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Abstract

Graphs G and H are T -equivalent if they have the same Tutte polynomial.
G is T -unique if any arbitrary graph H being T -equivalent to G implies
that H is isomorphic to G. We show that the generalized Petersen graph
P (m, 2) and the line graph of P (m, 2) are T -unique.

1 The Tutte Polynomial

Let G be a graph with vertex set V and edge set E, and let G[A] denote the subgraph
of G induced by the edge set A ⊆ E. The following two variable polynomial is referred
to as the Tutte polynomial of a graph G:

TG(x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

The rank of G[A], denoted r(A), is defined as |V (G[A])| −ω(G[A]) where ω(G[A]) is
the number of components of G[A]. Graphs G and H are T -equivalent if TG(x, y) =
TH(x, y) and G is T -unique if any graph H being T -equivalent to G implies that H

is isomorphic to G. We will always assume that G does not contain isolated vertices
since these do not effect the rank or number of edges of G.

The Tutte polynomial, introduced by Tutte in 1954, is a powerful tool containing
much of a graph’s structural information. The question we wish to consider is related
to the amount of information received from the Tutte polynomial. Does TG(x, y) give
enough information so that it uniquely determines G? In general, the answer to this
is no. Indeed, it can easily be argued that trees are not uniquely determined. For
graphs with higher connectivity, this is more difficult as shown by Tutte [11] and
Brylawski [3] who did find such graphs. However, we wish to find classes of graphs
that are determined by their Tutte polynomial, or are T -unique. In [8], de Mier
and Noy show that wheels, squares of cycles, ladders, Möbius Ladders, complete
multipartite graphs, and hypercubes are T -unique graphs.
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T -unique graphs have also been studied indirectly under a less general object.
The chromatic polynomial of a graph G, denoted p(G, k), is defined as the number
of k-colorings of G where a k-coloring is a proper vertex coloring of k colors. A graph
G is χ-unique if a graph H having the same chromatic polynomial implies that H

is isomorphic to G. Several classes of graphs have been shown to be χ-unique and
many of these can be found in [5] and [6]. It is a well known fact that the Tutte
polynomial generalizes the chromatic polynomial [1]. Clearly then, every χ-unique
graph is T -unique. However, the converse is not true [8]. Thus [5] and [6] also give
a list of T -unique graphs. We also mention that the authors in [2] have conjectured
that almost every graph is T -unique meaning that as |V | approaches infinity, the
probability that a graph is T -unique approaches one.

The following theorem [8] gives information concerning G that is determined by
TG(x, y).

Theorem 1 Let G be a 2-connected graph. Then the following parameters of G are

determined by its Tutte polynomial:

1. The number of vertices and the number of edges.

2. For every k, the number of edges with multiplicity k.

3. The number of cycles of shortest length.

4. The edge-connectivity λ(G). In particular, a lower bound for the minimum

degree δ(G).

5. If G is simple, the number of cliques of each size.

6. If G is simple, the number of cycles of length three, four, and five. For cycles

of length four, it is also possible to know how many of them have exactly one

chord.

Using the Tutte polynomial as defined above is somewhat awkward in the proofs
to follow, therefore we will use the rank-size generating polynomial defined as

FG(x, y) =
∑

A⊆E

xr(A)y|A|.

The coefficients count the number of subgraphs of G with rank i and j edges. Also,
note that

TG(x, y) = (x − 1)r(E)
∑

A⊆E

((x − 1)(y − 1))−r(A) (y − 1)|A|.

Therefore TG(x, y) also counts the number of subgraphs with rank i and j edges.
Hence TG(x, y) and FG(x, y) contain the same structural information concerning G.
Throughout this paper [xiyj] will denote the coefficient of xiyj in FG(x, y).
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2 The generalized Petersen graph

Perhaps the most familiar graph is the Petersen graph. The structure of the Pe-
tersen graph can be generalized in terms of the following graph P (m, n) called the
generalized Petersen graph. P (m, n) has 2m vertices which we name {v1, . . . , v2m}
and 3m edges. The edges are defined as follows:

1. {(v1, v2), (v2, v3), . . . , (vm−1, vm), (vm, v1)},

2. {(vi, vi+m) : i ≤ m}, and

3. {(vi+m, vj+m) : i, j ≤ m and |j − i| = n}.

