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Abstract

We study partitions of the set of all cyclic (respectively, transitive) trip-
les chosen from a v-set into pairwise disjoint MTS(4)s (respectively,
DTS(4)s). We find necessary conditions for the partitions. Furthermore,
we prove that the necessary conditions for the partitions are also suffi-
cient.

1 Introduction

Let X be a finite set. In what follows, an ordered pair of X will always be an ordered
pair (x, y), where x 6= y ∈ X. A cyclic triple on X is a set of three ordered pairs
(x, y), (y, z) and (z, x) of X, which is denoted by 〈x, y, z〉 (or 〈y, z, x〉, or 〈z, x, y〉).
Generally, a cyclic k-cycle on X is a set of k ordered pairs (x1, x2), (x2, x3), . . . ,
(xk−1, xk) and (xk, x1), which is denoted by 〈x1, x2, . . . , xk〉 (or 〈x2, x3, . . . , xk, x1〉, . . .,
or 〈xk, x1, . . . , xk−1〉). A transitive triple on X is a set of three ordered pairs (x, y),
(y, z) and (x, z) of X, which is denoted by (x, y, z). It is easy to know that cyclic
triple and transitive triple are the only two types of oriented triples. A Mendelsohn
(respectively directed) triple system of order v and index λ, denoted by MTS(v, λ)
(respectively DTS(v, λ)), is a pair (X,B), where X is a v-set and B is a collection of
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cyclic (respectively transitive) triples on X, called blocks, such that each ordered pair
of distinct elements of X is contained in exactly λ blocks of B. Usually, MTS(v, 1)
(respectively DTS(v, 1)) is written as MTS(v) (respectively DTS(v)). A Mendelsohn
system M(v, k, λ) on X is a pair (X,B), where X is a v-set and B is a collection of
cyclic k-cycles of X, called blocks, such that each ordered pair of distinct elements of
X is contained in exactly λ blocks of B. Obviously, the Mendelsohn systemM(v, k, λ)
is a generalization of the Mendelsohn triple system MTS(v, λ). An M(v, 3, λ) is an
MTS(v, λ).

The problem of partitioning larger combinatorial structures into copies of smaller
ones has a long history. If v ≡ 0, 1 (mod 3) and v 6= 6, then a Mendelsohn triple
system MTS(v) exists, and there is a partition of the simple MTS(v, v − 2) into
v − 2 MTS(v)s, that is, a large set of MTS(v)s (see [8, 7]). The blocks of a simple
MTS(v, v−2) are in fact all the cyclic triples from a set of size v. If v ≡ 0, 1, 3, 4, 7, 9
(mod 12), then there is a partition of the simple MTS(v+1, v−1) into v+1 MTS(v)s,
that is, an overlarge set of MTS(v)s (see [9]). The set of all cyclic k-cycles chosen
from a given v-set forms an M(v, k, (v− 2) . . . (v− k+ 1)), which is simple. If k = v

and v− 1 is a composite, then there is a partition of the simple M(v, v, (v− 2)!) into
(v − 2)! M(v, v, 1)s (see [5, 11]). The set of all transitive triples chosen from a given
v-set forms a DTS(v, 3(v − 2)), which is simple. If v ≡ 0, 1 (mod 3), then a directed
triple system DTS(v) exists, and there is a partition of the simple DTS(v, 3(v − 2))
into 3(v − 2) DTS(v)s, that is, a large set of DTS(v)s (see [2, 6]). If v ≡ 1, 3 (mod
6), v ≡ 4, 12 (mod 24), v ≡ 24 (mod 120), then there is a partition of the simple
DTS(v+ 1, 3(v− 1)) into 3(v+ 1) DTS(v)s, that is, an overlarge set of DTS(v)s (see
[10]).

In this paper, we consider partitions of the set of all cyclic (respectively tran-
sitive) triples into the smallest nontrivial Mendelsohn (respectively directed) triple
systems, i.e., MTS(4)s (respectively DTS(4)s). We find necessary conditions for the
partitions. Furthermore, we prove that the necessary conditions for the partitions
are also sufficient.

