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Abstract

The problem of counting tilings by dominoes and other dimers and finding
arithmetic significance in these numbers has received considerable atten-
tion. In contrast, little attention has been paid to the number of tilings
by more complex shapes. In this paper, we consider tilings by trominoes
and the parity of the number of tilings. We mostly consider reptilings
and tilings of related shapes by the L tromino. We were led to this by
revisiting a theorem of Hochberg and Reid (Discrete Math. 214 (2000),
255–261) about tiling with d-dimensional notched cubes, for d ≥ 3; the
L tromino is the 2-dimensional notched cube. We conjecture that the
number of tilings of a region shaped like an L tromino, but scaled by a
factor of n, is odd if and only if n is a power of 2. More generally, we
conjecture the the number of tilings of a region obtained by scaling an
L tromino by a factor of m in the x direction and a factor of n in the y
direction, is odd if and only if m = n and the common value is a power
of 2. The conjecture is proved for odd values of m and n, and also for
several small even values. In the final section, we briefly consider tilings
by other shapes.

1 Introduction

In this paper, we consider the number of tilings of certain regions by L trominoes,
and try to understand the parity of this number. The regions we consider are geo-
metrically similar to an L tromino, but enlarged. More generally, we consider regions
formed by scaling an L tromino by one factor along the x-axis and by another fac-
tor along the y-axis. We are led to consider this by examining an earlier result of
Hochberg and Reid ([2], Theorem 2). It is conceivable that there are other regions
for which the number of tilings has interesting arithmetic significance; however, we
do not consider this here. The corresponding scenario for domino and other dimer
tilings has received considerable attention, as will be discussed below.
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We now introduce some standard terminology that we will use throughout. A
self-replicating tile (or reptile, for short) is a figure that can tile a larger shape similar
to itself. Such a tiling is called a reptiling , or an N -reptiling if it uses N tiles. In
such a case, we say that the tile is rep-N . A well-known example is shown, which
illustrates the terminology.

Example 1.1. The L tromino.

Figure 1.2. The L tromino, a 4-reptiling and a 9-reptiling.

Suppose we have a reptile, and a fixed reptiling by that shape. Given any tiling
by the shape, we may “inflate” the tiling by the reptiling, as follows. First, scale
the tiling by the ratio of similitude of the reptiling. Then replace each enlarged tile
by the given reptiling. The result is a tiling of a figure that is similar to the figure
of the original tiling. An important special case of this is when the tiling is also a
reptiling; in that case, the inflated tiling is again a reptiling.

Example 1.3.

Figure 1.4. Inflating tilings by the 4-reptiling of Figure 1.2.

Thus the notion of inflation of one reptiling by another defines a binary operation,
called composition, on the set of all reptilings by a fixed tile. It is easy to show that
composition of reptilings is associative, but in general it is not commutative. The
volume of a d-dimensional reptiling, with ratio of similitude r, is rd times the volume
of the tile. In particular, rd, which is the number of tiles used, must be an integer. In
this paper, we will mainly consider polyominoes (in 2 and higher dimensions), and
for such tiles, the ratio of similitude is the quotient of two edge lengths, so is rational.
Since its d-th power is an integer, the ratio of similitude must be an integer. Thus
we need only consider nd-reptilings, where d is the dimension of the tile.
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The L tromino of Figure 1.2 above has a natural generalization to a d-dimensional
tile, which we call a “notched cube”. Examples are shown for 2 and 3 dimensions.

d = 2 d = 3

Figure 1.5. Notched cubes.

Notched cubes are considered in some detail in [2]. For all d, the d-dimensional
notched cube has a 2d-reptiling, which is more or less an obvious generalization of
the reptiling in Figure 1.2. It then follows, by inflation, that it is rep-2kd for all
positive k. Far less obvious is the fact that (for d ≥ 3) it is not rep-N for any other
value of N . Moreover, Hochberg and Reid prove the following.

Theorem 1.6. (Hochberg and Reid [2], Theorem 2) Suppose d ≥ 3. If the d-

dimensional notched cube has an md-reptiling, then m is a power of 2, and the

reptiling is unique; it is the repeated composition of the basic 2d-reptiling with

itself.

This result shows that, for d ≥ 3, although the notched cube is a reptile, it is
barely so, in that it possesses as few reptilings as possible: one minimal reptiling, and
all compositions of that reptiling with itself. Because these are the only reptilings,
this is an example of a shape for which the operation of composition of reptilings is
commutative.

2 Conjectures

Let d ≥ 2, and consider reptilings of the d-dimensional notched cube. As noted
above, the ratio of similitude for a reptiling must be an integer, n, so the reptiling
is a nd-reptiling. For n ≥ 1, let Rd(n) denote the number of nd-reptilings of the
d-dimensional notched cube. With this notation, Theorem 1.6 above has a simple
reformulation.

Theorem 2.1. If d ≥ 3, then Rd(n) =

{

1 if n is a power of 2,

0 otherwise.