In this notation the Petersen graph would be denoted as P (5, 2).
Note that for m 6∈ {3n, 4n}, P (m, n) does not contain 3 or 4-cycles, and P (m, n)

is 3-regular for m, n ∈ N. If n = 2 and m 6∈ {5, 10}, then P (m, 2) contains m

5-cycles. These facts will be readily used.
The entirety of this paper concerns n = 2. The following theorem [10] yields

structural information concerning the cycle spectra of P (m, 2), denoted cs(P (m, 2)).

Theorem 2 For m odd and k = 2, the cycle spectra is as follows:

cs(P (5, 2)) = {5, 6, 8, 9},

cs(P (7, 2)) = [5, 14], and

cs(P (9, 2)) = {5} ∪ {7} ∪ [8, 18].

For m ≥ 11, cs(P (m, 2))=

{

5 ∪ [8, 2m − 1], for m ≡ 5 mod 6

5 ∪ [8, 2m], for m 6≡ 5 mod 6.

Another fact that will be readily used is the following lemma.

Lemma 1 P (m, 2) has no 6-cycles for m ≥ 13.

Proof. Theorem 2 shows this for m being odd. For m being even, the edges from
(3) in the definition of P (m, n) can make a cycle of size no less than seven. However
it is quite easy to see that if we must utilize the other edges of P (m, 2), there cannot
be a 6-cycle.2

3 The T-uniqueness of P (m, 2)

In [8], the authors show that Cm × K2 is T -unique for m ≥ 3. Since Cm × K2 is
isomorphic to P (m, n) for n = 1, P (m, 1) is T -unique. Therefore it seems natural
to consider n = 2. The strategy for showing the T -uniqueness of P (m, 2) is to
find a subgraph that uniquely contributes to [xiyj] for some i and j, show that
this subgraph uniquely contributes to [xiyj] for a graph T -equivalent to P (m, 2),
and finally show that P (m, 2) must necessarily follow from this information. In the
process of executing this strategy, we will readily use the following theorem [8] and
lemmas.
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Theorem 3 If G is a 2-connected graph and H is T -equivalent to G, then H is a

2-connected graph.

Theorem 3 allows us to use information given in Theorem 1. Let H be T -
equivalent to P (m, 2) for m ≥ 13. Then H has 2m vertices and 3m edges, H

does not have 3 or 4-cycles, and H has m 5-cycles. Furthermore H is a simple graph
with the minimum degree being at least three.

Lemma 2 Suppose H is T -equivalent to P (m, 2) for m ≥ 13. Then H has no

6-cycles.

Proof. [x5y6] counts the number of 6-cycles and the number of 5-cycles with one
additional edge. Note that this additional edge can not be a chord of a 5-cycle. Then
the number of 6-cycles in H is [x5y6] −m(3m− 5) as Theorem 1 guarantees that H

has m 5-cycles. However, from Lemma 1, [x5y6] = m(3m − 5). Therefore H has no
6-cycles.2

Lemma 3 Suppose H is T -equivalent to P (m, 2) for m ≥ 13. Then the only sub-

graph contributing to [x7y9] in H is an 8-cycle with a chord. In particular, this chord

is an edge of two 5-cycles.

Proof. Consider [x7y9]. H could contain either of the following subgraphs which
have rank 7 and 9 edges:

1. A subgraph consisting of an 8-cycle with a chord.

2. A subgraph containing a cycle of size less than 8 with a chord.

3. A subgraph containing two 5-cycles sharing a path of length 2.

4. A subgraph consisting of a 5 and 6-cycle sharing a path of length 2.

5. A subgraph consisting of two 6-cycles sharing a path of length 3.

(2)-(5) can not occur since this would imply that H has either a 3, 4, or 6-cycle.
This leaves (1) and therefore we can have an 8-cycle with a chord only if this chord
is an edge of two 5-cycles.2

Theorem 4 P (m, 2) is T -unique for m ≥ 13.

Proof. Let H be a graph so that TH(x, y) = TP (m,2)(x, y). Since δ(H) ≥ 3 and
∑

v∈V (H) d(v) = 6m, H must be 3-regular. Lemma 2 guarantees that H contains no
6-cycles and Lemma 3 guarantees that H contains 2m 8-cycles with one chord. We
will show that from this information, it necessarily follows that H is isomorphic to
P (m, 2).