2 Necessary Conditions

Firstly, we consider the general case where one Mendelsohn system is partitioned
into copies of another.

Theorem 2.1 Let D = (V,B) be a Mendelsohn system with parameters M(v, k, λ),
and E = (W, C) be a Mendelsohn system with parameters M(w, k, µ). If D can be
partitioned into pairwise disjoint copies of E, then the following divisibility conditions
are necessary:

µ|λ, (1)

(w − 1)µ|(v − 1)λ, (2)

w(w − 1)µ

k

∣

∣

∣

∣

v(v − 1)λ

k
, (3)
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and D must be partitioned into n pairwise disjoint copies of E, where

n =
v(v − 1)λ

w(w − 1)µ
. (4)

Proof. Conditions (1) and (2) follow by counting, in each system, the occurrences
of ordered pairs and the replications of elements respectively. Conditions (3) and (4)
follow by counting numbers of blocks in each system.

Secondly, we consider the special case where D = (V,B) is the simple M(v, 3, v−
2) consisting of all cyclic triples chosen from the v-set V . The next result is a direct
consequence of Theorem 2.1.

Theorem 2.2 Let E be the smallest nontrivial Mendelsohn system MTS(4). If there
is a partition of the simple M(v, 3, v − 2) into pairwise disjoint copies of MTS(4)s,
then it is necessary that

3|(v − 1)(v − 2) and 12|v(v − 1)(v − 2)
or equivalently

v ≡ 1, 2, 4, 5, 8, 10 (mod 12) (5)

Finally, we consider the partition of the set of all transitive triples chosen from
a v-set into pairwise disjoint DTS(4)s. We know that the set of all transitive triples
chosen from a given v-set forms a simple DTS(v, 3(v − 2)). Similarly, we can obtain
the necessary conditions of this kind of partition.

Theorem 2.3 Let E be the smallest nontrivial directed system DTS(4). If there is
a partition of the simple DTS(v, 3(v− 2)) into pairwise disjoint copies of DTS(4)s,
then it is necessary that

v ≡ 0, 1, 2 (mod 4) (6)

3 Direct constructions for small cases

3.1 Partitioning into MTS(4)

We give direct constructions of partitions of the set of all the cyclic triples of a v-set
for the cases v = 4, 5, 13.

v = 4 : A large set of MTS(4) will do.
v = 5 : An overlarge set of MTS(4) will do.
v = 13 : Let V = Z13 be the 13-set. Under the action of the group Z13, all the
cyclic triples on V are partitioned into 44 orbits Gi, 1 ≤ i ≤ 44, which are listed as
follows with representatives

〈0, 2, 1〉, 〈0, 11, 1〉, 〈0, 1, 3〉, 〈0, 1, 2〉, 〈0, 3, 1〉, 〈0, 10, 1〉, 〈0, 1, 4〉, 〈0, 1, 11〉,
〈0, 4, 1〉, 〈0, 9, 1〉, 〈0, 1, 5〉, 〈0, 1, 10〉, 〈0, 5, 1〉, 〈0, 8, 1〉, 〈0, 1, 6〉, 〈0, 1, 9〉,
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〈0, 6, 1〉, 〈0, 7, 1〉, 〈0, 1, 7〉, 〈0, 1, 8〉, 〈0, 4, 2〉, 〈0, 8, 4〉, 〈0, 2, 8〉, 〈0, 2, 6〉,
〈0, 9, 2〉, 〈0, 4, 8〉, 〈0, 2, 4〉, 〈0, 7, 2〉, 〈0, 5, 2〉, 〈0, 8, 2〉, 〈0, 2, 7〉, 〈0, 2, 10〉,
〈0, 10, 2〉, 〈0, 3, 8〉, 〈0, 2, 5〉, 〈0, 8, 3〉, 〈0, 6, 2〉, 〈0, 7, 3〉, 〈0, 2, 9〉, 〈0, 3, 9〉,
〈0, 9, 3〉, 〈0, 3, 7〉, 〈0, 3, 6〉, 〈0, 6, 3〉.