As noted in [2], this result does not hold for d = 2, but it suggests consideration
of the function R(n) = R2(n). Some values of R(n) are shown in Table 2.2.
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n R(n)

1 1
2 1
3 4
4 409
5 108388
6 104574902
7 608850350072
8 19464993703121249
9 3058588688924405306744

10 2667688636188332437795588320
11 11779489664021227770290904703308312
12 279652174829276379737422154227421710684110
13 34733463898947150523805900066147780144341745331036
14 22720195678464510908686881688825214686704062736465051670450

15
7844489704990260645554878546109787
7046139992379383750651894344403136

16
1424978701125400427681685418503575427223
371410038937838057196135692816195590721

17
136393199026254212596712869169517361069408596
073683723879873796407144984113947789743716028

18
687837885676813402518932012838940274043564044318508
53693591538655067859513438824683463023133608135932

19
182680551514571989252472166264511772373870530542851697215
904119389883749080595647067236655224960662434046555666212

Table 2.2. Values of R(n).

We remark that, at the time of writing, the sequence 1, 1, 4, 409, 108388, . . . is
not in the Encyclopedia of Integer Sequences [12], although we expect that status to
change. Without further ado, we make the following conjecture.

Conjecture A. Rd(n) is odd if and only if n is a power of 2.

The conjecture is true in d ≥ 3 dimensions, so the remaining question is what
happens in 2 dimensions.

We can utilize symmetry of the L tromino to pair up most of its reptilings. Given
an n2-reptiling, reflect it over the axis of symmetry of the region to get another n2-
reptiling. Only those reptilings that are symmetric do not get paired up. Accordingly,
let S(n) denote the number of symmetric n2-reptilings of the L tromino.

Conjecture A’. S(n) is odd if and only if n is a power of 2.

The preceding discussion shows that R(n) and S(n) have the same parity, so that
Conjecture A’ is equivalent to Conjecture A. Some values of S(n) are shown.
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n S(n)

1 1
2 1
3 2
4 1
5 38
6 240
7 11536
8 1003499
9 186338372

10 80417382822
11 77271184273892
12 171787394401053106
13 874293316752182144666
14 10213210340141048167584498
15 273982951274411338241538348532
16 16862661807587072571123221812023233
17 2382176902989403164248265067315724864806
18 772445362142597099327396850933337596231352746
19 574816740286855552790285853921172382090309084261590
20 981804458521661511443845747259580873344975040903910566832
21 3848771278006007406986505278503065923641515299969767023671119088

Table 2.3. Values of S(n).

The sequence 1, 1, 2, 1, 38, 240, . . . is also not in the Encyclopedia of Integer Se-
quences [12] at the present time.

We now consider tilings of “stretched” notched cubes by notched cubes. For
positive integers a1, a2, . . . , ad, let La1,...,ad

denote the region obtained by starting
with a d-dimensional notched cube, and for each i, stretching it by a factor of ai

along the i-th coordinate axis. Let Td(a1, a2, . . . , ad) denote the number of tilings of
La1,...,ad

by notched cubes. In d ≥ 3 dimensions, we can count the number of such
tilings.

Theorem 2.4. Suppose d ≥ 3. Then Td(a1, a2, . . . , ad) = 0 unless a1 = a2 = · · · = ad

and the common value is a power of 2, in which case Td(a1, a2, . . . , ad) = 1.

Proof. Suppose that Td(a1, a2, . . . , ad) > 0. Since the notched cube tiles an orthant,
this tiling can be stretched to give a tiling of the orthant by La1,...,ad

. By replacing
each La1,...,ad

with its tiling by notched cubes, we get a tiling of the orthant by
notched cubes. This shows that the tiling of La1,...,ad

can be placed in the corner of
the orthant, and then extended to a tiling of the entire orthant by notched cubes.
However, Hochberg and Reid show that, for d ≥ 3, there is a unique tiling of the
orthant by notched cubes ([2], Theorem 1). This tiling is formed by placing a single
tile in the corner of the orthant, oriented so that its notch is opposite the corner,
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and then repeatedly inflating by the basic 2d-reptiling. For the positive orthant,
this tiling has the property that, for each n, there is a notched cube with vertex at
(n, n, . . . , n), oriented with its notch diametrically opposite the corner of the orthant.
(Each such tile sits in the notch of the previous one.) Consider the first of these that
is not contained in the tiling of La1,...,ad

; suppose its vertex is at (n, n, . . . , n). Since
La1,...,ad

contains the previous tile, it contains all but 1 of the 2d cells with a vertex
at (n, n, . . . , n). Therefore this point must be the corner of the notch of La1,...,ad

, so
that each ai = n. We now have Td(a1, a2, . . . , ad) = Rd(n), which is either 1 or 0,
depending on whether n is a power of 2 or not. �

In 2 dimensions, the number of such tilings is more complicated. As with Con-
jecture A, we expect that the parity of the number of tilings in 2 dimensions is
consistent with the behavior in higher dimensions. Let T (m, n) denote T2(m, n); we
then make the following conjecture.

Conjecture B. T (m, n) is odd if and only if m = n and the common value is a

power of 2.

Note that Conjecture B implies Conjecture A, and therefore also Conjecture A’,
because R(n) = T (n, n). Some values of T (m, n) have been computed and appear in
the appendix.

