we
fill this set of points with the k-RMGDλ of type mg.

The following is an adaptation of Lemma 3.4 of [3] to cover the case of arbitrary
λ. The details of this extension are straightforward and are omitted. The reader is
refered to [3] for the proof of the original Theorem.
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Lemma 3.2. Suppose that there exists an RTDµ(u + 1, t). If there exist a

k-IRMGDDλ of type (m + e1, e1)
u and a k-IRGDDλ of type (m + ei, ei)

u for any

i, 2 ≤ i ≤ t, then there exists a k-IRMGDDλµ of type (mt + e, e)u with e =
∑t

i=1
ei.

Furthermore, if a k-RMGDDλµ of type eu also exists, then so does a k-RMGDDλµ
of type (mt + e)u.

4 Small Cases

In this section we give some small designs that will be needed. We begin by settling
the case of a 3-RMGDDλ of type 63 for λ > 1.

Lemma 4.1. A 3-RMGDDλ of type 63 exists for all λ > 1

Proof. By Lemma 2.3 it suffices to give designs for λ = 2, 3 which we give below.

λ = 2 We take point set Z3 × Z6, groups are given by Z3 × {i} and {j} × Z6, i ∈
Z6, j ∈ Z3. Each line below gives a parallel class when developed mod (3,−).

{ (0, 0) (1, 1) (2, 2) } { (0, 3) (1, 4) (2, 5) }
{ (0, 0) (1, 1) (2, 3) } { (0, 2) (1, 4) (2, 5) }
{ (0, 0) (2, 1) (1, 4) } { (0, 2) (1, 3) (2, 5) }
{ (0, 0) (2, 1) (1, 5) } { (0, 2) (1, 3) (2, 4) }
{ (0, 0) (2, 2) (1, 3) } { (0, 1) (2, 4) (1, 5) }
{ (0, 0) (1, 2) (2, 4) } { (0, 1) (2, 3) (1, 5) }
{ (0, 0) (1, 2) (2, 5) } { (0, 1) (2, 3) (1, 4) }
{ (0, 0) (2, 3) (1, 4) } { (0, 1) (1, 2) (2, 5) }
{ (0, 0) (1, 3) (2, 5) } { (0, 1) (2, 2) (1, 4) }
{ (0, 0) (2, 4) (1, 5) } { (0, 1) (2, 2) (1, 3) }

λ = 3 We take (Z5 ∪∞) ∪ Z3 as the point set, {(Z5 ∪ {∞}) × {i} | i ∈ Z3} as the
groups of size 6, and {{i}×Z3 | i ∈ Z5} together with {(∞, 0), (∞, 1), (∞, 2)}
as the groups of size 3. We list the base blocks of three parallel classes, develop
the blocks mod(5,-) to obtain the desired design.

Class I:
{(∞, 0), (2, 1), (4, 2)}, {(∞, 1), (4, 0), (0, 2)}, {(∞, 2), (3, 0), (4, 1)},
{(1, 0), (0, 1), (2, 2)}, {(0, 0), (1, 1), (3, 2)}, {(2, 0), (3, 1), (1, 2)},

Class II:
{(∞, 0), (1, 1), (4, 2)}, {(∞, 1), (3, 0), (2, 2)}, {(∞, 2), (4, 0), (3, 1)},
{(0, 0), (2, 1), (1, 2)}, {(1, 0), (0, 1), (3, 2)}, {(2, 0), (4, 1), (0, 2)},

Class III:
{(∞, 0), (3, 1), (2, 2)}, {(∞, 1), (4, 0), (1, 2)}, {(∞, 2), (3, 0), (1, 1)},
{(0, 0), (2, 1), (3, 2)}, {(1, 0), (4, 1), (0, 2)}, {(2, 0), (0, 1), (4, 2)},

Lemma 4.2. If u ∈ {4, 6, 8, 10, 14, 22, 26}, there exists a 3-RMGDD2 of type 6u.
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Proof. We take (Zu−1 ∪{x})× (Z5 ∪{y}) as the point set. We take {i}× (Z5 ∪{y}),
i ∈ Zu−1 ∪ {x} as the groups of size 6 and (Zu−1 ∪ {x}) × {i}, i ∈ Z5 ∪ {y} as the
groups of size u. For the stated values of u, a 3-RMGDD2 of type 6u contains 5(u−1)
parallel classes. In each case the given blocks form a parallel class, develop this class
mod(u − 1, 5) with the convention that x + i = x, i ∈ Zu−1 and y + j = y, j ∈ Z5,
to obtain the desired design.
u = 4 :