Choosing one cyclic triple from each of the four orbits G4i−3, G4i−2, G4i−1, and G4i

to form a starter MTS(4), denoted by πi, where 1 ≤ i ≤ 11, we obtain 11 orbits of
MTS(4)s, each of which is of length 13, with the following starter MTS(4)s

π1 = {〈0, 2, 1〉, 〈2, 0, 3〉, 〈1, 3, 0〉, 〈3, 1, 2〉}; π2 = {〈0, 3, 1〉, 〈3, 0, 4〉, 〈1, 4, 0〉, 〈4, 1, 3〉};
π3 = {〈0, 4, 1〉, 〈4, 0, 5〉, 〈1, 5, 0〉, 〈5, 1, 4〉}; π4 = {〈0, 5, 1〉, 〈5, 0, 6〉, 〈1, 6, 0〉, 〈6, 1, 5〉};

π5 = {〈0, 6, 1〉, 〈6, 0, 7〉, 〈1, 7, 0〉, 〈7, 1, 6〉}; π6 = {〈0, 4, 2〉, 〈4, 0, 8〉, 〈2, 8, 0〉, 〈8, 2, 4〉};
π7 = {〈0, 9, 2〉, 〈9, 0, 4〉, 〈2, 4, 0〉, 〈4, 2, 9〉}; π8 = {〈0, 5, 2〉, 〈5, 0, 7〉, 〈2, 7, 0〉, 〈7, 2, 5〉};
π9 = {〈0, 10, 2〉, 〈10, 0, 5〉, 〈2, 5, 0〉, 〈5, 2, 10〉}; π10 = {〈0, 6, 2〉, 〈6, 0, 9〉, 〈2, 9, 0〉, 〈9, 2, 6〉};
π11 = {〈0, 9, 3〉, 〈9, 0, 6〉, 〈3, 6, 0〉, 〈6, 3, 9〉}.

3.2 Partitioning into DTS(4)

We give direct constructions of partitions of the set of all the transitive triples of a
v-set for the cases v = 4, 5, 6, 9, 13.

v = 4 : A large set of DTS(4) will do.
v = 5 : An overlarge set of DTS(4) will do.
v = 6 : Let V = Z6 be the 6-set. Under the action of the group Z6, all the transitive
triples on V are partitioned into 20 orbits Gi, 1 ≤ i ≤ 20, which are listed as follows
with representatives

(0, 2, 4), (0, 4, 5), (0, 3, 2), (0, 3, 1), (0, 4, 2), (0, 2, 1), (0, 3, 4), (0, 3, 5),
(0, 1, 2), (0, 5, 2), (0, 1, 4), (0, 5, 4), (0, 1, 3), (0, 5, 1), (0, 5, 3), (0, 1, 5),
(0, 2, 3), (0, 4, 3), (0, 2, 5), (0, 4, 1).

Choosing one transitive triple from each of the four orbits G4i−3, G4i−2, G4i−1,

and G4i to form a starter DTS(4), denoted by πi, where 1 ≤ i ≤ 4, we obtain 4 orbits
of DTS(4)s, each of which is of length 6, with the following starter DTS(4)s

π1 = {(0, 2, 4), (2, 0, 1), (4, 1, 0), (1, 4, 2)}; π2 = {(0, 4, 2), (4, 0, 5), (2, 5, 0), (5, 2, 4)};

π3 = {(0, 1, 2), (1, 0, 3), (2, 3, 0), (3, 2, 1)}; π4 = {(0, 1, 3), (1, 0, 2), (3, 2, 0), (2, 3, 1)}.

