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Abstract . A partially ordered set (X, S) is called sharply
transitive if its automorphism group is sharply transitive on X, that
is, it is transitive and the stabilizer of every element is trivial. It is
shown that every free group is the automorphism group of a sharply
transitive partially ordered set. It is also shown that there exists a
sharply transitive partially ordered set (X, S) having some maximal
chains isomorphic to the rationals and automorphism group isomor-
phic to the additive group of a vector space of dimension two over the

rationals.

The automorphism group Aut(X, <) of a partially ordered set
(X, <) is the group of all permutations g of X such that z < y if
and only if zg < yg for all x,y € X. The partially ordered set
(X, <) is called sharply transitive if Aut(X, <) is sharply transitive
on X, that is, it is transitive and the stabilizer of every element is
trivial. Sharply transitive linearly ordered sets were first studied by
Tadashi Ohkuma [5], [6], and later by A.M.W. Glass, Yuri Gurevich,
W. Charles Holland and Saharon Shelah [4] (see also [3],[7]). The
author gave some constructions and non-existence results for sharply

transitive partially ordered sets in [1] and [2].

Australasian Journal of Combinatorics 4(1991),pp 269-275



If G is the (full) automorphism group of a sharply transitive par-
tially ordered set then either G has order at most 2 or GG contains
an element of infinite order. However, this condition is not sufficient
(Prop. 2.1 in [1]). All examples of non-trivial sharply transitive par-
tially ordered sets constructed in [1] and [2] contain an infinite cyclic
group in their centre. We shall show in this paper that this is not a
necessary property. Indeed every countable free group (which has a
trivial centre if it has more than one free generator) is isomorphic to
the automorphism group of a sharply transitive partially ordered set.
Another common feature of the partially ordered sets in [1] and [2] is
that maximal chains are order-isomorphic to the integers. We shall
construct a countable sharply transitive partially ordered set having
maximal chains order-isomorphic to the integers and to the rationals
(and to some other countable order types) whose automorphism group
is isomorphic to the additive group of a vector space of dimension two

over the rationals.

Theorem 1. Let F be a free group on finitely or countably many
generators. Then there exists a partial order on F' such that Aut(F, <)
is sharply transitive on F' and Aut(F, <) = F via the right regular
representation. All maximal chains in (F, <) are order-isomorphic to

the integers.

Proof. Let (F,-) be freely generated by {a;|s € I} where I =
IN or I = {0,1,---,n} for some n € IN, and let I' = I\{0}. The
result is obvious for |[I| = 1. For z € F and i € I' define z < a,z,
T < aa,z and ¥ < a,"tta; 'z, Let < be the reflexive, transitive
closure of this relation. Tn order to show that it is a partial order,
we have to show that it is antisymmetric. Suppose z,y € F with
z < yand y < z. Then there exist ¢1,-+, ¢y, Cry1, -, Cs € {Q0, QG0

a,*la; )i € I'} such that ¢ = ¢y -+ - ¢,y and y = ¢,41 -+~ ;2. Hence
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T = CCryy - Csk, and thus ¢; ---¢s = 1. However the sum of
the exponents of each ¢; written as a word in the free generators is
positive, hence so is that of ¢; - - ¢4, which is a contradiction. This
proves antisymmetry. Furthermore, it is clear that (F),-) is a subgroup
of Aut(F, <) via the right regular representation.

In order to show that (F}-) is the whole of Aut(F, <), it remains
to prove that the stabilizer in Aut(F, <) of an element of F is triv-
ial. Note that maximal chains in (F, <) are order-isomorphic to the
integers, and (F, <) is connected, which follows from {a,,a;a,, a,"**
a;~! |i € I'} being a generating system for (F,-). It is therefore suf-
ficient to show that an automorphism that stabilizes an element also

stabilizes all elements which cover it and all elements covered by it.

Let o € Aut(F, <) and z € F with za = . Now A = {a,z ,
a;a,x, a,'la; 7 x |i € I'} is the set of all elements covering z, and is
thus setwise fixed by a. Then also the set B of elements which cover
some element of A is setwise fixed by «. Note that

B = {a,’z} U {aa0aja,zli,j € I'}

U{a,Tta; " ta, a7 ali, j € I'Y U {aja," 2 a;, el € T'}

42 =1 2 i+l —1 P
U{aoasaoz, ag “a; "z, a;aiz, ay " a; agzli € I'}

U{aoj+1ajwlaiao$1iaj € Ilai 7é ]}

U{aOHQ:c =a,""a; taa.zli € I'}.
Let C be the set of elements which cover some element of B.
Then € is also setwise fixed by «, and it is not hard to see that

BNC = {a,”"?z| i € I'}). The maximal cardinality of a chain in
{ze Flz <z<a, Tz} forie I'is i+ 3, which has to be invariant
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under o, thus « fixes each element of B N . Furthermore, a;a,z is
the unique element covering z and covered by a," ?z, thus « also fixes
a;a.x. As {z,a,7, a,’r,a,>r} is the only 4-element chain in {z € F|
r < z < a,%z} it is clear that « also fixes a,z and a,?z. By the
dual argument, it follows that o fixes a, 'z, a, %z, a,”t?z and

(a,"ta; 1)1z foralli € I'.