{(0, y), (x, 0), (1, 2)}, {(1, y), (x, 1), (0, 2)}, {(2, y), (0, 4), (1, 1)},
{(x, 2), (2, 4), (1, 0)}, {(x, 3), (0, 1), (2, 2)}, {(x, 4), (0, 0), (2, 3)},
{(x, y), (1, 3), (2, 1)}, {(0, 3), (1, 4), (2, 0)}.

u = 6 :
{(0, y), (x, 0), (3, 3)}, {(1, y), (x, 1), (0, 0)}, {(2, y), (4, 4), (1, 0)},
{(3, y), (4, 0), (1, 1)}, {(4, y), (0, 2), (1, 3)}, {(x, 2), (2, 3), (0, 4)},
{(x, 3), (3, 4), (1, 2)}, {(x, 4), (4, 2), (0, 1)}, {(x, y), (1, 4), (2, 1)},
{(0, 3), (2, 2), (3, 0)}, {(2, 0), (3, 1), (4, 3)}, {(2, 4), (3, 2), (4, 1)}.

u = 8 :
{(0, y), (x, 0), (3, 1)}, {(1, y), (x, 1), (4, 4)}, {(2, y), (6, 3), (1, 2)},
{(3, y), (5, 1), (4, 0)}, {(4, y), (3, 4), (2, 2)}, {(5, y), (2, 0), (3, 2)},
{(6, y), (1, 4), (0, 0)}, {(x, 2), (1, 3), (4, 1)}, {(x, 3), (0, 1), (1, 0)},
{(x, 4), (0, 3), (1, 1)}, {(x, y), (4, 2), (6, 4)}, {(0, 2), (3, 3), (5, 4)},
{(0, 4), (3, 0), (5, 3)}, {(2, 1), (4, 3), (6, 2)}, {(2, 3), (5, 0), (6, 1)},
{(2, 4), (5, 2), (6, 0)}.

u = 10 :
{(0, y), (x, 0), (5, 1)}, {(1, y), (x, 1), (2, 4)}, {(2, y), (7, 4), (0, 1)},
{(3, y), (0, 2), (4, 1)}, {(4, y), (1, 1), (8, 3)}, {(5, y), (3, 0), (7, 2)},
{(6, y), (1, 0), (0, 4)}, {(7, y), (6, 4), (0, 0)}, {(8, y), (2, 3), (7, 0)},
{(x, 2), (7, 1), (1, 4)}, {(x, 3), (1, 2), (5, 4)}, {(x, 4), (2, 1), (5, 2)},
{(x, y), (6, 2), (8, 1)}, {(8, 0), (7, 3), (4, 4)}, {(2, 2), (6, 1), (0, 3)},
{(2, 0), (1, 3), (8, 2)}, {(5, 3), (3, 1), (4, 0)}, {(3, 3), (4, 2), (6, 0)},
{(3, 2), (4, 3), (8, 4)}, {(3, 4), (5, 0), (6, 3)}.