Furthermore, let χi = {(0, 2, 3), (3, 5, 0), (2, 0, 5), (5, 3, 2)} + i,

ψi = {(0, 2, 5), (3, 5, 2), (2, 0, 3), (5, 3, 0)} + i, i = 0, 1, 2.
The six DTS(4)s, χi and ψi (i = 0, 1, 2), cover each of the transitive triples in orbits
G17, G18, G19, and G20 exactly once. So all the 30DTS(4)s give the required partition.
v = 9 : Let V = Z9 be the 9-set. Under the action of the group Z9, all the transitive
triples on V are partitioned into 56 orbits Gi, 1 ≤ i ≤ 56, which are listed as follows
with representatives

(0, 2, 1), (0, 2, 8), (0, 7, 1), (0, 7, 8), (0, 3, 1), (0, 1, 8), (0, 8, 1), (0, 6, 8),

(0, 3, 2), (0, 8, 7), (0, 1, 2), (0, 6, 7), (0, 1, 4), (0, 8, 5), (0, 1, 7), (0, 8, 2),

(0, 6, 3), (0, 7, 6), (0, 2, 5), (0, 3, 4), (0, 1, 3), (0, 4, 6), (0, 5, 3), (0, 8, 6),

(0, 4, 1), (0, 4, 8), (0, 5, 8), (0, 5, 1), (0, 1, 5), (0, 8, 4), (0, 1, 6), (0, 8, 3),
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(0, 6, 1), (0, 3, 8), (0, 6, 2), (0, 3, 7), (0, 7, 4), (0, 6, 5), (0, 3, 6), (0, 2, 3),
(0, 4, 2), (0, 4, 7), (0, 5, 7), (0, 5, 2), (0, 2, 6), (0, 7, 3), (0, 2, 7), (0, 7, 2),
(0, 6, 4), (0, 7, 5), (0, 2, 4), (0, 3, 5), (0, 4, 5), (0, 5, 4), (0, 4, 3), (0, 5, 6).

Choosing one transitive triple from each of the four orbits G4i−3, G4i−2, G4i−1, and
G4i to form a starter DTS(4), denoted by πi, where 1 ≤ i ≤ 14, we obtain 14 orbits
of DTS(4)s, each of which is of length 9, with the following starter DTS(4)s

π1 = {(0, 2, 1), (1, 3, 0), (2, 0, 3), (3, 1, 2)}; π2 = {(0, 3, 1), (1, 2, 0), (2, 1, 3), (3, 0, 2)};

π3 = {(0, 3, 2), (2, 1, 0), (1, 2, 3), (3, 0, 1)}; π4 = {(0, 1, 4), (4, 3, 0), (3, 4, 1), (1, 0, 3)};
π5 = {(0, 6, 3), (3, 1, 0), (1, 3, 6), (6, 0, 1)}; π6 = {(0, 1, 3), (3, 7, 0), (7, 3, 1), (1, 0, 7)};
π7 = {(0, 4, 1), (1, 5, 0), (5, 1, 4), (4, 0, 5)}; π8 = {(0, 1, 5), (5, 4, 0), (4, 5, 1), (1, 0, 4)};

π9 = {(0, 6, 1), (1, 4, 0), (4, 1, 6), (6, 0, 4)}; π10 = {(0, 7, 4), (4, 1, 0), (1, 4, 7), (7, 0, 1)};
π11 = {(0, 4, 2), (2, 6, 0), (6, 2, 4), (4, 0, 6)}; π12 = {(0, 2, 6), (6, 4, 0), (4, 6, 2), (2, 0, 4)};
π13 = {(0, 6, 4), (4, 2, 0), (2, 4, 6), (6, 0, 2)}; π14 = {(0, 4, 5), (5, 1, 0), (1, 5, 4), (4, 0, 1)}.

v = 13 : From Section 3.1, we know that there is a partition of all the cyclic triples
on Z13 into 13 × 11 = 143 pairwise disjoint MTS(4)s. For convenience, we call the
143 MTS(4)s Bi, where 1 ≤ i ≤ 143. Suppose each 4-set is {a, b, c, d}, then by the
concrete construction of each Bi, we know that each Bi (1 ≤ i ≤ 143) consists of four
cyclic triples 〈a, b, c〉, 〈b, a, d〉, 〈c, d, a〉 and 〈d, c, b〉, that is

Bi = {〈a, b, c〉, 〈b, a, d〉, 〈c, d, a〉, 〈d, c, b〉}.