Some comments are appropriate here. Kasteleyn [4], Temperley and Fisher [15],
and Percus [9], gave methods for counting domino tilings, using Pfaffians and de-
terminants. These results have spawned considerable interest in finding arithmetic
information in the number of dimer tilings of regions; for example, see [1, 3, 6, 8, 16].
See also Propp [10] for a broad overview. It is generally recognized that the tech-
niques of Kasteleyn and others are particular to dimer tilings and do not generalize to
tilings by other shapes. This perhaps accounts for the comparative lack of attention
given to counts of tilings by other shapes.

We find it surprising to observe some arithmetic information in counts of tilings
by trominoes, even if only conjecturally. Moreover, we will see below that our con-
jectures have a direct implication for counting tilings by another shape.

There is at least one previously known situation in which arithmetic information
occurs in the counts of tilings by other shapes. This comes from the “transfer matrix”
method of counting the number of tilings of a rectangle of fixed width and varying
length, possibly with appendages on either end. For example, see [5], [7], [11] (Prop.
2.1), [13], [14] (Section 4.7), as well as Proposition 3.10 below.

3 Results

In this section, we present partial results in support of the conjectures of the previous
section. We continue to use the notation Lm,n to denote the “stretched” L tromino.

Lemma 3.1. If R is a polyomino region, then the number of tilings of R by L

trominoes that contain a subrectangle is even.
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Proof. We will exhibit a pairing on the set of tilings that contain a subrectangle.
Consider the smallest (in area) subrectangle. Of these, consider the one with highest
top edge, and of those, the one with leftmost left edge. There is exactly one such of
these; for if there were two, their intersection would be a smaller subrectangle.

Reflect the tiling of this subrectangle vertically. Note that its tiling cannot be
invariant under this reflection, because if so, it would necessarily be composed of two
symmetric halves which would be smaller subrectangles.

We claim that the new tiling has exactly the same set of subrectangles as the
original tiling. For if there was a new one, it would necessarily intersect the rectangle
we just flipped, which would give a smaller subrectangle that would also be in the
original tiling, which is a contradiction. Therefore, applying the same procedure to
the new tiling flips the same subrectangle, which returns us to the original tiling.
Thus we have a true pairing on the set of tilings that contain a subrectangle. �

Proposition 3.2. (a) Conjecture B holds if m or n is odd.

(b) Conjectures A and A’ hold if n is odd.

Proof. (a) By symmetry, we may assume m is odd. For m = 1, we have T (1, 1) = 1
and T (1, n) = 0 for n > 1, so Conjecture B holds, and similarly, it holds if n = 1.
Now we may assume that m, n > 1 and m is odd. Consider the m squares in the
top row of Lm,n. Some L tromino must cover an odd number of these, so it covers
exactly 1 of these squares. This forces another L tromino to pair with it to form a
2 × 3 subrectangle.

Figure 3.3. A 2 × 3 rectangle must occur along the top edge.

Thus every tiling has a subrectangle, whence the number of tilings is even.

(b) This follows from (a) since R(n) = T (n, n), and S(n) has the same parity. �

Lemma 3.1 suggests considering only tilings of Lm,n that do not contain subrect-
angles. Unfortunately, we do not have a good way to count these. Figure 3.5 below
illustrates several of these, which shows that there are such rectangle free tilings
besides the basic 22-reptiling and compositions of it with itself.

Proposition 3.4. Conjecture B holds if m or n is either 2 or 4.

Proof. Consider first the case m = 2. We easily calculate T (2, 1) = 0 and T (2, 2) =
1, so we need only consider n ≥ 3. In this case, the top three rows of a tiling of L2,n

must be filled with two L trominoes forming a 3 × 2 rectangle.
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Figure 3.5. Rectangle free tilings. The tiling of L10,10 is symmetric.

Figure 3.6. The top 3 rows contain a 3 × 2 subrectangle.

Now Lemma 3.1 implies that the number of tilings is even. This proves the case
m = 2, and n = 2 holds by symmetry.

Now consider the case m = 4. We calculate T (4, 1) = 0, T (4, 2) = 4, T (4, 3) = 72
and T (4, 4) = 409, so it remains to consider n ≥ 5. Consider all trominoes that cover
some cell in the top four rows. (See Figure 3.8 below.) No such tromino can extend
past the fifth row, so these trominoes cover all of the first four rows, and some of the
fifth row.

There are six possible shapes for the region they cover, and in each case, the number
of ways to tile this region is even. Therefore the total number of tilings, T (4, n), is
even for n ≥ 5. �

Theorem 3.7. For fixed m, T (m, n) satisfies a homogeneous linear recurrence in n,



PARITY AND TILING BY TROMINOES 123

with integer coefficients. The degree of this recurrence is at most

1
9
(22m−1 + 2m−1 + 2)(2m−1 + 2(m−2)/2 + (−1)m/2 + 1) if m ≡ 0 mod 6,

1
9
(22m−1 + 2m−1)(2m−1 + 2(m−1)/2 + (−1)(m+1)/2 − 1) if m ≡ 3 mod 6,

(22m−1 + 2m−1)(2m−1 + 2(m−2)/2) if m ≡ ±2 mod 6,
(22m−1 + 2m−1)(2m−1 + 2(m−1)/2) if m ≡ ±1 mod 6.

