EXTREMAL PROBLEMS FOR LOCAL PROPERTIES OF
GRAPHS

L.H. Clark, R.C. