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Martin Grüttmüller

Institut für Mathematik
Universität Rostock, 18051 Rostock

Germany
martin.gruettmueller@uni-rostock.de

Sven Hartmann

Information Science Research Centre
Massey University, Palmerston North

New Zealand
s.hartmann@massey.ac.nz

Abstract

A balanced incomplete block design BIBD(v, k, λ) is a pair (V,B) where V
is a v-set (points) and B is a collection of k-subsets of V (blocks) such that
each pair of elements of V occurs in exactly λ blocks. A k-tournament is
a directed graph on k vertices in which there is exactly one arc between
any two distinct vertices.

Given a k-tournament T , we call a BIBD(v, k, 2) T -orientable if it
is possible to replace each block B by a copy of T on the set B such
that every ordered pair of distinct points appears in exactly one of the
tournaments. We call a BIBD(v, k, 2) pan-orientable if it is T -orientable
for every possible k-tournament T .

There is an extensive literature on oriented triple systems. In this
paper, we investigate the case k = 4. We prove that pan-orientable
BIBD(v, 4, 2)s exist for any admissible order v with a finite number of
possible exceptions and show for each admissible order v except v = 7
the existence of a BIBD(v, 4, 2) which is not pan-orientable. Moreover,
we discuss the asymptotic existence of pan-orientable designs for general
k, and study the repeated block problem.

1 Introduction

Let k, v and λ be positive integers. A balanced incomplete block design BIBD(v, k, λ)
is a pair (V,B) where V is a v-set (points) and B is a collection of k-subsets of V
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(blocks) such that each pair of distinct elements of V occurs in exactly λ blocks.
A k-tournament is a directed graph on k vertices in which there is exactly one arc
between any two distinct vertices. A tournament is said to be transitive if whenever
(a, b) and (b, c) are arcs of the tournament, then (a, c) is also an arc.

Given a k-tournament T , we call a BIBD(v, k, 2) T -orientable if it is possible to re-
place each block B by a copy of T on the set B such that every ordered pair of distinct
points appears in exactly one of the tournaments. Clearly, this provides a decompo-
sition of the arc set of the complete directed graph Dv on v vertices into subgraphs
each isomorphic to T . In the other direction, by replacing each subgraph in such a
decomposition by a block containing all the vertices of the subgraph a BIBD(v, k, 2)
is obtained, the underlying design. We call a BIBD(v, k, 2) pan-orientable if it is
T -orientable for every possible k-tournament T .

There is an extensive literature on oriented triple systems; for a survey with original
references and proofs see Colbourn and Rosa [8]. For k = 3 there are two possible
choices for T , the cyclically directed triangle C and the transitively directed triangle
R, giving rise to Mendelsohn triple systems and directed triple systems, respectively.
Mendelsohn triple systems and directed triple systems exist whenever v ≡ 0, 1 mod 3
except when v = 6 (in which case there is no Mendelsohn triple system); see Huang
and Mendelsohn [13], and Mendelsohn [16]. Furthermore, Colbourn and Colbourn
[7] proved that every BIBD(v, 3, 2) is R-orientable. This implies that BIBD(v, 3, 2)s
which are both C-orientable and R-orientable exist for every v ≡ 0, 1 mod 3, v 6=
6. Note that not every BIBD(v, 3, 2) can be C-oriented as shown by Bennett and
Mendelsohn [3] who found a non-C-orientable BIBD(v, 3, 2) for every order v ≡
0, 1 mod 3.

A generalisation of block designs (allowing blocks of different size) called pairwise
balanced designs have been used to produce orientable triple systems [8] and similarly
we shall in this paper construct pan-orientable block designs using these structures.
Therefore, we continue with a definition of pairwise balanced designs and introduce
related concepts. Let K be a set of positive integers, and let v and λ be positive
integers. A pairwise balanced design PBD with index λ is a pair (V,B) where V is
a v-set (points) and B is a collection of subsets of V (blocks) such that each pair
of distinct points occurs in exactly λ blocks. A PBD(v, K, λ) is a pairwise balanced
design in which each block has size from the set K. In the case where λ = 1 we
also write PBD(v, K), for short. A group divisible design GDD with index λ is a
triple (V,G,B) where G is a partition of V into groups and (V,G ∪B) is a PBD with
index λ. A (K, λ)-GDD of type gt1

1
gt2
2

. . . gtr
r is a group divisible design in which each

block has size from the set K and in which there are precisely ti groups of size gi,
i = 1, 2, . . . , r.