u = 14 :
{(0, y), (x, 0), (7, 2)}, {(1, y), (x, 1), (7, 3)}, {(2, y), (7, 4), (3, 0)},
{(3, y), (6, 4), (8, 3)}, {(4, y), (12, 2), (6, 1)}, {(5, y), (1, 3), (9, 4)},
{(6, y), (4, 1), (12, 3)}, {(7, y), (3, 1), (6, 2)}, {(8, y), (2, 4), (12, 0)},
{(9, y), (7, 1), (10, 3)}, {(10, y), (7, 0), (0, 1)}, {(11, y), (6, 0), (0, 3)},
{(12, y), (9, 0), (11, 3)}, {(x, 2), (10, 1), (11, 0)}, {(x, 3), (3, 4), (9, 2)},
{(x, 4), (10, 0), (8, 2)}, {(x, y), (5, 2), (11, 4)}, {(6, 3), (9, 1), (8, 0)},
{(5, 1), (1, 0), (9, 3)}, {(2, 2), (8, 1), (12, 4)}, {(11, 1), (3, 2), (8, 4)},
{(2, 3), (5, 4), (10, 2)}, {(2, 0), (3, 3), (4, 4)}, {(1, 1), (5, 0), (10, 4)},
{(0, 2), (4, 3), (1, 4)}, {(0, 0), (1, 2), (12, 1)}, {(0, 4), (2, 1), (4, 2)},
{(4, 0), (5, 3), (11, 2)}.
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u = 22 :
{(0, y), (x, 0), (7, 4)}, {(1, y), (x, 1), (12, 2)}, {(2, y), (7, 2), (13, 4)},
{(3, y), (16, 1), (9, 0)}, {(4, y), (8, 2), (1, 4)}, {(5, y), (0, 3), (1, 0)},
{(6, y), (18, 2), (4, 3)}, {(7, y), (20, 4), (5, 0)}, {(8, y), (17, 2), (3, 4)},
{(9, y), (5, 2), (10, 3)}, {(10, y), (20, 2), (18, 4)}, {(11, y), (10, 1), (19, 4)},
{(12, y), (3, 3), (14, 2)}, {(13, y), (2, 1), (6, 0)}, {(14, y), (13, 3), (16, 2)},
{(15, y), (9, 3), (12, 1)}, {(16, y), (20, 3), (1, 1)}, {(17, y), (10, 4), (18, 1)},
{(18, y), (0, 4), (6, 3)}, {(19, y), (3, 1), (13, 2)}, {(20, y), (2, 2), (6, 1)},
{(x, 2), (18, 0), (14, 3)}, {(x, 3), (14, 1), (2, 0)}, {(x, 4), (16, 3), (19, 1)},
{(x, y), (16, 4), (17, 1)}, {(2, 4), (13, 0), (18, 3)}, {(20, 0), (8, 4), (0, 1)},
{(10, 0), (4, 1), (8, 3)}, {(4, 0), (6, 2), (11, 4)}, {(15, 3), (1, 2), (17, 4)},
{(3, 0), (9, 1), (19, 3)}, {(2, 3), (20, 1), (17, 0)}, {(3, 2), (12, 3), (14, 4)},
{(12, 0), (4, 4), (19, 2)}, {(5, 1), (12, 4), (0, 2)}, {(11, 2), (8, 0), (5, 4)},
{(1, 3), (13, 1), (14, 0)}, {(15, 0), (7, 3), (6, 4)}, {(10, 2), (11, 0), (15, 1)},
{(11, 1), (15, 4), (19, 0)}, {(7, 0), (9, 4), (11, 3)}, {(4, 2), (7, 1), (17, 3)},
{(8, 1), (0, 0), (9, 2)}, {(5, 3), (15, 2), (16, 0)}.

u = 26 :
{(0, y), (x, 0), (18, 3)}, {(1, y), (x, 1), (0, 4)}, {(2, y), (23, 3), (20, 2)},
{(3, y), (9, 3), (20, 4)}, {(4, y), (14, 1), (7, 0)}, {(5, y), (15, 0), (16, 1)},
{(6, y), (13, 2), (23, 4)}, {(7, y), (5, 2, (8, 3)}, {(8, y), (16, 2), (21, 3)},
{(9, y), (21, 0), (15, 4)}, {(10, y), (23, 0), (6, 3)}, {(11, y), (18, 4), (19, 1)},
{(12, y), (16, 0), (7, 3)}, {(13, y), (0, 2), (12, 0)}, {(14, y), (15, 3), (23, 2)},
{(15, y), (10, 3), (12, 1)}, {(16, y), (10, 2), (19, 3)}, {(17, y), (11, 0), (7, 4)},
{(18, y), (23, 1), (7, 2)}, {(19, y), (24, 0), (21, 1)}, {(20, y), (11, 3), (22, 2)},
{(21, y), (0, 0), (19, 2)}, {(22, y), (8, 1), (12, 4)}, {(23, y), (14, 0), (12, 3)},
{(24, y), (8, 4), (21, 2)}, {(x, 2), (9, 1), (19, 4)}, {(x, 3), (14, 4), (8, 2)},
{(x, 4), (22, 0), (7, 1)}, {(x, y), (9, 4), (17, 1)}, {(6, 2), (22, 4), (1, 3)},
{(8, 0), (4, 4), (1, 2)}, {(19, 0), (18, 2), (2, 1)}, {(3, 0), (15, 1), (17, 3)},
{(11, 1), (21, 4), (17, 0)}, {(5, 3), (12, 2), (24, 4)}, {(9, 0), (14, 2), (11, 4)},
{(3, 4), (15, 2), (10, 0)}, {(4, 3), (5, 4), (2, 0)}, {(18, 0), (14, 3), (16, 4)},
{(6, 0), (4, 1), (24, 3)}, {(0, 1), (16, 3), (24, 2)}, {(4, 2), (10, 4), (18, 1)},
{(0, 3), (6, 1), (1, 0)}, {(5, 1), (11, 2), (2, 3)}, {(20, 1), (6, 4), (5, 0)},
{(1, 4), (10, 1), (13, 3)}, {(13, 4), (24, 1), (3, 3)}, {(3, 2), (4, 0), (17, 4)},
{(3, 1), (13, 0), (20, 3)}, {(20, 0), (13, 1), (2, 2)}, {(1, 1), (22, 3), (9, 2)},
{(2, 4), (17, 2), (22, 1)}.

