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Abstract

A graph G is said to be Kjs-saturated if G contains no copy of Ky 3 as
a subgraph, but for any edge e in the complement of G the graph G + e
does contain a copy of Ks3. The minimum number of edges of a K-
saturated graph of given order n was precisely determined by Ollmann
in 1972. Here, we determine the asymptotic behavior for the minimum
number of edges in a K s-saturated graph.

1 Introduction

We denote the complete graph on t vertices by K;, and the complete bipartite graph
with partite sets of size a and b by K,;,. We let G = (V, E) be a graph on |V| =n
vertices and |E| edges. The graph G is said to be F-saturated if G contains no
copy of F' as a subgraph, but for any edge e in the complement of G, the graph
G + e contains a copy of F', where G + e denotes the graph (V. E U {e}). For a
graph F' we will denote the minimum size of an F-saturated graph by sat(n, F'). In
1964 Erdés, Hajnal and Moon [3] determined sat(n, K3) for all n, t. Determining the
exact value of this function for a given graph F' is quite difficult in general, and the
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sat-function is known for relatively few graphs. The value of sat(n, Ks5) was shown
to be [2%-2] by Ollmann [6], and a shorter proof was later given by Tuza [7]. (See
also Fisher, Fraughnaugh, and Langley [4] for a strengthening of Ollmann’s result.)
Bryant and Fu [2] studied minimum Kjo-saturated graphs in the class of bipartite
graphs. Készonyi and Tuza in [5] give a general upper bound for sat(n, F') which is
sharp in many cases. For a survey of related results see [1].

In this note we determine the asymptotic behavior of sat(n, Ks3).

Theorem 1 There is a constant C such that for all n > 5 we have

2n — On®/* < sat(n, Ky3) < 2n — 3. (1)

2 Proof of Theorem 1

The following construction, which can be obtained from the argument in [5], shows
the upper bound in (1). Let G’ be either the disjoint union of a 2-regular K o-free
graph on n — 2 vertices and a single vertex, or the disjoint union of a 2-regular K »-
free graph on n — 3 vertices and a single edge. Let G be the join of a single vertex
v and the graph G’, that is, we add to G’ the vertex v and all edges (v,u) with
ue V(G). As G is Ky p- and K s-free the graph G is K 3-free. On the other hand,
any edge added to G creates a K3 in G’ and thus creates a K53 in G. This proves
the upper bound in (1).

We now show the lower bound. Some of the ideas come from [4]. Let G be a
minimum K> s-saturated graph on [n] = {1,...,n}.

If §(G) > 4, then ¢(G@) > 2n and we are done. Thus, assume that 6(G) < 3.

Let a € [n] be a vertex of minimum degree. Note that G has diameter at most three.
Take a breadth-first search tree T starting at a. Let its levels be V;UVaUV; = [n]\{a},
where the distance from every € V; to a is i. Let R be the graph with the edge set
E(G)\ E(T). Let v; = |V;] and |e(V;)| = e;. We use G[A] to denote the subgraph of
G induced by A, and G[A, B] to denote the bipartite subgraph of G containing all
edges with one end-vertex in each of A and B.

Partition V3 = Yy U Y7 U Ys, where Y, consists of all vertices sending at least two
edges to Vs, Y7 consists of all vertices of V3 \ Y2 which are connected to some vertex
of Y5 by a path in G[V5], and Yy = V3 \ (Yo2UY}). Clearly, there are no edges between
YUY and Yy Let y; = |V

If §(G) =1, say I'(a) = {b}, then for any = € [n]\ {a, b}, z and b have at least two
common neighbors. (Indeed, consider adding the edge (z,a).) Thus, e(R[V3]) > v,,
Y, = V3, and e(R[Va, V3]) > 203 — e(T[Va, Va]) > v3. We obtain the required bound:

e(G)=e(T)+e(R)>n—1+vy+v3=2n—3.

Thus we we can assume that 2 < §(G) < 3.
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Claim 1 G[Y,] has at most one component which is a tree.

Proof of Claim. Here and further on, we will refer to the vertices in the smaller
partite set of Ky 3 as being red, and those in the larger set as blue.

Suppose that the claim is not true and let L and M be distinct tree components of
G[Yo]. Let I3, mq be some leaves of L and M respectively. Furthermore, denote the
(unique) l1’s neighbor in V5 by o, and denote the (unique) m4’s neighbor in V5 by
mo.

As we have assumed that §(G) > 1, G[Yp] has no isolated vertices - so denote I;’s
neighbor in L by Iy, and do similarly for m;. Consider adding the edge (I1,m;) to
G. Without loss of generality assume that [ is red and m; is blue. Then it must be
the case that mq, lg, [ are blue. The other red vertex must be in V5 and thus it must
be myg. Thus (lp, mo) and (mg,ls) are edges of G.

Suppose we have already constructed [y, ...,[; such that they span a path in L and
each of I, ..., l; is adjacent to mg. Consider G+ (my, ;). If my is red then it must be
that l;, mg, and my are blue. The other red vertex must thus be in V5, and adjacent
to l;. But this would imply that [; has two neighbors in V5, a contradiction to the
definition of Y. Thus m; is blue. The vertex ms cannot be red as [; and its red
partner must have two common neighbors in G. Thus my is red and /; must have at
least two neighbors in L, both adjacent to mg. Let [;;1 be such a neighbor different
from [;_;. We have enlarged the sequence to Iy, ..., 1.