In a sequence of three papers Wilson [18, 19, 20] developed a theory of PBD-closed
sets. A set S of positive integers is said to be PBD-closed if the existence of a
PBD(v, S) implies that v belongs to S. Let K be a set of positive integers and
let B(K) = {v | ∃ PBD(v, K)}. Then B(K) is a PBD-closed set called the PBD-
closure of K. Concerning the structure of PBD-closed sets Wilson showed that if S is
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a PBD-closed set, then S is eventually periodic with period β(S); that is, there exists
a constant v0(S) such that for every k ∈ S, {v | v ≥ v0(S), v ≡ k mod β(S)} ⊆ S.
The theory of PBD-closed sets is a powerful tool for investigating combinatorial
structures: a finite number of known examples of objects with a certain property
can establish the existence of an infinite set of these objects.

Unfortunately, the constant v0(B(K)) is not known in general. Therefore, one at-
tempts to determine B(K) for given K as accurately as possible. In particular, sets
K with at least one ‘small’ element have been widely investigated. For a survey see
[1, Tables 3.17, 3.18]. We further cite a result from Greig, Grüttmüller, Hartmann
[9] that will be used in Section 3.

Theorem 1.1 If v ≡ 1 mod 6 and v 6∈ Q{7,13,19,25,31,37,43} (see Table 3), then v ∈
B({7, 13, 19, 25, 31, 37, 43}).

In Section 2 we will prove an asymptotic existence result. In Section 3 we investigate
the case k = 4. We prove that pan-orientable BIBD(v, 4, 2)s exist for all admissible
orders v with at most 244 possible exceptions, and for each admissible order v except
v = 7 we demonstrate the existence of a BIBD(v, 4, 2) which is not pan-orientable.
Finally, in Section 4 we discuss some enumeration results.

2 Asymptotic Existence Results

Theorem 2.1 The set of orders for which a pan-orientable BIBD(v, k, 2) exists is
PBD-closed.

Proof. Let S be the set of orders v for which a pan-orientable BIBD(v, k, 2) exists.
Let v be a positive integer such that a PBD(v, S), say (V,B) exists. The size of
any block B ∈ B is from S and, therefore, a pan-orientable BIBD(|B|, k, 2) on the
elements of B exists with block set BB. Let U be the union of all sets BB as B ranges
over the block set B. It is easy to check that (V,U) is a BIBD(v, k, 2). Since (B,BB)
is pan-orientable for each block B ∈ B we find that (V,U) is pan-orientable, too.
This proves v ∈ S.

Though constructions for block designs do not forbid repeated blocks in general,
designs without repeated blocks have been widely studied in the literature. These
designs are said to be simple. For details on the repeated block problem in design
theory, the interested reader is referred to [6, 12]. Bennett and Mendelsohn [2] also
studied Mendelsohn triple systems whose underlying block design is simple. In such a
Mendelsohn triple system any two triangles have distinct vertex sets. This motivates
us to ask for simple pan-orientable BIBD(v, k, 2)s. Even more, for k ≥ 4, it is
interesting to ask for super-simple pan-orientable BIBD(v, k, 2)s where any two blocks
have at most two elements in common. The notion super-simple was introduced by
Gronau and Mullin [10].
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It is easy to see that the proof of Theorem 2.1 extends to simple or super-simple
pan-orientable designs.

Theorem 2.2 The set of orders for which a super-simple (or simple, respectively)
pan-orientable BIBD(v, k, 2) exists is PBD-closed.

Let T1, . . . , Th be given k-tournaments. If we place them on a k-element vertex set
U , we obtain a vector of k-tournaments. For h ≥ 2, there are in general various ways
to place the given k-tournaments on U resulting in various non-isomorphic vectors
of k-tournaments.

For a given vector T of k-tournaments, we define the degree-vector ∆T (x) of a vertex
x ∈ U to be the 2h-integer vector (outT1

(x), inT1
(x), . . . , outTh

(x), inTh
(x)), where

outTi
(x) denotes the out-degree and inTi

(x) the in-degree of vertex x in the tourna-
ment Ti, with i = 1, . . . , h.