Claim 1: If e is a chord of an 8-cycle, then it can not be a chord of two 8-cycles.

Since H is 3-regular, there are only two scenarios in which e is a chord of two
8-cycles. One can check that both scenarios, given below, give 4 and 6-cycles.
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Let E1(H) be the set of edges which are chords of 8-cycles in H and let E2(H) =
E(H) \ E1(H). Then from the previous claim we must have |E1| = 2m and so
|E2| = m. For vi ∈ V (H) where 1 ≤ i ≤ 2m, set

δi = |{e : e ∈ E2 and e is incident to vi}|, and

δ′i = |{e : e ∈ E1 and e is incident to vi}|.

As H is 3-regular, δi + δ′i = 3 for all i. Hence there are four ways in which we can
describe the degree of vi.

Claim 2: (1) δi = 1 and δ′i = 2 and (2) δi = 3 and δ′i = 0 are not possible in H.

First consider (1). Then for some i, vi is incident to two chords e1 = (vi, vx) and
e2 = (vi, vy) and one non-chord edge e3 = (vi, vz). Consider the 8-cycle with the
chord e1 and let C and D be the two 5-cycles sharing e1. Without loss of generality,
let e2 and e3 be edges on C and D as shown in the following graph.
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Since e2 is a chord, there must be a path from vy to a vertex on D yielding a
5-cycle. If there is a path of length 1 between vy and vp or vq, then H will contain a
4-cycle. If there is a path of length 2 between vy and vp or vq, then H will contain a
6-cycle. If there is a path of length 3 between vy and vz, then e3 is a chord.

Next, consider (2). Then for some i, vi is incident to three non-chord edges. If
every edge in H is an edge of a 5-cycle, then it follows that (2) is not possible since
every pair of edges incident to vi are in a 5-cycle and so one of these edges is a chord
of an 8-cycle. Otherwise we get a subgraph with forbidden cycles. Let (ei, C5) denote
the number of 5-cycles that contain the edge ei for 1 ≤ i ≤ 3m. Since there are m

5-cycles,
3m
∑

i=1

(ei, C5) = 5m.

We know |E1| = 2m, and so, without loss of generality, we set (e1, C5) = (e2, C5) =
. . . = (e2m, C5) = 2. This leaves

3m
∑

i=2m+1

(ei, C5) = m
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and so it must follow that for 2m + 1 ≤ i ≤ 3m, (ei, C5) = 1 as an edge can not be
in two 5-cycles unless it is a chord of an 8-cycle. Therefore we have the possibilities
of δi = 2 and δ′i = 1 and of δi = 0 and δ′i = 3.

Let Fi be the subgraph of H induced by the edges Ei for i = 1, 2.

Claim 3: F1 is composed of an m-cycle with vertices v1, . . . , vm along with the edges
(vi, vm+i) for i = 1, 2, . . . , m.

We start by showing that each 5-cycle of H contains exactly one edge from F2.
Consider a 5-cycle of H with vertices w1, w2, . . . , w5. Suppose that (w1, w2), (w2, w3)
are edges of F2. Then δ′i(w1) = δ′i(w2) = δ′i(w3) = 1 and let (w2, wx) ∈ E(F1). Since
(w2, wx) must be an edge of a 5-cycle, then either (w1, w2) or (w2, w3) must be an
edge of this 5-cycle. However, in order to avoid 4 and 6-cycles, either (w1, w2) or
(w2, w3) will be a chord of an 8-cycle. Hence (w1, w2) and (w2, w3) can not both be
edges of F2. Therefore each 5-cycle of H can have at most 2 edges from F2.

If (w1, w2) and (w3, w4) are edges of F2, then (w2, w3) is an edge of F1 and thus
must be a component in F1. Since there are m 5-cycles in H and m edges in F2, F1

must then contain a 5-cycle. Therefore each vertex of this 5-cycle must be a vertex
of degree 3 in F1 as shown below.
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Now each edge of this 5-cycle is a chord of an 8-cycle in H. Therefore it must be
that wli and wli+1

are adjacent to a common vertex for i = 1, 2, 3, 4, 5 where we set
wl6 = wl1 . This common vertex can not be wlj for j 6= i and j 6= i + 1, otherwise we
have included 4 and 6-cycles. Since no 5-cycle can have two incident edges from F2,
we have the following graph, all of whose edges are edges of F1.
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Now wki
can not be adjacent to wkj