In particular, for fixed m, the parity of T (m, n) is eventually periodic in n.

2 4 4 6 4 2

Figure 3.8. Different ways to cover the top 4 rows of L4,n.

In order to prove Theorem 3.7, we first need two preliminary results.

Proposition 3.9. Suppose that the sequences {an} and {bn} satisfy homogeneous

linear recurrences with constant coefficients, of degrees r and s, respectively. Then

the sequence {anbn} satisfies a homogeneous, degree rs linear recurrence with con-

stant coefficients. Moreover, this recurrence only depends upon the recurrences for

{an} and {bn}. If the recurrences for {an} and {bn} have integer coefficients, then

so does the recurrence for {anbn}.
Proof. We have an =

∑r
i=1 cian−i for some coefficients ci, and bn =

∑s
j=1 djbn−j for

some coefficients dj. The recurrence for the an’s can be written in matrix form as











an

an−1
...

an−r+1











=















c1 c2 c3 · · · cr−1 cr

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

























an−1

an−2
...

an−r











,

and there is a similar expression for the bn’s. Let A and B denote the corresponding
coefficient matrices. We have

anbn =
r

∑

i=1

s
∑

j=1

cidjan−ibn−j,

anbn−j =
r

∑

i=1

cian−ibn−j, and an−ibn =
s

∑

j=1

djan−ibn−j,
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which can be expressed in matrix form as














anbn

anbn−1

anbn−2
...

an−r+1bn−s+1















= (A ∗ B)















an−1bn−1

an−1bn−2

an−1bn−3
...

an−rbn−s















,

where (A∗B) is the Kronecker product of the coefficient matrices A and B. It follows
that {anbn} satisfies a degree rs linear recurrence with constant coefficients, whose
characteristic polynomial is the characteristic polynomial of the matrix (A∗B). The
matrix (A ∗ B) and its characteristic polynomial only depend on the coefficients ci

and dj. This proves the “moreover” statement. Finally, if all the ci’s and dj’s are
integers, then so are all entries of (A∗B), as well as all coefficients of its characteristic
polynomial, which means that the recurrence for {anbn} has integer coefficients. �

Remark. A weaker form of this result can be found in [14], Proposition 4.2.5, but
we require a stronger statement here. We can be more specific about the recurrence
for {anbn}; if the characteristic polynomials for the recurrences of {an} and {bn}
are

∏

i(T − αi) and
∏

j(T − βj), then the characteristic polynomial for the {anbn}
recurrence is

∏

i,j(T − αiβj). This is immediate from the corresponding relation
between the characteristic polynomial of (A ∗ B) and those of A and B.

Proposition 3.10. Fix m ≥ 1, and let an denote the number of tilings by L

trominoes of a region which is an n×m rectangle with a fixed subset of squares from

the (n + 1)-st row as shown.

m

n

S

Then {an} satisfies a homogeneous linear recurrence with integer coefficients. The

recurrence depends upon m, but it is independent of the fixed subset of extra squares.

Moreover, the degree of the recurrence is at most

1
3
(2m−1 + 2(m−2)/2 + (−1)m/2 + 1) if m ≡ 0 mod 6,

1
3
(2m−1 + 2(m−1)/2 + (−1)(m+1)/2 − 1) if m ≡ 3 mod 6,

2m−1 + 2(m−2)/2 if m ≡ ±2 mod 6,
2m−1 + 2(m−1)/2 if m ≡ ±1 mod 6.

Proof. For a subset S of extra squares, let RS
n denote the region which is an n×m

rectangle with these extra squares on the (n+1)-st row, and let aS
n denote the number
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Rn−1
T

Rn
S

Figure 3.11. Region that extends RT
n−1 to RS

n .

of tilings of this region by L trominoes. By considering how the first n − 1 rows of
RS

n can be tiled, we have

aS
n =

∑

T

c(S, T )aT
n−1, (∗)

where the sum is over all sets T of extra squares, and the coefficient c(S, T ) is the
number of ways to extend a tiling of RT

n−1 to a tiling of RS
n .

The region that extends RT
n−1 to RS

n is independent of n, and therefore so is c(S, T ).
It follows from equation (∗) that

{

aS
n

}

satisfies the homogeneous linear recurrence
whose characteristic polynomial is the same as the characteristic polynomial of the
transfer matrix (c(S, T )). The coefficients of the characteristic polynomial are inte-
gers, and its degree is the number of subsets S, i.e. 2m. We can reduce this degree by
utilizing the following observations. Firstly, the number of tilings of a region is the
same if the region is reflected vertically. This means that if S ′ is the reflection of S,
then aS

n = aS′

n , so we do not need to consider all subsets of squares on the (n + 1)-st
row. Secondly, if m is a multiple of 3, then aS

n = 0 for all S whose cardinality is not
a multiple of 3, so automatically satisfies any homogeneous linear recurrence.