Next, let T be a collection of vectors of k-tournaments, and let α(T ) denote the
greatest common divisor of the integers z where the 2h-integer vector (z, . . . , z) may
be written as an integral linear combination of the degree-vectors ∆T (x), with T
ranging over T , and x ranging over U . If h = 1 and T consists of a single k-
tournament T only, we also write α(T ) instead of α(T ).

Let (V,B) be a BIBD(v, k, 2) that is Ti-orientable for i = 1, . . . , h. Each block
B ∈ B induces a vector TB of k-tournaments. Lamken and Wilson [14] studied
the asymptotic existence of decompositions of complete directed multigraphs into
subgraphs each isomorphic to vectors of directed graphs.

From their results, one immediately derives that (V,B) satisfies the conditions

v − 1 ≡ 0 mod α(T ) (1)

v(v − 1) ≡ 0 mod k(k − 1)/2 (2)

if for every block B the vector TB is isomorphic to a vector in T . Even more, we
may conclude from [14, Thm. 1.2] that for almost all positive integers v satisfying
the conditions (1) and (2) there exists a BIBD(v, k, 2) (V,B) that is Ti-orientable for
i = 1, . . . , h and where for every block B, the vector TB is isomorphic to a vector in
T . For simple and super-simple BIBD(v, k, 2)s, the same conclusions may be drawn
from Hartmann [12, Thm. 2.2].

When looking for a pan-orientable BIBD(v, k, 2), we consider all possible k-tourn-
aments T1, . . . , Th, and let T consist of all possible non-isomorphic vectors of k-
tournaments. We denote α(T ) by αk, for short.

Theorem 2.3 The following conditions are necessary and asymptotically sufficient
for the existence of a (simple, super-simple) pan-orientable BIBD(v, k, 2):

v − 1 ≡ 0 mod αk (3)

v(v − 1) ≡ 0 mod k(k − 1)/2 (4)



PAN-ORIENTABLE BLOCK DESIGNS 61

We do not go into further details here since the results in [12, 14] are more general.
However, we refer to the proof of Theorem 3.1 for the special case of 4-tournaments
which we included into this paper for the sake of convenience.

Out-degree vectors of k-tournaments written as a non-decreasing sequence are known
as score sequences. A complete characterisation of score sequences is due to Landau
[15].

Theorem 2.4 A sequence of integers 0 ≤ out1 ≤ out2 ≤ · · · ≤ outk ≤ k − 1 is a
score sequence of a k-tournament if and only if

(

m

2

)

≤
m

∑

i=1

outi (5)

for m = 1, 2, . . . , k with equality holding for m = k.

It is easy to see that the parameter αk used in Theorem 2.3 is the least common
multiple of the values α(Ti), with i = 1, . . . , h. Further, α(Ti) is a divisor of k(k−1)/2
for each i = 1, . . . , h, and so is αk. From Landau’s theorem we may conclude an
explicit formula for αk. For small k we present αk in Table 1.

k 3 5 7 9 11 13 15 17 19 21
αk 1 2 3 12 5 6 105 8 9 210

Table 1: Values αk for odd k = 3, 5, . . . , 21

Corollary 2.5

αk =

{

pβ−1(k − 1)/2 if k is an odd prime power k = pβ,

k(k − 1)/2 otherwise.

Proof. For even values of k, it is easy to construct a k-tournament T with out-
degree vector (0, k/2, . . . , k/2). For this k-tournament, we find α(T ) = k(k − 1)/2
which immediately yields αk = k(k − 1)/2.

For odd values of k, the situation is more complicated. Obviously, (k − 1)/2 is a
divisor of αk since the sum of out-degree and in-degree of an arbitrary vertex is k−1
and, therefore, in any linear combination (z, z) of degree-vectors ∆T (x) we have that
2z is a multiple of k−1. Now, if k = d ·k′ is an odd composite integer with d, k′ ≥ 3,
then the sequence defined by

outi =

{

(k − d)/2 if 1 ≤ i ≤ (k − k′)/2,
(k + d)/2 if (k − k′)/2 < i ≤ k,

satisfies (5) and is therefore the score sequence of a k-tournament Td. Each vertex of
Td has an out-degree which is a multiple of d. Hence, α(Td) is a multiple of d(k− 1).
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This in turn implies that αk is a multiple of lcm{α(Td) : d|k with 3 ≤ d < k}.
Therefore, αk = k(k − 1)/2 holds for odd composite k which are not a prime power.