for any i or j, otherwise we include 3 and
6-cycles. Furthermore, wki

and wkj
can not be adjacent to a common vertex other

than the ones given in the graph above. Again, each of the edges in this graph are
edges of F1. Therefore we must have the following graph.
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The vertices in the graph above all have degree 3 and we still have the component
(w2, w3). But Theorem 1 guarantees that H is connected. So it must be that every
5-cycle of H contains exactly one edge from F2. Therefore, as H is connected, F1

is connected since the intersection of a cycle and an edge-cut can not have size one.
Also, since F1 has 2m vertices and 2m edges, it has only one cycle as a subgraph.
Suppose that this cycle, C, has vertex set {v1, . . . , vp} where 7 ≤ p ≤ m and edge
set E(C) = {(vi, vi+1) ∪ (vp, v1) : 1 ≤ i ≤ p − 1}. Let {vq, . . . , v2m} be the leaves
of F1 where q ≥ p and note that if p < m, then q > p + 1. Furthermore, let Ti be
the tree of F1 \E(C) including vi as a leaf for 1 ≤ i ≤ p. Consider an edge (vi, vi+1)
of C and let vx be a leaf belonging to Ti so that q ≤ x ≤ 2m. Suppose that Ti

has at least three leaves. In order for (vi, vi+1) to be a chord of an 8-cycle, we may
assume that vx is adjacent to a leaf, vy, in Tj for j 6= i where (vx, vy) is an edge of
F2. But (vi, vi+1) is an edge of a 5-cycle only if j = i + 1, and Ti+1 consists of one
edge. Therefore (vi, vi+1) can not be a chord of an 8-cycle unless we include 4 or
6-cycles. Hence Ti contains two leaves and so consists of exactly one edge for all i

which necessarily implies that p = m and q = p + 1. This proves claim 3.
In order to ensure that each edge in F2 is in exactly one 5-cycle and that each

edge of F1 is a chord of an 8-cycle, H must be isomorphic to P (m, 2).2

The reason for restricting m to values larger than 12 is because for m smaller,
P (m, 2) has 3,4, and 6-cycles. We will investigate the remaining cases individually.
For each case, H is T -equivalent to P (m, 2) for m ≤ 12 and so H is 2-connected and
3-regular.

Theorem 5 P (m, 2) is T -unique for m ≤ 12.

Case 1.

One can easily show that for m ≤ 5, these are T -unique. For m = 9, 11, P (m, 2)
does not contain 3,4, or 6-cycles so is T -unique from above.

Case 2. m = 6.
H has two triangles, no 4-cycles, and six 5-cycles which do not contain a chord.

Furthermore, H has six 6-cycles with a chord since the number of 6-cycles with a
chord is [x5y7] − 12.

We begin with the two triangles. These two triangles must be vertex and edge
disjoint. Also note that the edges in the two triangles must be chords of 6-cycles.
Consider the subgraph induced by the remaining six vertices. This subgraph must
contain at least six edges. Therefore, it must contain a cycle. Clearly this cycle
cannot have size three or four. It cannot have size five either since H has exactly
six 5-cycles of which these must appear in the six 6-cycles with a chord. Hence this
cycle must be a 6-cycle. We are left then with H being isomorphic to P (6, 2) since
each edge in the two triangles must be a chord of a 6-cycle.

Case 3. m = 7.
We begin by showing that H has sixteen 7-cycles. Consider [x6y7]. This coefficient

counts the number of 7-cycles, the number 6-cycles with an additional edge, and the
number of 5-cycles with two additional edges. Note that in H, 5,6, and 7-cycles
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do not contain chords. Since we know that P (7, 2) and H have seven 5-cycles and
seven 6-cycles, H has the same number of 7-cycles as P (7, 2). Hence H has sixteen
7-cycles.

Let F , a subgraph of H, be a 7-cycle in which two of the vertices are adjacent to
a vertex outside of the cycle. Then F must consist of a 5 and 6-cycle sharing a path
of length two. Thus for each subgraph F of H, we get a 5 and 6-cycle. If each seven
cycle of H is an F subgraph, then H would contain at least eight 5-cycles since at
most two F subgraphs can share a 5-cycle. Therefore H must contain a 7-cycle so
that each vertex of the cycle is adjacent to distinct vertices outside the cycle. The
remaining edges of H must form a 7-cycle. To guarantee that H has seven 5-cycles
H must be isomorphic to P (7, 2) or P (7, 3) but P (7, 3) has fourteen 6-cycles.