If m ≡ 0 mod 6, then there are 1
3
(2m+2) subsets S whose cardinality is a multiple

of 3. Up to left-right symmetry, there are 1
3
(2m−1 + 2(m−2)/2 + (−1)(m/2) + 1) such

subsets. If m ≡ 3 mod 6, then there are 1
3
(2m − 2) subsets S whose cardinality is a

multiple of 3, and up to symmetry, there are 1
3
(2m−1 + 2(m−1)/2 + (−1)(m+1)/2 − 1)

such subsets. If m ≡ ±2 mod 6, then there are 2m subsets S, and 2m−1 +2(m−2)/2 up
to symmetry. If m ≡ ±1 mod 6, then there are 2m subsets, and 2m−1 + 2(m−1)/2 up
to symmetry. This gives the smaller degrees in the statement of the proposition. �

Proof of Theorem 3.7. Every tiling of Lm,n can be split into two components;
those tiles that cover some squares in the top n − 1 rows, and the remaining tiles.

Note that the remaining tiles are exactly those that cover some square from the
bottom n rows. Moreover, this decomposition is uniquely determined by the tiling.
Therefore we have T (m, n) =

∑

T aT
n−1b

T ′

n , where T ranges over all subsets of squares
of the n-th row, T ′ is the complement of T , aT

n is as in Proposition 3.10, and bT
n

is the same, except for width 2m. Proposition 3.10 shows that each aT
n−1 and bT ′

n

satisfies a linear recurrence with constant coefficients, and they are independent of
T and T ′ respectively. Proposition 3.9 then shows that each aT

n−1b
T ′

n satisfies a linear
recurrence with integer coefficients, which are independent of T . Therefore their
sum satisfies the same recurrence. Finally, the degree of this recurrence is at most
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Figure 3.12. Splitting Lm,n into two components.

the product of the degrees of the recurrences for aT
n−1 and bT ′

n , which is provided by
Proposition 3.10. �

Based upon Theorem 3.7, we are able to verify Conjecture B in more cases.

Proposition 3.13. Conjecture B holds if m or n is either 6 or 8.

Proof. We verified by computer that T (6, n) is even for 1 ≤ n ≤ 8324. Since
T (6, n) satisfies a degree 8324 linear recurrence with integer coefficients, it follows
by induction that T (6, n) is even for all larger values of n. For m = 8, we verified
by computer that T (8, n) is even for 1 ≤ n ≤ 7, is odd for n = 8, and is even for
9 ≤ n ≤ 4473864. In this case, the degree of the recurrence is 4473856, so again
induction shows that T (8, n) is even for all larger values of n. �

For m = 8, an interesting phenomenon occurs. It turns out that for each possible
way to tile the first 8 rows and some extra squares in the ninth row, the number of
ways to tile the region is even. This is similar to what happens for m = 4, as in
the proof of Proposition 3.4, and also what happens for m = 1 and 2. Curiously, it
appears that this pattern does not continue for m = 16; the region in Figure 3.16
below, consisting of the first 16 rows and two squares of the seventeenth row has an
odd number of tilings by the L tromino.

We now give some bounds on the growth of the functions R(n), S(n) and T (m, n).

Lemma 3.14. A polyomino region of area 3k has at most 4k tilings by L trominoes.

Proof. We induct on k. For k = 0, the result is trivial.
Now suppose the result holds for k − 1. There are at most 4 ways to fill the

leftmost square in the top row (corresponding to the four orientations of the L tro-
mino). For each, there are at most 4k−1 ways to tile the rest of the region, by the
induction hypothesis. Therefore, the region has at most 4k tilings. This completes
the induction. �

Proposition 3.15. There are positive constants c and C such that ecn2 ≤ R(n) ≤
eCn2

for all sufficiently large n. Specifically, we have R(n) ≤ 4n2

for all n, and

R(n) ≥ 2n2/2 for n ≥ 4.
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670926247721458479721833

Figure 3.16. Covering the first 16 rows of L16,n.
This shape has an odd number of tilings.

Proof. The upper bound is immediate from Lemma 3.14. The lower bound is a
special case of Proposition 3.20 below. �

Proposition 3.17. There are positive constants, c and C such that ecn2 ≤ S(n) ≤
eCn2

for sufficiently large n. More precisely, we have S(n) < 2n2

for all n, and

S(n) ≥ 38n2/25 for n ≥ 5.

Proof. In a symmetric n2-reptiling, the tiles along the axis of symmetry must be
placed as shown in Figure 3.18, which splits the remainder of the region into two
components.

Figure 3.18. Tiles placed along axis of symmetry.

The tiling is then determined by the tiling of either component, so we have S(n) ≤
4(n2

−n)/2 < 2n2

from Lemma 3.14.
For the lower bound, we first observe that S(n) ≥ 38n2/25 for 5 ≤ n ≤ 10. A

symmetric n2-reptiling extends to a symmetric (n+6)2-reptiling, as shown in Figure
3.19.

In the diagram, there are S(6) ways to tile the rep-62 region symmetrically. For
n > 1, a 6 × n rectangle can be partitioned into 2 × 3 rectangles, each of which can
be tiled in 2 ways. Thus one of the 6 × n rectangles can be tiled in 2n ways, and
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rep-n2

rep-62
6 × n

n × 12

Figure 3.19. Extending a symmetric reptiling.

the tiling of the other is determined by symmetry. Similarly, there are at least 22n

ways to tile one of the n × 12 rectangles. This shows that S(n + 6) ≥ 23nS(6)S(n),
for n ≥ 1, and the lower bound S(n) ≥ 38n2/25 for all n ≥ 5 now follows easily by
induction. �

Proposition 3.20.There are positive constants, c and C such that ecmn ≤ T (m, n) ≤
eCmn for all sufficiently large m, n. More precisely, we have T (m, n) ≤ 4mn for all

m, n, and T (m, n) ≥ 2mn/2 for m, n ≥ 4.

