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INTRODUCTION 

A maximal planar graph (MFG) is a planar graph to which no more edges can be added 

without destroying its planarity. A plane embedding of such a graph is often referred to as 

a plane triangulation, since all faces are triangular. All embeddings of a particular N1PG on 

a sphere are topologically equivalent. Different plane embeddings are merely different 

stereographic projections of this sphere embedding or its reflection. 

If G is a maximal planar graph with vertex set V and edge set E the Euler Polyhedron 

Formula lEI = 31VI - 6, and the number of faces = 21VI - 4. 

An application of the transformation of MPG's is found in facilities layout planning. An 

MPG can be used to represent the adjacency of facilities in a layout. Each vertex 

represents a facility and two vertices are joined by an if they are adjacent in the 

layout. Each pair of facilities is given a weight which represents the benefit of making 

them adjacent in the layout. The adjacency problem for the layout plwmer is to construct 

an MPG with the maximum sum of edge weights. This problem is fully explained and has 

been shown to be NP-complete by Giffin [8]. Many heuristics have been developed to 

obtain good solutions in reasonable time. These fall into two categories, construction 

heuristics and improvement heuristics. Construction techniques begin with a small graph, 

usually a triangle or tetrahedron, and add vertices one at a time. Improvement techniques 

begin with a constructed solution and attempt to increase the total benefit by exchanging 

some of the edges of the MFG for edges of higher weight. 

The diagonal operation and the r -operation are two edge substitution operations which 

have been used in improvement heuristics. The r-operation is explained in detail in the 

next section. The diagonal operation has been used by many authors and appears under 

this name in [5] and [9]. In [7] it is the first case of the a-operation, and [10] uses the 

terminology of [7]. The r-operation, developed by AI-Hakim in [1], is an extension of 

the diagonal operation which overcomes the difficulties posed by braced edges (see [1] or 

[6] for a full explanation of bracing). The r -operation has been used in two improvement 

heuristics in [2] and [3]. 

It has been conjectured in [7] and shown in [5], [9], [10] that any MPG can be 

transformed into any other MPG on the same vertex set by a sequence of diagonal 

operations. As the r -operation includes the diagonal operation as a special case, this is 
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of 

shortest sequence. 

This paper will show that even for very similar the 

sequence of operations can be To measure the 

between two MPG's A and B. with the same vertex set and 

respectively (lEAl IEBI), we define their as lEAl 

Theorem 1 shows that even when the edjge-dHleI'enc:e is only three, the of the 

shortest sequence of for a vertex set. 

This has a serious for the facilities problem. Even when the current best 

solution contains almost all of the of the optimal MFG it may be far away the 

in terms of the number of operations reqlUlled. 

It re'[)oI'1ted in [1], without that if two MPG's have two, then at 

-Otler~lti(mS are needed for the transformation. This result is in 

Theorem 2. The of Theorem 2 is by an exhaustive list of and very 

only an outline of the The obtained from the author. 

This result shows that an edj:;e-,rutterlenc:e of three is necessary for 

The distinction between cases with ooJ:;e-wtteren<:e 

two comes from the j-edgl:!-cIOnIlected 

of have an edge-wtterem:e of three or 

more the sutl~lPh of con::rrnon may be disconnected. These disconnected 

may be arran~~ed cllften!ntJly in each of the MPG's. Hence transformation involve 

the rearrangement of large blocks of common 

without that any pair of MFa's with 

difference one, single will make the transformation. This result stated in 

Theorem and proof by an exhaustive list of cases is Hence the 

is the best single method. Any method which seeks to imlJrmre 

upon the -ot)er,ltlon must be able to replace number ina iteration. 

Foulds and Robinson [7] sug;ges:ted such a method. showed that a sequence of a-

operations and p-operations would transfOlID any MPG into another with the same vertex 

set. The flrst case of the a-operation is the diagonal opc~rat1O:n, the second case is 
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Case (ii) 

Case (iii) 

The (i) -op,erallon ab cd. 

U.L<l,,,,V!J<:U of cd of the fonn ae or be. 

the dla.gonal of cd, ae or be. In 

0.3 The Case 

ab is cd which has uu.'F,v.UUJ. distinct 

from a b. 