Now consider the remaining elements covered by z and covering
z, namely (a;a,) 'z = a, 'a;" 'z and a," 'a, 'z for i € I'. By the
same arguments as above, it follows that for 4,5 € I’ there exists a
4-element maximal chain in {z € X| a, 'a; 7'z < z < a," a7 2} if
and only if ¢ = j, and for ¢ € I’ the maximal cardinality of a chain in
{z € Xla,'a; 'z < 2 < a,"Ma; 'z} is i + 3. Thus a has to fix all
elements a, ‘a; "'z and a,*'a; 'z for i € I', which concludes the

proof.

Theorem 2. There exists a partial order < on ) ? with the

following properties:

(1) (Q ?,+,<) is a partially ordered group.
(2) (Q 2,<) is sharply transitive.

(3) Aut(Q %, <) = (@ ?,+) via the right regular representation.
(4)

The orbits of H; = {(0,z)|z € Q } are maximal chains order-iso-
morphic to the rationals.

(5) The orbits of H, = {(z,0)|z € Q } are maximal antichains.

(6) The orbits of D = {(2,2/2)|z € Z } are maximal chains order-

isomorphic to the integers.

Proof. We define the partial order as follows. If (z,y),(z'y') €
@ 2 then let (z,y) < (2',y') if and only if there exist k € IN, ny, - - -,ng
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€ IN \{0} and 6, € Q@ with §,¢ > 0 such that

k
x’=$+an“1 -6
i=1

and
k
Y =y+k=> (2n;) ' +6+e.
j=1
It is not hard to check that this defines a partial order relation on
Q 2, and it is clear that addition of any element of Q) ? induces an
automorphism of this partial order. Thus (Q %, +, <) is a partially
ordered group. In Figure 1 we indicate the set {z € @ 2|z > (0,0)}.
It is not hard to see that the orbits of Hy, Hy and D are as described
in the statement of the theorem. In order to show that Aut(Q ?,<) is
isomorphic to (Q ?,+) and sharply transitive on @ ?, it thus remains
to prove that the stabilizer of an element of @ ? in Aut(Q %,<) is

trivial.

o

(0,4) :




The elements covering (z,y) € Q ? are just the elements (z+n"!,
y+1—(2n)"") for all n € IN \{0}. For (z,5) € Q ? we define
D(z,y) = {(z',¥") € Q *| (z,y) < (¢',9) and (z,y) and (z',y’) lie in
a dense maximal chain of (Q ?,<)}. Thus if a € Aut(Q ?, <) maps
(z,y) to (¢, y') it follows that « also maps D(z,y) onto D(z',y").
Also, it is not hard to see that D(z,y) = {(z',¥') € Q ?| 2’ < z and
J > yta— ).

Let (x,y) € Q ? and o € Aut(Q ?, <) such that o fixes (z,y).
Then « has to fix A = {(z +n™!, y+ 1~ (2n)71)| n € IN\{0}}
setwise. The set D(z,y) N D(z +n~1, y + 1 — (2n)™!) contains a
smallest element, namely (z,y +1 + (2n)~!'). Therefore « also has
to fix B = {(z,y + 1 + (2n)1)| n € IN\{0}} setwise. But the order
induced on this set is just isomorphic to the ordered set of negative
integers, thus « fixes B pointwise, and hence it also fixes A pointwise.
Now the set {z € D(z.y)| z < b for all b € B} has a greatest element,
namely (z,y + 1). Thus « also fixes (z,y + 1). By symmetry, « also
fixes (z,y — 1) and (z,y — (L + (2n)™1)) for all n € IN\{0}, and also
(£ —n~t y—1+4(2n)") for all n € IN\{0}.

Let o € Aut(@® ?,<) be such that « fixes (0,0). As {£+1,£(1 +
(2n)~1)| n € IN\{0}} generates the additive group of Q) , the results
of the preceding paragraph imply that « fixes all elements (0, ¢) for
g € Q. As the additive group of @ is also generated by {£n™"|
n € IN\{0}}, it follows that for every p € Q , the automorphism «
fixes an element of the form (p,q) for some ¢ € @) . Using the same
arguments again, it then follows that o fixes the whole of Q ?, which

concludes the proof.
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