Proof. The upper bound is immediate from Lemma 3.14. For the lower bound, we
first show by computation that T (m, n) ≥ 2mn/2 for 4 ≤ m, n ≤ 9. A tiling of Lm,n

can be extended to a tiling of Lm+6,n as shown in Figure 3.21.

Lm,n n × 6

2n × 6

Figure 3.21. Extending a tiling of Lm,n to a tiling of Lm+6,n.

Since there are (at least) 2n ways to tile the n × 6 rectangle, and 22n ways to tile
the 2n × 6 rectangle, we have T (m + 6, n) ≥ 23nT (m, n). Similarly, T (m, n + 6) ≥
23mT (m, n). Now the lower bound T (m, n) ≥ 2mn/2 for all m, n ≥ 4 follows by
induction. �

These bounds can certainly be improved by a more delicate analysis. It would be
of interest to prove that the limits limn→∞ log(R(n))/n2, limn→∞ log(S(n))/n2, and
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limm,n→∞ log(T (m, n))/mn exist, and to determine their exact values. See [7] for the
analogous question for tilings of rectangles.

4 Method of Counting

In this section, we briefly describe our technique for enumerating R(n), S(n) and
T (m, n).

A tiling of Lm,n by L trominoes splits into three pieces: the tiles covering the top
n − 1 rows, the tiles covering the rightmost m − 1 columns, and the remaining tiles
which cover the “elbow”. For each possible partition, we count the number of tilings
of each part and multiply them. Then we sum over all partitions to get the total
number of tilings of Lm,n.

To count the number of tilings of the top n−1 rows, we use the “transfer matrix”
method. For a subset S of squares on a row of width m, let aS

k denote the number of
tilings of k rows of width m, with the extra squares in S adjoined along the (k+1)-st
row. For k = 0, we have a∅

0 = 1, and aS
0 = 0 if S is non-empty. As in the proof of

Proposition 3.10, we have aS
k =

∑

T c(S, T )aT
k−1. Using this relation, we iteratively

calculate aS
k for all subsets S simultaneously from the values aS

k−1.
Most of the coefficients c(S, T ) are 0. The non-zero values can be determined as

follows. Recall that c(S, T ) counts the number of ways to tile an extension from RT
0

to RS
1 (using the notation of 3.10). Such a tiling decomposes horizontally into several

types of primitive pieces: a 2 × 3 rectangle, a single L tromino shape (occurring in
any of four orientations), and an empty region of width 1.

Figure 4.1. Decomposition of extension shape into primitive pieces.

We encode the subset S as a string of 0’s and 1’s in the natural way; the digit
in the i-th position is 1 if and only if the square in the i-th position is in the set
S. The non-zero coefficients c(S, T ) can be generated recursively from c(∅, ∅) =
1, c(0x, 1y) = c(x, y), c(01x, 00y) = c(x, y), c(10x, 00y) = c(x, y), c(11x, 01y) =
c(x, y), c(11x, 10y) = c(x, y), and c(111x, 000y) = 2c(x, y). These correspond to
the facts that a 2 × 3 rectangle can be tiled in 2 ways, and the other primitive
pieces can be tiled in exactly 1 way. In the example of Figure 4.1 above, we
have c(11010111, 10001000) = c(010111, 001000) = c(0111, 1000) = c(111, 000) =
2c(∅, ∅) = 2.

Counting the number of tilings of the rightmost m − 1 columns proceeds in the
same way. To count the number of tilings of the elbow, we use a simple modification
of this method. For convenience, reflect the elbow horizontally. Let S be a subset of
extra squares of a width m+1 row, and let bS

k denote the number of tilings of the top
k rows along with the extra squares in S. This is similar to counting partial tilings of



130 MICHAEL REID

the top n−1 rows, except the width here is m+1, and more importantly, some squares
have been deleted from the rightmost edge. As before, we have bS

k =
∑

T c(S, T )bT
k−1

if the k-th row contains the rightmost square. If the rightmost square has been
deleted from the k-th row, this needs to be modified to bS

k =
∑

T c(S, T ′)bT
k−1, where

T ′ denotes T with the rightmost square included. (Here the coefficients c(S, T ) are
from the transfer matrix for width m + 1.)

Note that we do not need to calculate these numbers from scratch for each possible
set of squares deleted from the rightmost edge; we can reuse the partial computations
for shapes that agree along the top several rows.

To calculate S(n), recall that this is the number of tilings of the region

of width n. We compute these numbers using a similar modification of the transfer
matrix method that accounts for the missing squares in the upper right corner.