The may have two essen'[lal.l) different CO][Hlgu:ratllons. In each one 

the ab may be There is path in the 

from to one of e b, c or d. If the 

path is between a and then there In this 

case ab may be by any be as shown in 

0.4. The shaded area in 0.4 indicates an arbitrary subgraph which 

contains the between a and e. Otherwise, such paths exist between a 

and f and between band e, and ab may be replaced by ef or ae or 
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TI-IEOREM t 
For any 

Exchanging the labels a and b in Figure 0.4 will produce the appropriate 

diagrams for this configuration. 

0.4 The Case (iii) ['-operations on 00. 

THE RESULTS 

integer k, there exists a pair of maximal planar graphs, on the same set of 

3k+ 1 vertices, with edge-difference three, such that to transfonn one into the other 

requires 2k-l r -operations. 

Given any integer k, we construct two maximal planar graphs A and B with 

difference three as follows:-

3k vertices on a sphere, at the intersections of k latitudes and three meridians. 

Connect the three vertices on each latitude to each other. Connect each latitude to the 
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au.ila""'~Ul one by connect adJ!ac!~nt vertices on each meridian, and connect 

each except those the most southern to vertex the south-

east. Make two such consider these to be the common of A and 

B. A add the 3k+ 1 st the north and it to each on the 

northernmost latitude. To B add the vertex the south and connect it to each 

ea~~e-(1lttlerel[lCe of vertex on the southernmost latitude. The 

Plane of shown in 

and 

1.2 A embecldlflg of B for k 4. 
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The possible on the incident with V3k+l are Case (li) f-operations 

which have the effect of V3k+l one of the of the northernmost latitude 

into an adjacent face. The vertex still has 3 and hence the only f-operations 

available are Case (ii) which have the effect of moving V3k+l into an face. The 

length of the shortest of faces from the northernmost latitude to the 

southernmost latitude is 2k-2. Hence A into B 2k-l Case (ii) r-
operations. 0 

heuristics. Consider that ~ of 

Theorem 1 is the problem, and that graph Q is the 

current best known solution. As Q and have all but three edges in common graph Q 

will also be in 

are to 

away the 

Hence any heuristic which 

to overcome the difficulties 

oper3ltlCms re(IUll~ed to transform this solution into the 

decrease in the total weight of the graph in the intennediate 

to be local optimum, and it may be many steps 

f-operations must have some facility for negative steps, 

local optima. 

A of Theorem 1 can be transformed into B by one \J-operatic)fl (see [7]). Use 

[j-cmeratlon in C0I11UJl1CLLOn with the f-operation may not remove the possibility of 

sequence. Similar pairs of graphs can be constructed with a common 

an edge-difference greater than three, but 

·Olt!erCI1ce need not be The ~-operation can only act on vertices of 

three and the common Slit)gr:lprlS can be chosen to limit its use. The properties of a 

combined sequence are under the author. 

two maximal have ed:ge-Ol!ter'en(:e two, then one can be transformed into 

the other by two or three r-Oj::lenlucIIls. 

number of subcases need to be considered in this proof. To make it easier to 

follow, the subcases are numbered and a decision tree with them is shown in 
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Figure 2.1 Decision tree. 
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Figure 2. L Only the first two levels of the decision tree are described here. Full details of 

the proof can be obtained from the author. 

Let the two maximal planar graphs be Ci and '0'3. Let al and a2 be the edges of Ct which 

are not in '0'3. Embed the graph Ct on a sphere. Call this embedding A. 

Case 1. al and have common vertex, say vertex a. 

Suppose al is ab and a2 is ac. 

