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Abstract. The smallest size f(n) of a set C(n) of n-ominoes such that
every sufficiently large polyomino contains at least one n-ominoe of C(n)
is calculated for n < 8, and asymptotically lies between (2.205...)" and
(2.241..)™.  For n < 6 the minimum sets C(n) are proved to be unique.

Unit squares having their vertices at integer points in the Cartesian plane are called
cells. A point set equal to a union of n distinct cells which is simply connected
and not separable by the removal of a finite set of points is called an n-omino
or polyomino [1]. Two polyominoes are considered to be isomorphic if they are
congruent under translation, rotation, and reflection. For example, there are 12
different 5-ominoes, and 4460 different 10-ominoes without holes {2.4]. However.
no general formula is known for the number of nonisomorphic n-ominoes.

Many problems about polyominoes have been discussed. We introduce a new one:
Determine the smallest size f(n) of a cut-set C{n) of n-ominoes, such that every
sufficiently large polyomino contains at least one n-omino of C(n) as a partial
polvomino. This question may be of interest in biology or pharmacy, for example,
if every infinite cell growing of polyominoes can be avoided by the control of all n-
ominoes for fixed n then it would suffice to control only those of C'(n). A minimum
cut-set C(n) will be denoted by T'(n).

A first observation is that only snakes have to be considered. A snake is a polyvomino
where two squares, the endsquares, have a side in common with one, and all other
squares have two sides in common with two of the other squares of the polyomino.
Any growing polyomino contains also growing snakes. So we have to look for a
minimum cut-set T(n), so that every infinite snake contains at least one n-snake
of T(n) as a partial polyomino.

The first numbers s(n) of different snakes with n squares are
s(n)=1,1,2.3,7,13.30,64 for n=1.2.3,4,5.6,7,8.
This also may be deduced from the enumeration of filaments in [3].

Here we will determine bounds for f(n) and exact values for small n up to n = 8.

Theorem 1. The smallest numbers f(n) of n-ominoes such that any sufficiently
large polyomino has one of them as a partial polyomino are f(1) = f(2) = 1,
Proof. f(1) = f(2) = 1 is trivial. Both snakes of order 3 have to belong to T(3)
since each of them determines one of the infinite periodic snakes Sy and S> in
Figure 2. This implies f(3) = 2. Each of the 3 snakes with 4 squares determines
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Figure 2. This implies f(3) = 2. Each of the 3 snakes with 4 squares determines

51, S2 or §3 of Figure 2, so that f(4) = 3. The unique minimum cut-sets T(n) for
n < 4 are shown in Figure 1.
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Figure 1. Minimum cut-sets T(n) for n < 4.
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Figure 2. Infinite snakes for lower bounds of f(n).

In general a minimum cut-set T(n) is constructed by the following procedure:

(1) From T(n—1) a cut-set C;(n) is obtained if one square is added in all possible
ways to one end of every snake of T(n — 1), and thus f(n) < |C1(n)] is known.
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(2) One locks for a largest possible subset Cy(n) of Ci(n) such that each snake of
Cs(n) is part of an infinite periodic snake, and no pair of these infinite snakes has
a partial snake with n squares in common. Then f(n) > |C2(n)| holds.

(3) To every snake okal(n) which is not an element of C;(n), squares are added

in all possible ways to one endsquare provided a snake from Cy(n) is not formed.
If no further square can be added, then Cy(n) = T'(r) is a minimum cut-set. and

f(n) = Ca(n)].
f(5) = 4: The set C1(5) is given in Figure 3.

Figure 3. Cl(f)) ES {81(5), . 85(5)}

The infinite snakes 51, S3, S4, S of Figure 2 determine C2(3) = {s1(3), s3(5). s4(5),
s5(5)} which equals T(5) since additional squares to the right end of s5(5) lead to

s3(5) or s4(3).

Figure 4. T'(5).

f(8) = 6: The first step of the procedure leads to C;(6) in Figure 3.
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Figure 5. C1(6) = {s:1(6),....35:(6)}.
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The infinite snakes Sy, S5, S3, Ss, Si. 5o of Figure 2 determine Cq{6) =
{51(6),54(6),85(6),36(6),s7(6),58(6)} which gives T(6) in Figure 6 since for s4(6)
one additional square to the right end leads to snake s,(6). and two additional
squares lead to s¢(6) or s7(6), and for s3(6), one additional square to the left end’
leads to s4(6) or s5(6).
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Figure 6. T'(6).
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f(7) = 10: From T(6) we obtain C(7) in Figure 7.
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Figure 7. C(7) = {s1(7),...,s13(D)}.

The infinite snakes Sy, Sy1, Ss. S3, S7. Sk, So, Sio, Si, So. determine T(7) in
Figure 8, since s,(7) leads to s3(7), s4(7), or s5(7), snake s5(7) to s6(7) or s7(7),
and snake s¢(7) to s19(7) or a snake which leads to sg(T) or s¢(7).
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Figure 8. T(7).

f(8) = 17: We leave out the somewhat tedious step (3) of the proof and give only
T(8) 1 Figure 9, so as the corresponding infinite periodic snakes of step (2) which
are, in this sequence, Sy, S12, Siz, Ss. Sy, Sis. Sis, Sie, 517, 518, Sie, 520, Ss.,
54,510, S21. 52 of Figure 2.
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Figure 9. T(8).
Theorem 2. The minimum cut sets T(n) are unique for n < 6,

Proof. For n < 4 this is trivial. - The set S(3) of all snakes for n = 5 is given in
Figure 10.

