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Abstract. The smallest size f(n) of a set C(n) of n-ominoes such that 

every sufficiently large polyomino contains at one n-ominoe of C( n) 

calculated for n and asymptotically between (2.205t and 

(2.241 .. )n For n S; 6 the minimum sets C(n) are proved to be unique. 

points in the Cartesian plane are called 
union of n distinct cells which simply connected 

and not the removal of a finite of IS called an n-omino 
Two polyominoes are considered if are 

congruent under translation, rotation, and reflection. For there are 12 
different 5-ominoes. and 4460 different 10-ominoes without holes [2.4]. HoweveL 
no formula known for the number of n-ormnoes. 

problems about polyominoes have been discussed. \Ve introduce new one: 
Determine the smallest size fen) of cut-set C(n) of n-ominoes, such that every 
sufficiently polyomino contains at one n-omino C(n) a partial 
polyomino. This question may be of interest in biology or pharmacy, for ex:arrlpl IC, 

if every infinite cell of polyominoes can be avoided the control of all n­
ominoes for fixed n then it would suffice to control those of C(n). A minimum 
cut-set C(n) will be denoted by T(n). 

A first observation is that snakes have to be considered. A snake is polyomino 
"I",here two squares, the endsquares, have a side in common with one, and all other 
squares have two sides in common with two of the other squares of the polyomino. 
Any growing polyomino contains also grO\ving snakes. So we have to look for a 
minimum cut-set T( n), so that every infinite snake contains at least one n-snake 
of as a partial polyomino. 

The first numbers s( n) of different snakes with n squares 

sen) = 1,1,2,3,7,13.30,64 for n = 1. 2.3, 5.6,7,8. 

This also may be deduced from the enumeration of filaments in [5]. 
Here we will determine bounds for fen) and exact \-alues for small n up to n = 8. 

Theorem 1. The smallest numbers f( n) of n-ominoes such thai any s'U,jficiently 
polyomino has one of them as a partia,l polyomino are f(l) f(2) = 1. 

f(3) = f(4) = 3, f(5) 4, f(6) = 6, f(7) = 10, f(3) 17. 

Proof. f(l) = f(2) = 1 is trivial. Both snakes of order 3 have to belong to T(3) 
since each of them determines one of the infinite periodic snakes 51 and 52 in 

This implies f(3) = 2. Each of the 3 snakes \vith 4 squares determines 
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Figure 2. This 
5 1 ,52 or 53 of 
n :s: 4 are shown in 

o 
T(l) 

2. Each of the snakes with squares determines 
minimum cut-sets T(n) for 

CD em 
T(3) 

1. :Minimum 

2. Infinite 

3. The 

ITIIJ 

for n 4. 

for lower bounds of f( 71). 

In a minimum cut-set T( TI) constructed the following nrl"'\"f"rilllrp' 

1.1) From T( n -1) a C1 (71) is obtained if one square is added in all possible 
\vays to one end of every snake of - 1), and thus f(n) :s: IC1(n)1 is known. 
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(2) One looks for a possible subset of G l (n) such that each snake of 
G2( n) is part of an infinite periodic snake, and no pair of these infinite snakes has 
a partial snake with n squares in common. Then f( n) 2:: jC2 (n)j holds. 

(3) To every snake of Gl(n) which is not an element of Cz(n), squares are added 
in all possible ways to one endsquare provided a snake from is not formed. 
If no further square can be added, then T( n) is minimum cut-set. and 
fen) = jG2(n)j. 
f(5) = 4: The set Cl (5) is given in Figure 3. 

OIIIJ 

Figure 3. C1 

The infinite snakes 5 1 ,53 , 54, 52 of determine (5), S3 (5). S4 (5), 
\vhich equals T(5) since additional squares to the right end of s2(5) lead to 

or 

OIIIJ 

Figure T(5). 

f(6) 6: The first step of the procedure leads to C1(6) in Figure 5. 

I I 

Figure 5. C1 (6) = {CidG), ... . ss(6)}. 