For an odd prime power k = pβ the same argument implies that αk is a multiple
of pβ−1(k − 1)/2. To show that αk is precisely pβ−1(k − 1)/2 it suffices to find for
any k-tournament T a linear combination (z, z) of degree-vectors ∆T (x) where z is
not a multiple of k(k − 1)/2. Let T be a k-tournament and consider its out-degree
sequence. If we have out1 = (k−1)/2, or out1 = 0 and outk = (k−1), then it is easy
to obtain such a linear combination for z = (k− 1)/2. Otherwise, put a = in1 − out1

and b = outk− ink. Both a and b are even positive integers smaller than k. Moreover,
put c = lcm{a, b}, and z = c(a + b)/(ab) · (k − 1)/2. Note that z < k(k − 1)/2 and

(z, z) = c/a · (out1, in1) + c/b · (outk, ink)

hold, that is, we have found the desired linear combination.

Corollary 2.6 Let S be the set of orders v for which a pan-orientable BIBD(v, k, 2)
exists. Then S is eventually periodic with period

β(S) = k(k − 1)/2

and a necessary and asymptotically sufficient condition for v to be an element of S
is

v ≡

{

1 or k mod k(k − 1)/2 if k is an odd prime,

1 mod k(k − 1)/2 otherwise.

Proof. Suppose that v ∈ S. It suffices to check that v fulfills condition (3) and (4)
in Theorem 2.3 with the αk determined in Corollary 2.5. We consider three cases.
First, let k be an even integer or an odd non prime power, then αk = k(k − 1)/2
and, therefore, (3) requires v ≡ 1 mod k(k − 1)/2. Clearly, then also (4) is satisfied.

Second, let k = pβ be an odd prime power with β ≥ 2, then αk = pβ−1(k − 1)/2.
Now (3) is satisfied if and only if v = m · pβ−1(k − 1)/2 + 1 for some m ∈ N. If
m ≡ 0 mod p (that is v ≡ 1 mod k(k − 1)/2), then v satisfies immediately (4). If
otherwise m 6≡ 0 mod p, then in order to fulfill (4) we need that p divides v. But this
means p divides 1, a contradiction. Hence v ≡ 1 mod k(k − 1)/2 is the only possible
solution.

Finally, let k be an odd prime, then αk = (k − 1)/2. Again, (3) implies v = m ·
(k − 1)/2 + 1 for some m ∈ N. Obviously, v ≡ 1 mod k(k − 1)/2 satisfies (4). If
m 6≡ 0 mod k, then again (4) implies that k divides v. We consider two subcases. If
m = 2m′ is even, then v = m′k − m′ + 1. Thus k divides 1 − m′ and this in turn
implies m′ = m′′k +1 for some m′′ ∈ N. So, every v = 2m′′k(k− 1)/2+(k− 1)+1 ≡
k mod k(k−1)/2 is another solution. If m = 2m′+1 is odd, then v = m′k−m′+(k−
1)/2 + 1. Hence, k divides −m′ + (k − 1)/2 + 1. This implies m′ ≡ (k + 1)/2 mod k
or, equivalently, 2m′ + 1 ≡ 2 mod k. Therefore, we obtain the same residue class
modulo k(k−1)/2 as before: v = m′′k(k−1)/2+2(k−1)/2+1 ≡ k mod k(k−1)/2.
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3 Existence Results for k = 4

We will use the PBD-closure result together with Theorem 1.1 to establish the exis-
tence of pan-orientable block designs in the case k = 4 up to 244 possible exceptions.
There are four non-isomorphic 4-tournaments T1, . . . , T4 which are best characterised
by their out-degree vectors:

T1 : (3, 2, 1, 0)
T2 : (3, 1, 1, 1)
T3 : (2, 2, 1, 1)
T4 : (2, 2, 2, 0)

Figure 1: Drawings of the four non-isomorphic 4-tournaments T1, . . . , T4

To begin with, we repeat the necessary conditions for the existence of a pan-orientable
BIBD(v, 4, 2) stated in Theorem 2.3. For the sake of convenience, we include a short
proof of these necessary conditions which basically follows the approach taken by
Wilson in [21].