Figure 10. §(3) = {a1(3),....,ar(3)}.
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Then S; and §; of Figure 2 force a;(5) and a7(5) to belong to any cut-set C(5).
Assume ay(5) is contained in C(5). Then |C(5)| 2 § > f(5) follows since S3 with
snakes a3(5) and as(5), S with snakes a4(5) and a5(5), and Sy with snakes a4(5)
and ag(5) force at least two further snakes to belong to C(5). Thus a2(5) is not
an element of T(5). Similarly, snake as(5), by S4, S5, and S22, and ag(3), by Ss,
S5, and Sy, are excluded. Then T'(3) of Figure 4 is unique.
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Figure 11. 5(6) = {(l](G).H . ,fl}g(G)}.

Snakes a;(6), ag(6), and a13(6) belong to any cut-set C'(6) because of S, S3, and
Sy, respectively. If snake ag(6) is not in C(6) then a;(6), @12(6), and a4(6) or
a5(6) must occur in C(6) because of Sy, Sg. Sio. In both cases, Say for snake as(6)
and Sys for snake as(6) force the contradiction |C(6)] > 7 > f(6). Thus ag(6) is
in T(6). Now similarly, S5, S24, and S)¢ determine snake a3(6), and then S;¢ and
S5 also snake a1¢(6) as members of T(6), which then is unique.

For n = 7 the minimum cut-set T(7) is conjectured to be unique, too. However,
snake s7(8) of 7(8) may be replaced by the snake of Figure 12 to give a different
minimum cut-set, so that uniqueness no longer holds.

o

Figure 12,

Theorem 3. The smallest number f(n) of n-ominoes such that any sufficiently
large polyomino has one of them as partial polyomino 1s such that

2.205...< lim f(n)¥ < 1+V2=2414 ..
n-—--00

Proof. The upper bound follows as in [3] from f(n) < s(n) < g(n), where g{n)
denotes the number of sequences zi,...,z, with z; € {~1.0.1; such that neither
-1.-1 nor 1.1 appear as consecutive terms z;,z;1+;, and the recurrence relation
g(n) = 2g9(n) + g(n — 2) together with ¢(1) = 3 and ¢(2) = 7 vields g(n) =
A +V™H (1= V2,

In calculating the lower bound, the first step is the construction of h(k) polvomi-
noes with k squares in the following way: a first square is fixed for example by a
cross. Then the k-th square (k > 2) is added to the preceding square only to the
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right, upwards, and downwards, if possible, and never to the left. Since addition of
the k-th square to the right, and either upwards or downwards always is possible,
it follows that A(k) > 2h(k—1). Only to those h{k —3) snakes with k—1 cells which
end by two steps to the right the k-th square may be added in all three directions.
Thus h(k) = 2h(k — 1) + k(k — 3), and together with 2(1) = 1, h(2) = 3, and
h(3) = 7 (see Figure 13), it follows that A(k)¥ > X\ = 2.205... for large k. since
3 = 22% — 1 = (0 has A as its largest real root.
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Figure 13.

If. for all h(k) snakes of Figure 13, two squares are added to the left of the first
square, and two squares are added to the right of the last square, and then a third
square upwards. then these h(k) snakes, which now have k + 5 cells, are pairwise

nonisomorphic (see Figure 14).
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Figure 14.
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Note that for any isomorphism, the first and the last three squares would yield a
congruence under translation such that the crossed squares of the corresponding
snakes of Figure 13 coincide. Now each of the h(k) snakes with k + 5 squares
is completed by an omega-snake with 15 squares (see Figure 13) to determine
the period of an infinite periodic snake as in Figure 15. No partial snake with
k454215 —1 =k -+ 34 squares occurs in two of these infinite periodic snakes
since one period contains exactly one omega-snake. which proceeds in all four
directions, whereas the remaining snakes with k +3 cells by construction use only
three directions, and they are nonisomorphic for different infinite snakes. Thus at
least one (k + 34)-snake of each of the h(k) infinite snakes has to belong to the
cut-set T(n) = T(k + 34), and

f(n) = f(k +34) = h(k) > CiAF = CpA", Co = Ci 273 = constant,

is equivalent to the lower bound of Theorem 3 .
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Figure 13.

Many questions remain unanswered. To find a general formula for f(n) seems to be
hopeless. It can be remarked that the corresponding problem for g-adic number
sequences is known in the context of deBruijn sequences. Here the minimal cut-set
of n-digit blocks such that every sufficient large g-adic sequence has at least one
partial n-digit block of this cut-set, has cardinality
N N
Zg(n) = ;Sd\ng’(d)gd
(see [3]). The first author thanks R.B. Eggleton for interesting discussions on these
g-adic sequences.
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