Case 1.1 The edge be exists in Ct. 
Locate the vertices p and q such that p :;t: c, q :;t: b and abp and aeq are faces of A. Form 

A' by re-embedding A on the sphere with equator apbcqa and edges al and a2 in the 

northern herllsphe:re, as shown in Figure 2.2. The edge pq mayor may not be in Ci. In 

either case, neither or one (but not both) of the pc or qb may be in Ct. Assume 

WLOG that if one of these exists in Ci that it is pc. Consider the four subcases, 

where neither edge, pq only, pc only or both of the edges are in Ct. It can now be shown 

directly that the only possible embeddings of '0'3 can be obtained by two or three r-
operations on A'. 

p 

b 

q 

e 

2.2 The northern hemisphere of N. 

Case 1.2 al and a2 have a common vertex but the be does not exist in 

Ci. 
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Form embedldlllig A on the the north all vertices which 

are connlected to on the equator, and incident with a in northern 

shown in 2.3. Neither, the 

may be A' If one or both of these are in A' a new errmeao.mg 

each of the three subcases it can be shown that 

transform (or AI!) into any embedldirtg 

northelm hc:nnsph.ere of be 

Case 

Assume 

abp 

and 

cdr 

q, r and represent four, three 

Case 

Form 

p, q, 

northern helulS;phere 

common vertex~ 

q, r, 

There are three OIUl)\"(l"'-',, 

s distinct. 

with ab 

and -j:: and 

consider, when p, 

the none of 

the northern helml~spl:1len~. Then either r or is in the 

on the 

... &,n ... .>U.u .... 1 ...... "" .... and HPlrT,r'p" p and r in the northern 

is shown 2.4. Form B 

emlbe,d.dJmg 03 on with the same equator and southern as A". There is 

only one configuration of the northern hemisphere of B, which can be obtained from AI! 

the Case (i) ah ~ pq and cd rs. 
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q 

Figure 2.4 The northern hemispheres of AI! and B whenp, q, rand s are all distinct. 

Case 2.2 Three q, r and s are distinct vertices. 

Assume WLOG that p r. There are three subcases, when neither, one or both of the 

edges pq and ps in CJ.. 

When neither of the are in At there is only one possible embedding B of n. The 

Case (i) r-operations ab pq and cd -t ps will transform At into this embedding, as 

shown in Figure 

p 

Figure 2.5 The northern hemispheres of Aft (left) and B (right) when p = r and 

neither pq nor ps are in A. 
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If or both pq are in A' then further consider 

of vertices a, 

obtained from the COllTe:;pond:mg Ali 

that for con:t1gurati(m of <l 

be 

is 

shows MFG. The external face contain common It is not 

construct an MFG 11 with the and cd. 

s d 

2.6 An MFG <l for which no n exists. 

Case 2.3 Only two of p, q, r and s are distinct vertices. 

Assume WLOG that p == rand q == s. There are two subcases, when pq is not an edge of 

A and when it is. In each of these there is a number of possible embeddings of 11. It can 

be shown directly that all of these can be obtained from the corresponding A by two or 

three r-operations.D 

This result confirms that an edge-difference of three is a necessary condition for Theorem 

1 to hold. 

(Stated without proof in 

If two maximal 

the other a 

graphs have edge-difference one then one can be transformed into 

r-operation. 
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Let the two maximal planar graphs be CJ. and ~. Let a be the of CJ. which is not in 

~. Label the vertices of Ct in such a way that a connects vertices a and b. Embed the 

graph CJ. on a sphere. Call this embedding A. Label the vertices of A in such a way that 

abs and abt are faces of A. 

Case 1 The st is not an edge of A. 

Form A' by re-embedding A on the sphere so that the equator is asbta and the edge ab is 

alone in the northern hemisphere. Form B embedding "03 on a sphere such that the 

equator is asbta and the southern hemisphere is the same as that of A'. The northern 

hemisphere of B does not contain ab but B is ma'(imal planar so B must contain the edge 

st, as shown in 3.1. Hence Ct can be transformed into ~ by the Case (i) r-
operation ab -7 st. 

s 51 

a b a b 

A' B 

3.1 The northern hemispheres of A' and B. 

Case 2 The edge st is an edge of A. 

Locate the vertices p and q such that stp and stq are faces of A. If {P. q} ={ a, b} then Ct is 

the complete graph on four vertices as shown in Figure 3.2. Hence it is not possible for 

this to occur as CJ. and "03 have edge-difference one. 

s 

p == a 

3.2 A plane embecldlflg of the complete graph on four vertices. 
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It is that one of the vertices p or q is one of the vertices or b. In this case 

assume without loss of that p b. If b, p and q are all distinct, 

assume WLOG that there is a between p and b which does not pass b, s, t, 

or q. In either case, form AI by re-en:lbedd:mg A on the with asqta as the equator 

and p and b in the northern Form B ~ with the same equator 

and southern helm15;ohere as helmu;phere of A and the 

three northern of B for the case when p b. Each of these can be 

obtained from A the one of the three (iii) -o'j:,enltlC}llS ab ap or or pq. 