This process must stop at some point (since all vertices Iy, . .., l; are pairwise distinct),
which gives us the desired contradiction. I

Hence, the number of edges of R which are incident to V3 is

e(R[Va, V3]) + e(R[V3]) > ya + 41 + o — 1. (2)

Partition V5 = XqU X7 U X5, where X5 consists of those vertices which send at least
two edges to Vi, X7 consists of those vertices from V5 \ Xy which are connected by
a path in G[V3] to a vertex of Xy, and let X consist of the remaining vertices of V5,
that is Xo = V5 \ (Xo U X;). Thus, G[X3 U X1, Xj] is empty. Let z; = |X;|. Recall
that a is a vertex of minimum degree. Let us denote its neighbors by by, ..., baeg(a)-
Let 77 be the set of trees of G[Xj] each of which contains a leaf vertex (in G[V2])
that shares an edge with b;. Furthermore, for 2 < i < deg(a) let 7; be the set of
trees of G[Xj] each of which contains a leaf vertex that shares an edge with b; and
are not in U;_}7;. We denote |T;| = t;.

It follows that
B(R[{/l U ‘/2]) Z To + T + Ty — E?zgi(a)tz (3)

Claim 2 Let j be fixed and consider any two distinct tree components, 71, T3, in 7;.
Then any two such trees are connected via a path of length at most three through
V.
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Proof of Claim. Let ly, 5 be leaves of Ty, Ty, respectively, such that (I1,b;) and (s, b;)
are edges of G. Denote [;’s adjacency in T; by m;, ¢+ = 1,2. We use the fact that [;
and Iy are leaf vertices in 77 and Tb, respectively. Consider the graph G + (I1,1ls),
and without loss of generality, we may assume that in the copy of Ky 3 formed [; is
red and Iy is blue. If no vertex of Vs is used in the K, 3 formed upon the addition of
edge (l1,(2), then it must be the case that the copy of K 3 sits on the set of vertices
{b;, 11,12, m1,ms}, as these are the only neighbors of either [; or Iy outside of Vj.
It would then follow that m; and ms are both colored blue, and we would reach a
contradiction as the edge (I, m2) is not in E(G). Thus, some vertex in Vi, say z,
must be in the copy of Ky 3. If b; is also in the copy of Ky 3, then b; and z must both
be blue, and thus my is red. This would force the edges (I1, z) and (maq, z) to exist
in G and the claim would hold. Otherwise it must be the case that a vertex in V3 is
used and no vertex in V; is used. As [; and Iy must lie on a Cy in G + (I1l3), and no
edges other than (I1,15) exist between T} and Ty, the claim holds. |

We claim that this allows us to add an extra term of ¢; — o(n) to the right-hand side
of (2) for each j € [deg(a)]. Let V3 = {uy,...,un}, where m = vs. Let j be fixed,
V(7;) denote the set of vertices contained in the trees of 7; and let d; = dv(7;)(u),
i € [m], the number of G-neighbors of u; in V(7;) . If e(R[V5]) > 2n, then e(G) > 2n
and we are done; so assume e(R[V3]) < 2n.

Observe that in (2), we counted at most one edge of R[Vs, V3] per every vertex in V.
Hence, the following is true:

e(R[V, Va]) + e(RIVA]) > o+ 1 + 0 — 1+ D _(di = 2)4,

i=1

where f, = fif f > 0 and f; = 0 otherwise. Assume that d; > dy > -+ > d,,.
Let k € [m] be the largest index such that dy > n'/*. Let T1,... ,T;, be the trees
of T;. Let A consist of those indices ¢ € [t;] such that G has no edges between the
tree T; and {uy,...,u,}. We have |A| > ¢; —dy — -+ — dj. The definition of A and
Claim 2 imply that any two trees T, T, with p,¢ € A must be connected in G via
{Ug+1, ..., um} by a path of length at most three. But each u; can serve at most (‘3)
pairs p, ¢. Furthermore, each edge of R[{u;1,...,un}] serves at most (n'/*)? pairs.
Hence,

(';”) <mn'?42n-n'? < 3713/27

that iS, d1+ . +dk 2 t]‘ - ‘A| Z tj fO(nS/‘l) As dl —2 Z (]. *2n71/4)d2‘ if dz > 77/1/47
we conclude that > (d; — 2)4 > t; — O(n®*), that is,

e(R[Va, Va]) + e(R[V5]) > ya + 41 + 3o + t; — O(n*/).

Moreover, we can do this for all j, 1 < j < deg(a). Note that the improvement
of t; — O(n**) comes by considering G[V (7;), V3] and that V(7;) N V(Z;) = 0 for
distinct ¢, j € [deg(a)]. Hence, we obtain a further strengthening, that is,
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e(R[Va, Va]) + e(RIVA]) > o + w1 + g0 + Si5 @t — O(n?*). (4)
By (3) and (4) we have

e(G) = e(T) + e(R) > n+xy + a3+ 2+ 4o +y1 +y0 — O(n**).

As 2o+21+ 22+ Yo +y1 +ya = n—(5(G)+1), we conclude that e(G) > 2n—0(n/*). 1

3 Concluding Remarks

Unfortunately, we were not able to obtain an exact result for K 3, nor the asymptotic
of the next interesting case, sat(n, K33). We conjecture that sat(n, K33) = (3 +
o(1))n, where the upper bound comes from applying twice the join operation to a
K o-free 2-regular graph on n — 2 vertices.
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