Case 4. m = 8.
H has no triangles, two disjoint 4-cycles, eight 5-cycles, no 6-cycles and H has

eight 7-cycles with a chord which forms a 4-cycle and a 5-cycle joined at an edge.
Furthermore, an edge is a chord of only one 7-cycle otherwise we would have a
subgraph contributing to [x5y7], but this coefficient must be zero. Therefore we are
forced to construct H as P (8, 2) following the same argument as in case 2.

Case 5. m = 10.
H has no triangles, no 4-cycles, twelve 5-cycles, no 6-cycles and so H has thirty

8-cycles with a chord. As in Theorem 4, an edge can be a chord of only one 8-cycle.
Therefore every edge in H is a chord of an 8-cycle. Then the edges of two disjoint
5-cycles is an edge of another 5-cycle. We are then forced, as before, to construct
P (10, 2).

Case 6. m = 12.
This will follow from an argument similar to case 2,4, or 5. 2

Using a similar argument to the one given in Theorem 4, one could show that
P (m, 3) is T -unique for m ≥ 22. All that is needed is to show that P (m, 3) does
not contain 7-cycles for m ≥ 22 and that H being T -equivalent to P (m, 3) has the
same number of 10-cycles with a chord. However, for values of n larger than 3, this
argument would be difficult to generalize because P (m, n) contains 8-cycles for all
values of m. Despite this, it should still be true that P (m, n) is T -unique for all
values of n and m. In addition, it is not hard to conceive that there is an argument
for P (m, n) being T -unique with no bound on m.

4 The T-uniqueness of L (P (m, 2))

Let G be a graph. The line graph of G, denoted L(G), is the graph obtained from
G by replacing the edges with vertices and (ei, ej) is an edge of L(G) if and only if
ei and ej are incident in G. The following theorem characterizes all line graphs [4].

Theorem 6 A graph G is a line graph if and only if the edges of G can be par-

titioned into cliques such that no vertex of G lies in more than two of the cliques.

Furthermore, if M1, . . . , Mr are cliques of G such that every vertex belongs to exactly
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two of them, then G = L(G0), where V (G0) = {m1, . . . , mr} and an edge between mi

and mj if Mi meets Mj.

In this section we will investigate the T -uniqueness of the line graph of P (m, 2).
The T -uniqueness of line graphs has recently been studied in [9]. Mier and Noy
show that the line graph of a regular complete t-partite graph, the line graph of the
complete bipartite graph, and the line graph of the complete graph are T -unique [9].

We define a cycle of triangles of length j to be the cycle Cj with each vertex
replaced by a triangle and each edge replaced by two triangles joined at a vertex.
Furthermore, let the vertices of degree 2 be labeled as v1, . . . , vj and let the triangles
be labeled as t1, . . . , tj where ti is the triangle containing vertex vi. The following
graph is a cycle of triangles of length 5.
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The line graph of P (m, 2) contains many lengths of cycles of triangles. Indeed,
each vertex in P (m, 2) becomes a triangle in L(P (m, 2)), and two adjacent vertices
become two triangles joined at a vertex. So the pattern in P (m, 2) is repeated in
L(P (m, 2)) in the context of triangles. Note that L(P (m, 2)) is 4-regular with 3m
vertices and 6m edges. It has 2m triangles, no 4-cycles with a chord but has a 4-
cycle if m ∈ {4, 8}, m 5-cycles, and has 5m 6-cycles with a chord since each 5-cycle
is contained in a cycle of triangles of length 5.

We continue with the following theorem [9].

Theorem 7 Let G be a d-regular d-edge connected graph on n vertices, and assume

that d ≥ 3 and, if d = 3, then G is triangle-free. If a graph H is T -equivalent to

L(G), then H = L(G0) where G0 is a d-regular connected graph on n vertices.

Corollary 1 If H is T -equivalent to L(P (m, 2)) for m 6∈ {3, 6}, then H = L(G),
where G is 3-regular, connected, and has 2m vertices.