Theorem 3.1 A pan-orientable BIBD(v, 4, 2) exists only if v ≡ 1 mod 6.

Proof. Suppose there exists a Ti-decomposition of the complete directed graph Dv

for i = 1, . . . , 4. There are two main conditions which need to be satisfied. First,
each tournament has 6 arcs, so the number of arcs v(v−1) of Dv needs to be divisible
by 6.

For the second condition, we study the degree-vector τ(x) = (out(x), in(x)) of a
vertex x in some directed graph. In the complete directed graph Dv, each vertex y
has degree-vector τ(y) = (v−1, v−1). Hence, if a Ti-decomposition of Dv exists then
the set of arcs incident with a vertex of Dv is partitioned by the isomorphic copies
of Ti so that the vector (v− 1, v− 1) is a non-negative integral linear combination of
the degree-vectors τ(x), where x runs through the vertex set of the tournament Ti.

As before, let α(Ti) denote the greatest common divisor of the integers z where (z, z)
is an integral linear combination of the degree-vectors τ(x) with x ranging through
all vertices of Ti. Clearly, α(Ti) divides v−1. The degree-vectors of the 4-tournament
T1 are (3, 0), (2, 1), (1, 2), (0, 3), and thus α(T1) = 3. Similarly, we find α(T2) = 6,
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α(T3) = 3, and α(T4) = 6. Therefore, α4 = lcm{α(T1), . . . , α(T4)} = 6 divides v − 1.
This implies v − 1 ≡ 0 mod 6.

Note, that reversing the direction of all arcs in a tournament isomorphic to T1 yields
again a tournament isomorphic to T1. Similarly, the reverse of a tournament iso-
morphic to T3 is again a tournament isomorphic to T3. Finally, the reverse of a
tournament isomorphic to T2 is a tournament isomorphic to T4, and vice versa. The
latter observation yields the following two lemmas.

Lemma 3.2 A BIBD(v, 4, 2) is T2-orientable if and only if it is T4-orientable.

Lemma 3.3 A BIBD(v, 4, 2) containing a repeated block is not T2-orientable.

Proof. Suppose there is a block B that occurs twice. If the first copy of B is
replaced by a tournament T isomorphic to T2, then the second copy of B has to be
replaced by the reverse of T which is isomorphic to T4.

Next, we observe that not every BIBD(v, 4, 2) is pan-orientable.

Theorem 3.4 There exists a BIBD(v, 4, 2) for every order v ≡ 1 mod 6, v > 7,
which is not pan-orientable.

Proof. For every v ≡ 1 mod 12, v > 1, there exists a BIBD(v, 4, 1) [4]. Adjoining
a second copy of each block yields a BIBD(v, 4, 2) which is not T2-orientable by
Lemma 3.3 and, therefore, not pan-orientable.

Otherwise, let v ≡ 7 mod 12. To begin with, we look for a BIBD(v, 4, 2) with at
least one repeated block. The existence of such a BIBD would settle the claim by
Lemma 3.3 as above. Note that there exists a BIBD(4, 4, 2) which consists of two
copies of the block {0, 1, 2, 3}), and also a BIBD(7, 4, 2) [11, Lemma 4.4]. Hence, it
suffices to find a PBD(v, {4, 7}) with at least one block of size 4. By replacing the
blocks of this PBD by the BIBDs of order 4 and 7, a BIBD(v, 4, 2) with at least
one repeated block can be obtained. In fact, for v ≡ 7 mod 12, v > 19 there exists
such a PBD with exactly one block of size 7 and all the remaining blocks of size 4,
a PBD(v, {4, 7∗}), as shown by Brouwer [4].

It remains to consider the case v = 19. We take a ({4}, 2)-GDD of type 36 (con-
structed explicitly by Brouwer, Schrijver and Hanani [5]), adjoin an infinite point,
and replace each group and the infinite point by two copies of a block of size four to
obtain a BIBD(19, 4, 2) containing repeated blocks. This BIBD is not pan-orientable
by Lemma 3.3, again. This completes the proof.

To continue with, we give direct constructions for some small pan-orientable BIBDs.
In particular, we show that the unique BIBD(7, 4, 2) is pan-orientable.