The parity of T (m, n) and S(n) can be computed in the same way, with little
modification. For example, in Proposition 3.13, we only computed the parity of
T (6, n). We also computed the parity of T (10, n) for n ≤ 2000000; all were found to
be even. This computation took 189 hours of CPU time. To verify Conjecture B for
m = 10 would require computing the parity of T (10, n) for n ≤ 277094400.

5 Other shapes

A polyabolo is a shape made by joining congruent right isosceles triangles so that
they are “aligned” in a natural way. (Specifically, if the legs of the triangles have
length 1, then the shape can be positioned in the plane so that the coordinates of all
vertices are integers.) For example, consider the triabolo

Let U(n) denote the number of n2-reptilings by this shape. For n = 1, 2, . . ., we have
U(n) = 1, 1, 10, 721, 96158, 94484630, 488195932976, . . ..

Conjecture C. U(n) is odd if and only if n is a power of 2.

Theorem 5.1. Conjecture C is equivalent to Conjectures A and A’.
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Figure 5.2. Placement of tiles along diagonal edge.

Proof. In an n2-reptiling, tiles along the diagonal edge must be placed as shown in
Figure 5.2.

Thus U(n) equals the number of tilings of the remaining polyomino region. Tiles
in this region pair up along their diagonal edges into either L trominoes or straight
trominoes (1 × 3 rectangles). Conversely, a tiling a the polyomino region by L
trominoes and straight trominoes can be decomposed into a tiling by the triabolo.
Moreover, a straight tromino can be tiled by the triabolo in 2 different ways. This
means that each tiling of the polyomino region by L trominoes and straight trominoes
corresponds to 2k tilings by the triabolo, where k is the number of straight trominoes.
Thus the parity of U(n) is the same as the number of tilings of the polyomino region
by L trominoes, which we have seen is S(n). �

For a polyabolo, there is a possibility that it is rep-2n2 for some n, in other words,
there might be a reptiling with ratio of similitude n

√
2. However, for this triabolo,

it is easy to show that it is not rep-2n2 for any n.

This example suggests counting reptilings by other shapes. Although he did not
phrase it in terms of reptilings, Propp ([10], Problem 22) notes that Kasteleyn’s
formula implies that the number of n2-reptilings by the domino is ≡ 1 mod 4, and
he asks for a combinatorial proof of this.

The straight tromino is a 1×3 rectangle: . The number of n2-reptilings by
the straight tromino, for n = 1, 2, . . ., is 1, 1, 19, 249, 3643, 1600185, 329097125, . . ..
We can prove that the number of n2-reptilings has the same parity as the number
of (2n)2-reptilings, so the next term in the sequence is also odd. This is worthy of
further attention.
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Appendix

We give here some computed values of T (m, n). Although T (m, n) is symmetric in
m and n, the method of computing these values is not symmetric in the counting
tilings of the “elbow”, For all m, n ≤ 18, we computed both T (m, n) and T (n, m),
and in all cases, the computed values agreed. This gives us some confidence in the
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correctness of the results. Because of this symmetry, we need only give values for
m < n; the values for m = n are given above in Table 2.2. Moreover, T (1, n) = 0
for n > 1, so we only consider m ≥ 2 here. We have also calculated the parity of
T (m, 20) and T (m, 22) for all m ≤ 22; all were found to be even. (In the tables, the
columns are indexed by m and the rows by n.)

Values of T (m, n)

2 3 4 5

3 8 4 72 120

4 4 72 409 4168

5 16 120 4168 108388

6 72 1296 44046 2215560

7 80 3072 421716 47842016

8 232 24224 3826444 1023037984

9 704 72864 41106116 22171827216

10 1248 423744 405615924 483938669160

11 3200 1606144 3799947504 10447063869824

12 7488 7589504 40653384976 225771799645872

13 17792 33947776 400773856464 4880206632105920

14 43072 141305088 3837259802704 106071967859251008

15 85504 702597120 40905444293232 2310577253142103072

16 243456 2691361280 403177422839720 49627917494449314704

17 572416 14361788928 3894225930818624 1077324401627268655776

18 1028608 51983447040 41504751359473584 23319184057927134959248

19 3263488 291186573312 408978735029551792 502705706321944502435936

20 7555584 1014550358016 3965868711622647456 10927535898450558839362176

21 12808192 5872677455872 42283060666385238160 237356840611127805481845984

6 7

7 5328885922 608850350072

8 276408992770 71324156785552

9 13933343444778 8141004894379048

10 722908373529706 951328813777052244

11 36868626800299334 108462137456648779432

12 1894921144730134674 12577357132484337185736

13 97356328787643248644 1449730609072010690217528

14 4997314715104212563040 166263613339328200790749352

15 256931348295412047167732 19252498319294212296641292824

16 13205049021156776464061514 2218544464014728584248776736856

17 678939634575534704742741310 254569908899407051712982885745696

18 34916472343609869412634711494 29464746047086786588382566505666120

19 1795796276532375370649758118580 3395511574986949596095528303319615976

20 92377186384480708124691385084514 389661831861394309160671597470227141260

21 4752336614980811788918812100037742 45098341153890172933720046926712990564560
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8