Proof. Since P (m, 2) is 3-regular, 3-edge connected, and triangle-free on 2m
vertices for m 6∈ {3, 6}, then by Theorem 7, H = L(G) where G is a 3-regular
connected graph on 2m vertices. 2

Lemma 4 If H is T -equivalent to L(P (m, 2)) for m ≥ 13, then H = L(G) where G

has no 6-cycles.

Proof. Let H be T -equivalent to L(P (m, 2)) for m ≥ 13. Then H is 4-regular
with no 4-cycles and H = L(G) where G is 3-regular. Suppose that G does contain
a 6-cycle. Note that a 6-cycle in G can not have a chord. Otherwise, H contains a
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cycle of triangles of length 3 or 4 but H can not contain 4-cycles. This then implies
that H contains a cycle of triangles of length 6. However if we can show that every
6-cycle in H must contain a chord, then G can not contain a 6-cycle.

Claim: Every 6-cycle in H has a chord. Two triangles in H are either edge and
vertex disjoint or they share a vertex. Therefore (ei, C3) ≤ 1 for 1 ≤ i ≤ 6m and
since

∑6m

i=1(ei, C3) = 6m, (ei, C3) = 1 for each i. This implies that each of the 3m
vertices are in precisely two triangles and so each edge of a 5-cycle is also an edge of a
triangle. Since Theorem 1 guarantees that H has m 5-cycles, then H has 5m 6-cycles
with a chord. Consider [x5y6]. The subgraphs that contribute to this coefficient are
the 6-cycles and the 5-cycles with one additional edge. By examining L(P (m, 2))
for m ≥ 13, one can show that [x5y6] = 6m2. So the number of 6-cycles in H is
[x5y6] − (6m2 − 5m) = 5m. Hence each 6-cycle in H has a chord. 2

Lemma 5 If H is T -equivalent to L(P (m, 2)) for m ≥ 13, then H = L(G) where G

has 2m 8-cycles with a chord. In particular, this chord is an edge of two 5-cycles.

Proof. Let H be T -equivalent to L(P (m, 2) for m ≥ 13. Then H has 3m vertices
and 6m edges. Consider two 5-cycles, C and D, in H.

Claim: Either C and D share exactly one vertex or they are vertex and edge
disjoint. Since every edge of H must be an edge of a triangle and no 5-cycle can
contain a chord, this guarantees that C and D can not share more than one edge.
This also includes C and D sharing more than one vertex but being edge disjoint.
Suppose that C and D share one edge, and let this edge be denoted (u, v). Then
as each edge is an edge of a triangle, there must be a vertex w outside the vertices
of C and D so that (u, w) and (v, w) are edges of H. Let (u, x1) be an edge of C

and (u, y1) an edge of D. In order for (u, x1) to be an edge of a triangle, x1 must
be adjacent to w, v, or y1. If x1 is adjacent to w then we obtain a 4-cycle and since
there are four edges incident to v, it must be that x1 is adjacent y1. We argue the
same for (v, x2) and (v, y2) being edges of C and D respectively. Therefore there is
a 6-cycle including the edges (x1, y1) and (x2, y2) without a chord. Hence (u, v) can
not be an edge of a triangle and so we have proved our claim.

Furthermore, since H has 3m vertices and is 4-regular, there must be 2m vertices
each belonging to two 5-cycles. For every pair of 5-cycles sharing a vertex we obtain
a cycle of triangles of length 8 so that for ti and ti+4, vi = vi+4 for some i. Therefore,
by Theorem 7 and Theorem 6, G contains 2m 8-cycles with a chord and this chord
is an edge of two 5-cycles. 2

Theorem 8 For m ≥ 13, L(P (m, 2)) is T -unique.

Proof. Let H be a graph T -equivalent to L(P (m, 2)). Then H = L(G) where G

is 3-regular on 2m vertices and so G has 3m edges. Furthermore G has no triangles,
no 4-cycles, and no 6-cycles and G has 2m 8-cycles with a chord. Then from this
information, it necessarily follows from Theorem 4 that G is isomorphic to P (m, 2).
Hence L(P (m, 2)) is T -unique.2

Given the previous conjecture that P (m, n) is T -unique for all values of n and m,
we additionally conjecture that L(P (m, n)) is T -unique. For a graph G in general,
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the authors show in [9] that L(G) need not be T -unique. In fact they show that
non-isomorphic T -equivalent graphs can arise from d-regular graphs. However, we
ask the following less general question. If G is T -unique, then is L(G) T -unique?
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