The infinite snakes 5 11 551 53. 56, 54. 52 of Figure :2 determine C2 (6) 
{sl(6),S4(6).S5(6),sd6),S7(6),ss(6)} which gives T(6) in 6 since for 
one additional square to the right end leads to snake s.d 6). and two additional 
squares lead to 56(6) or s7(6), and for s3(6), one additional square to the left end 
leads to 54(6) or 

Figure 6. T(G). 
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10: From T(6) we obtain 
::......:......:---

! I I I I 

The infinite 

9, 
are, in this sequence, 
5 4 ,510 , 5 21 , of 2. 

Theorem 2. The minzmum cut 

Proof. For n 
10. 

this is trlyial. -

Figure 10. 
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, determine 
(7) to 

n 6. 

give only 
of step (2) which 

5 19 , 520, 59, 

of all snakes for n = 5 is given in 



Then 51 and 52 of 2 force 
Assume a2(5) is contained in 
snakes a3(5) and 54 with snakes a4 and 
and a5 (5) force at least two further snakes to 
an element of T(5). Similarly, snake 
55, and 59, are excluded. Then T(5) of 

I J 

11. 5(6) {ad 6) ... , 

to any cut-set C( 5). 
follows since 53 with 

and with snakes a4(5) 
Thus a2(5) is not 
and a6(5), by 53, 

Snakes a1 (6), belong to any cut-set because of 51, 53, and 
52, respectively. If snake is not in then a11(6), and a4(6) or 

a5(6) must occur in C(6) because of 5 4 ,59.510 , In both 5 23 for snake Q4(6) 

and 525 for snake force the contradiction IC(6)1 f(6). Thus Q9(6) is 
in T(6). Now 55, 524 , and determine and then 519 and 
525 also snake a10(6) as members of which then is unique. 

For n = 7 the minimum cut-set T(7) conjectured to be unique, too. However, 
snake SiCS) of T(S) may be replaced the snake of 12 to give a different 
minimum cut-set, so that uniqueness no holds. 

Theorem 3. The smallest number fen) of n-ominoes such that any su,fJicienily 
large polyomino has one of them a.s partial polyomlno is s11,ch that 

2.205 ... lim f(n)~:S 1+h 2.414 .. 
n-oo 

Proof. The upper bound follows as in [5] from fen) :S 3(11,) :S g(n), where g(n) 
denotes the number of sequences Xl . .. , X n with Xi E {-1. O. 1} such that neither 
-1.-1 nor 1.1 appear as consecutive terms Xi,Xi+l, and the recurrence relation 
g(n) = 2g(n) + 2) together with g(l) = 3 and g(2) = 7 yields g(n) = 
~((1 + h)n+l + ((1 - J2)n+l). 

In calculating the lower bound, the first step is the construction of h( k) polyomi­
noes with k squares in the following way: a first square is fixed for example by a 
cross. Then the k-th square (k 2: 2) is added to the preceding square only to the 
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right~ and nr"m,.y,,,,,,,..rlc 

the k-th square to the 
it follows that 

If. for 

square 

13. 

14. 
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Note that for any isomorphism, the first and the last three squares would yield a 
congruence under translation such that the crossed squares of the corresponding 
snakes of Figure 13 coincide. Now each of the h(k) snakes \vith k + 5 squares 
is completed by an omega-snake with 15 squares (see Figure 15) to determine 
the period of an infinite periodic snake as in Figure 15. "No partial snake with 
k + 5 + :2 . 15 - 1 k + 34 squares occurs in two of these infinite periodic snakes 
since one period contains exactly one omega-snake. which proceeds in all four 
directions, whereas the remaining snakes with k + 5 cells by construction use only 
three directions, and they are nonisomorphic for different infinite snakes. Thus at 
least one (k + 34 )-snake of each of the h( k) infinite snakes has to belong to the 
cut-set T(n) = T(k + 34), and 

is equivalent to the lower bound of Theorem 3 . 

Figure 15. 

Many questions remain unanswered. To find a general formula for f(n) seems to be 
hopeless. It can be remarked that the corresponding problem for g-adic number 
sequences is known in the context of deBruijn sequences. Here the minimal cut-set 
of n-digit blocks such that every sufficient large g-adic sequence has at least one 
partial n-digit block of this cut-set, has cardinality 

Zg(n) = 1 
n 

(see [3]). The first author thanks R.B. Eggleton for interesting discussions on these 
g-adic sequences. 
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