Lemma 3.5 There exists a pan-orientable BIBD(v, 4, 2) for every order v ∈ {7, 13,
19, 25, 31, 37,43}.
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Proof. Consider an ordered block (a, b, c, d). To obtain a 4-tournament from this
block, we fix an orientation of the arcs as follows:

T1 : ab, ac, ad, bc, bd, cd
T2 : ab, ac, ad, bc, cd, db
T3 : ab, ac, bc, bd, cd, da

For each order v under inspection, it suffices to find for each i = 1, 2, 3 a collection
of ordered blocks which, with the fixed orientation above, form a Ti-decomposition
of the complete directed graph Dv, and which yield the same BIBD(v, 4, 2) if the
blocks are considered to be unordered. Note that in view of Lemma 3.2 we do not
need to consider T4.

For v = 7, we take the ordered base block (0, 2, 1, 5) to generate a cyclic T1-
decomposition of D7. Similarly, we take the ordered base block (2, 0, 1, 5) to produce
a cyclic T2-decomposition of D7. Note, that every non-zero element of Z7 occurs ex-
actly once as a difference b− a for some arc ab. There is no cyclic T3-decomposition
of D7, but the following ordered blocks provide a non-cyclic solution: (0, 1, 2, 3),
(5, 4, 1, 0), (4, 6, 2, 0), (0, 6, 3, 5), (5, 2, 6, 1), (3, 1, 6, 4), (3, 2, 4, 5), cf. Figure 2. Recall
that there exists only one BIBD(7, 4, 2). That is, the underlying BIBDs for i = 1, 2, 3
are the same as desired.

Figure 2: T3-decomposition of D7

For a cyclic T -decomposition of the complete directed graph Dv with v ≡ 1 mod 6 one
needs (v−1)/6 ordered base blocks. These can be created from an ordered super base
block by multiplying with the elements of a subgroup of index 6 of the multiplicative
group GF (v)∗. Let ω be a generating element of GF (v)∗, define ξ = ω6, and consider
the subgroup generated by ξ. In Table 2, we list for each order v a generator of
GF (v)∗, the elements of the subgroup, and for each i = 1, 2, 3 an ordered super base
block. It is easy to check from the table that if we multiply the differences for the
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arcs arising from the ordered super base block with the elements of the subgroup,
then each element of GF (v)∗ occurs exactly once.

v ω subgroup < ξ > T1 T2 T3

13 2 {−1, 1} (0, 1, 4, 6)
19 2 {7, 11, 1} (1, 0, 6, 2) (0, 1, 6, 2) (0, 2, 1, 6)
25 ∗ {ξ,−1,−ξ, 1} (0, 1, ω + 2, 3ω)
31 3 {16, 8, 4, 2, 1} (1, 0, 12, 9) (0, 12, 9, 1) (0, 9, 1, 12)
37 2 {27, 26,−1, 10, 11, 1} (0, 1, 3, 24)
43 3 {41, 4, 35, 16, 11, 21, 1} (0, 1, 25, 28) (0, 28, 25, 1) (0, 28, 25, 1)

Table 2: Parameters for the construction of small pan-orientable BIBDs; * indicates
that the generating element ω is a root of the primitive polynomial x2 + x + 2

For v ≡ 1 mod 12, we can use the same ordered super base block for each i since
−1 is an element of the subgroup and this allows one to reverse the direction of
any two opposite arcs independently from the direction of the other arcs. That is, a
solution for i = 1 can be transformed to a solution for i = 2 and 3. Otherwise, for
v = 19, 31, 43, we can still use the same elements in the super base block, only the
ordering must be different. Thus, in both cases the underlying BIBDs for i = 1, 2, 3
are the same as desired.

Theorem 3.6 There exists a pan-orientable BIBD(v, 4, 2) for all v ≡ 1 mod 6 with
244 possible exceptions, the largest being 6631, cf. Table 3.

Proof. By Theorem 2.1 and the pan-orientable BIBD(v, 4, 2)s constructed in
Lemma 3.5 we know that there is a pan-orientable BIBD(v, 4, 2) for each v ∈
B({7, 13, 19, 25, 31, 37, 43}). The claim now follows from Theorem 1.1.

Theorem 3.7 There exists a super-simple (or simple, respectively) pan-orientable
BIBD(v, 4, 2) for all v ≡ 1 mod 6 with 244 possible exceptions.