For a cyclic triple 〈a, b, c〉, we call the transitive triples (a, b, c), (b, c, a), and (c, a, b)
the three corresponding shifts of 〈a, b, c〉. Assigning shift to every block in Bi, we
get three collections Bj

i (1 ≤ j ≤ 3) from Bi, which are listed as follows:

B1

i = {(a, b, c), (b, a, d), (c, d, a), (d, c, b)};

B2

i = {(b, c, a), (a, d, b), (d, a, c), (c, b, d)};

B3

i = {(c, a, b), (d, b, a), (a, c, d), (b, d, c)}.

It is not difficult to verify that each Bj
i (1 ≤ i ≤ 143, 1 ≤ j ≤ 3) is a DTS(4)

since each Bi is an MTS(4). So we get 143 × 3 = 429 DTS(4)s. Furthermore,
because all the blocks in Bi form a partition of all the cyclic triples on Z13, all the
blocks in Bj

i form a partition of all the transitive triples on Z13.

4 Recursive Constructions

A t-wise balanced design S(t,K, v), is a pair (X,B), where X is a v-set and B is a
collection of subsets of X, called blocks, such that the size of every block in the set B
belongs to the set K = {k1, . . . , km}, and every t-subset of X is contained in exactly
one block of B. If K = {k}, then the design is called a t-design. Our recursive
constructions depend on the existence of 3-wise balanced design S(3, {4, 5}, v) for
v ≡ 1, 2, 4, 5, 8, 10 (mod 12) and v 6= 13 (see [3]), and the existence of S(3, {4, 5, 6}, v)
for v ≡ 0, 1, 2 (mod 4) and v 6= 9, 13 (see [4]).
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Theorem 4.1 Let (X,B) be an S(3, K, v). If the set of all cyclic (respectively tran-
sitive) triples chosen from a k-set can be partitioned into pairwise disjoint copies of
MTS(4)s (respectively DTS(4)s) for any k ∈ K, then there is a partition of the set
of all cyclic (respectively transitive) triples chosen from a v-set into pairwise disjoint
MTS(4)s (respectively DTS(4)s).

Proof. For every block in B, of size k ∈ K, there is a partition of all cyclic (re-
spectively transitive) triples chosen from the k-set into pairwise disjoint copies of
MTS(4)s (respectively DTS(4)s). Because each triple appears in a unique block of
B, the union of the partitions covers all cyclic (respectively transitive) triples chosen
from the set X.

5 Main Results

Theorem 5.1 There is a partition of the set of all cyclic triples chosen from a v-
set into pairwise disjoint copies of MTS(4)s for all v ≡ 1, 2, 4, 5, 8, 10 (mod 12) and
v ≥ 4.

Proof. For v ≡ 1, 2, 4, 5, 8, 10 (mod 12), v ≥ 4 and v 6= 13, there exists an
S(3, {4, 5}, v). By Theorem 4.1 and the partitions for v = 4, 5, 13 constructed in
Section 3.1, we can obtain the result.

Theorem 5.1 is equivalent with the result proved by Hartman and Phelps [1],
and mentioned in reference [9], that a generalized idempotent 3-quasigroup whose
conjugate invariant group contains the alternative group on 4 elements exists for
exactly those same values of v. Our proof is different and shorter than the one given
by Hartman and Phelps.

Theorem 5.2 There is a partition of the set of all transitive triples chosen from a
v-set into pairwise disjoint copies of DTS(4)s for all v ≡ 0, 1, 2 (mod 4) and v ≥ 4.

Proof. For v ≡ 0, 1, 2 (mod 4), v ≥ 4 and v 6= 9, 13, there exists an S(3, {4, 5, 6}, v).
By Theorem 4.1 and the partitions for v = 4, 5, 6, 9, 13 constructed in Section 3.2,
we can obtain the result.

Thus, we have proved that the necessary conditions for the partitions of the set
of all cyclic (respectively transitive) triples chosen from a v-set into pairwise disjoint
MTS(4)s (respectively DTS(4)s) are also sufficient.
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