Lemma 4.3. There exists a 3-RMGD2 of type 6u for every u ∈ {12, 16, 18, 20, 28, 30}

Proof. We use the multiplicative construction given in Lemma 3.1, with λ = 2,
µ = 1, k = l = 3 and g = 6. In each case u = mn for some factors m and n, so that
a 3-RGDD of type m6 (Theorem 1.1), a 3-RMGD2 of type m6 (Lemma 4.2) and a
3-RMGD2 of type n3 (Theorem 2.4 or Lemma 4.1) exist. Apply Theorem 3.1, using
Lemma 2.1 as appropriate, to these designs to get the result.
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The requisite values of n and m are given in the table below.

u 12 16 18 20 24 28 30
m 4 4 6 4 6 4 6
n 3 4 3 5 4 7 5

We can summarize the last two lemmas by the following:

Lemma 4.4. There exists a 3-RMGD2 of type 6u for every even u with 4 ≤ u ≤ 30.

5 Results

We now present our results. We start by solving the case where one group is of size 6.

Lemma 5.1. A 3-RMGD2 of type 6u exists for every even u ≥ 4.

Proof. All cases where u < 32 are covered by Lemma 4.4.
For u ≥ 32, write u = 4t + 4 or 4t + 6 as appropriate. t ≥ 7, so an RTD2(7, t)

exists by Lemma 1.2. Apply Lemma 3.2 with k = 3, m = 4, e1 = e2 = 2 and if
u ≡ 0 mod 4 set ei = 0 for 3 ≤ i ≤ t, otherwise when u ≡ 2 mod 4 set e3 = 2 and
ei = 0 for 4 ≤ i ≤ t.

A 3-IRGDD of type (4, 0)6 is equivalent to a 3-RGDD of type 46 and so exists
by Lemma 1.1; a 3-IRGDD of type (6, 2)6 is given in [3]. A 3-RMGDD of type 46 is
equivalent to a 3-RMGDD2 of type 64 by Lemma 2.1; the latter and a 3-RMGDD of
type 66 are given in Lemma 4.2.

We are now ready to prove our main result.

Theorem 5.2. A 3-RMGDλ of type gu exists if and only if g, u ≥ 3, gu ≡ 0 mod 3
and λ(g−1)(u−1) ≡ 0 mod 2, with the two exceptions of (g, u, λ)∈{(6, 3, 1), (3, 6, 1)}.

Proof. If either g or u is odd the result is given by Theorem 2.4 or Lemma 4.1. We
now assume that g ≡ 0 mod 6 and u is even. Let g = 3n, where n is even, if n = 2, so
g = 6, the result follows from Lemma 5.1. If n > 2, so n 6= 6 we may apply Lemma
3.1 using a 3-RGDD2 of type 3u, a 3-RMGDD of type 3u and a 3-RGDD of type n3,
which exist by Theorem 2.4.
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