Figure shows the northern nelnls:pnere of A and the possIble northern 

hemisphere of B for the when p b. In this case can transformed into B the 

Case (ii) 

a q 

s 

q q 

Figure 3.3 When p b, the tlrree configurations of can be obtained 

the three Case (iii) r-operations ab 4 ap or or pq. 
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s s 

a q 

3.4 Whenp = b, A' is transfolTI1ed into B by the Case (ii) r-operation ab -7 bq.D 

Take an MPG Cl say, and select one of its edges. We can generate all possible MPG's 

with all the of Cl except the one we have specified by applying the appropriate r-

ope~ration to that edge. Hence any MPG has one or three nellgnoOlJrS with edge-difference 

one for each of its edges. 

For any positive integer k, there exists a pair of maximal planar graphs, on the same set of 

2k+6 vertices, with edge-difference one, such that to transfolTI1 one into the other requires 

more than k diagonal operations. 

The maximal graphs A and B shown in Figures 4.1 and 4.2 have edge-difference 

one, as EA \EB = {ab} and {af}. Each of A and B has 2k+6 vertices. 

Transforming A into B requires more than k diagonal operations. 

If the added to A (destroying its planarity) it must cross at least k + 1 edges of 

A. Re-embedding the graph A cannot reduce this crossing number. 

The process of re-embedding corresponds to the stereographic projection of the plane 

onto a sphere (points "at infinity" are projected onto the north pole). The north pole is 

then positioned in another face of the and the graph is stereographically projected 

once more onto the plane. Hence if a different embedding exists, say A', which when qf 

is added has a crossing number less than k+ 1, the graph A'+{afl can be stereographically 

n,"r\1pr"tpri onto the sphere and the north pole repositioned in face dg2g3 and then projected 
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onto the embedding of A as shown in 

north pole can be on either side of it, and 

of A. The edge a/retains the 

the face dg2g3 then the 

pass through the external face 

of stereographic projection. 

But no path for CrC)SSlngs, hence no other embedding A' 

has less than k+l rrn,<11:11ncrl: 

Figure 4.1 The not in graph B. 

The graph B with one ai, not in graph A. 

21 



If to be introduced a the crossed by af must be 

moved out of the way first. One such sequence of moves 

1. gje ~ gl 

&!c ~ 

k. ~ bf 

k+l. be ~ at 

Further U!<Jl,:';\JiU.H op(;ra1:lOI1S then recluu'ed to ah and the 

l~i~k. 

Thus for any 

constructed such that more than k UJ.U,E,VJLlUJ. Op(~raltlOIls 

edge-dlttererlce one can be 

rpr",,,·,,d to transform one into 

the 

The 

but many U!U.F,vuu., opt;ranons. 

one Case (iii) [-operation, 

rot:ltional features of the [-operation 

are worth the small amount of additional time and 

heuristic. 

CONCLUSIONS 

reqlUlI'ea in an improvement 

The nature of MPa's the contrast between cases of 

difference one or two (Theorems 2 and 3) and cases of three or more 

(Theorem 1) as in the latter 

components may then be 

may be disconnected. The 

in the two MPG's, so that the 

transformation may involve the rearrangement of large components. 

of the -oj::1enmOln identified the four theorems are relevant to its use in 

facilities fJ<UH1HliS' Theorem 3 shows that the -Of)enmCm is the best way 

of 
illustrates the (',,,,,,, ... ,,,,., 

results recommend the 

each step. Theorem 4 

operatlon. Both of these 

of the opleran01n in heuristics for the adlaC(~nc:y ,,,'rnr,lplcn 

Flowever Theorem 1 suggests caution in its use, as such heuristic must be able to escape 
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from local optima. Vanous schemes to acheive this are under investigation. Theorem 1 

also encourages the search for an alternative to the one-edge-at-a-time approach. 

It must be remembered that this an P-complete problem, so there must be some tradeoff 

between solution quality and efficiency considerations. 
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