Proof. It is not difficult to check that all underlying BIBDs constructed in Lemma
3.5 are super-simple (and thus simple). Therefore, Theorems 1.1 and 2.2 imply the
claim.

4 Enumeration Results

In this section, we report briefly on some enumeration results with respect to the
property of being pan-orientable. We investigated all 2461 BIBD(13, 4, 2)s which we
constructed using the program DESY implemented by Pietsch [17]. It is remark-
able that all BIBD(13, 4, 2)s are T1- and T3-orientable. In view of the fact that all
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55 61 67 73 79 97 103 109 115 121 127 139 145 157 163 181 193 199 205 211 229 235
241 265 271 277 283 289 313 319 331 349 355 367 373 391 397 409 415 433 439 445 451
457 487 493 499 505 643 649 655 661 667 685 691 697 709 727 733 739 745 751 769 781
787 793 799 805 811 853 859 865 871 877 937 943 949 955 979 985 991 997 1003 1063
1069 1231 1237 1255 1315 1321 1327 1357 1363 1375 1381 1399 1405 1411 1417 1423
1441 1447 1459 1465 1567 1579 1585 1609 1693 1711 1717 1819 1825 1831 1837 1843
1861 1867 1879 1885 1903 1921 1927 1999 2005 2155 2161 2173 2257 2287 2299 2407
2455 2461 2467 2473 2491 2497 2509 2515 2533 2551 2557 2701 2707 2725 2797 2803
2827 2833 2839 2845 2851 2875 2881 2893 3001 3007 3013 3019 3037 3043 3049 3055
3061 3079 3085 3091 3097 3121 3127 3139 3163 3337 3349 3373 3379 3391 3397 3415
3421 3427 3433 3439 3457 3469 3475 3481 4471 4483 4507 4519 4531 4555 4573 4591
4597 4615 4633 4639 4651 4867 5059 5065 5071 5077 5101 5107 5113 5119 5137 5143
5149 5155 5179 5185 5191 5197 5203 5347 5353 5365 5371 5413 5431 5437 5449 5455
5491 5497 5515 5521 5527 5533 5539 5581 5935 5941 5953 5995 6001 6613 6619 6631

Table 3: Q{7,13,19,25,31,37,43}

BIBD(v, 3, 2)s are R-orientable we like to ask the corresponding question for k = 4,
namely: Is it true that all BIBD(v, 4, 2)s are T1- and T3-orientable?

1576 of the BIBD(13, 4, 2)s are simple. 1529 of the simple BIBD(13, 4, 2)s are pan-
orientable. That is, there are BIBD(13, 4, 2)s that are simple, but not pan-orientable.
Consequently, there are reasons other than the one mentioned in Lemma 3.3 that
cause a BIBD(v, 4, 2) to be not T2-orientable.

Appendix

For the sake of completeness, we list in Table 3 the set Q{7,13,19,25,31,37,43}, that is, the
set of those orders v for which the existence of a PBD(v, {7, 13, 19, 25, 31, 37, 43})
(see Theorem 1.1) and the existence of a pan-orientable BIBD(v, 4, 2) (see Theorem
3.6) is unknown.
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[9] M. Greig, M. Grüttmüller and S. Hartmann, Pairwise balanced designs whose block
size set contains seven and thirteen, J. Combin. Designs, 2007. in press.

[10] H.-D.O.F. Gronau and R.C. Mullin, On supersimple 2-(v, 4, λ)-designs, J. Combin.

Math. Combin. Comput. 11 (1992), 113–121.

[11] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math.

11 (1975), 255–369.

[12] S. Hartmann, Superpure digraph designs, J. Combin. Designs 10 (2002), 239–255.

[13] S.H.Y. Hung and N.S. Mendelsohn, Directed triple systems, J. Combin. Theory Ser.

A 14 (1973), 310–318.

[14] E.R. Lamken and R.M. Wilson, Decompositions of edge-colored complete graphs, J.

Combin. Theory Ser. A 89 (2000), 149–200.

[15] H.G. Landau, On dominance relations and the structure of animal societies, III: The
condition for a score structure, Bull. Math. Biophys. 15 (1953), 143–148.

[16] N.S. Mendelsohn, A natural generalization of Steiner triple systems, Computers in

Number Theory (1971), pp. 323–338. Academic Press, New York.
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