9 5099310422090391496

10 1370429846258842143590

11 361838850635660549867108

12 96330234250823612950391106

13 25577464086064783540179704656

14 6790908638898662414354621367512

15 1805159697658613058563264931778836

16 479129944343010546109088991715236416

17 127300419536822394196381666188645649184

18 33826102711340383168884369887229311094384

19 8979236361265716993306719665508238908776976

20 2385784352959415571345942130998674917459319708

21 633912060065011553972029951142931341242360397884

9

10 1886322456673265812621406

11 1141157848087251861218689584

12 696726559080243377655178323602

13 424377486216427832320957532939588

14 258314370052676252547508161792845076

15 157408663585034699625197899210234106584

16 95862402732775474032155409928239096103758

17 58388504753020683711241690039573300027944592

18 35566426067004899788863212091709859151400608530

19 21662508332021534037679027585276819486188728563556

20 13194874547092622307876707952675867130163901569458374

21 8036948764369763953790577856239599746267394595749873840

10

11 3700221296294958853168075533000

12 5186239509024773760432683847317046

13 7247002682640559436615798235931339896

14 10117337073264870622056379359121065750398

15 14150401583373465229901724791393777370134784

16 19772451820402651310053160743351749242329457552

17 27621450843840887218990061450105233143881959666882

18 38617225401489936910772782976201109192791011269934436

19 53966440955564154159299163994384711501289328711565283828

20 75392410111820148271176141146810997741638770965943557723864

21 105398687643507710705927360364665381711490901973480013497902356
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11

12 37876936551840320966610628618651925148

13 121402092153950231324585586130824397430012

14 389032793370109597048905957618960843454928780

15 1247957154818714231167692627613954525459553489760

16 4000530861217936937718467031082287221106775301679632

17 12827178200143748875916639761552763045881555115673871108

18 41131942214008030330396229388647009892233616816110396993384

19 131871104152434055394932389037544596658619102898388853091537684

20 422844677347323069341119623264468668637507205901326503250062515160

21 1355818225616814885111623888266548024949278051992385325116348813648320

12

13 2057531167554923191716098476547452936303559816

14 15135966390015397603787004585272907255345527159826

15 111461063562302696604479927163003512700802805270795140

16 820304317785870781155659672999638245323589735358550492548

17 6037934332337557990078821479693027619443539596784120493446814

18 44446667782852638009444434205609953599124886134850863139214864548

19 327147367464816386218807204910644814643628999306225311427092475119290

20 2408109861468534305392091510249260537571381543439663189583852844291195092

21 17725519945130909412315332275988201185236166081323788360807670153637536027490

13

14 586340285239094014146896232103084281534632727832540386

15 9908708792974770240927420863222030005257415264190005189536

16 167343843887831028257934754628053113502807342495676245892985168

17 2826509049388081395651627182698272385513687418304114896170224846228

18 47748124779018832213773531824034706450591100112466141784241000968040018

19 806496100989529194226920485221038700752447848810808290660704482447375395576

20 13622708035739214382522237886455936778948654505685659825672154887141735767565934

21
230112638507338218737269765760620404055812

142846094787590388143159532871066590837960

14

15 881223459510018479646607531395623320992836698979648353862715840

16 34158205493452681748415170389835968705502115534688011109995471392658

17 1324253415891740528614894353981159482065258254770576413982811145192309350

18 51343641982241623486318855901521501851962060492744595750057504514833188113660

19
199044738080011524048101532200123942212544

8337164546859585990800470162358207773768

20
7716977357577546409792801558927854549023436

7361756780402055142486616664480293069529472

21
2991805079634744602832491153224153529820275330

659995136118650418909210279448637191405713434
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15

16 6978836665544377697108014410769004794725325166833044451804511071648998208

17 620960811492532405922240727430026012405781721448957212885537883949551646522016

18
552570074947829042656562135942862697739518

59858208512590810802311752353669099083496

19
49165520769020983758930473673745365126634367

67684935232833389153176509899021266844878148

20
43748594887059924512687044698881839285115134207

1019687260968035942107111957491666251432334868

21
3892755755605818462090908965175760053955930897209

0908871934344870839504903144406548709077517489120

16

17
291001707351290734984938364503969713682587

437796402675955593265710310975236873472670

18
594331501022713141152340936907619561702883639

89013940421692681437553790494773149526478968

19
12136957631060931822329960671436379788763335566

732571708028345725579260999760986246863790080638

20
24786798464787283085760105174600185231366679937464

15440112022676030328236696495630988684761221156594

21
50620070005710164769281648744279595447114826681998431

3073390237221509912547100941073410143157137455018868

17

18
639343255174582741399937531141544444155498751663

43162233217148687966312758108496896038735082110

19
299656016713529804858600717446591970032268093176493

48518195264368900407141458928967106947254162697688

20
140457039788995329757555792546126935495855635266962735

37532807431295361888915793084150180367539327914671156

21
65834474221123738563739547902410615158470823613241238258

40416182283119061912799728312950275720618435854078817272

18

19
739920251572770566557332414107279613395567178175622122

85401090078699073238672641754110867094212848478472864

20
796004367488594225174930420344354485279452046766170950419

85331629205470682808962940397526786141686737719548345828

21
856318530798812652729582379405764809870240715663678072173190

13494772259831297410402826975235914535921019600429565066958
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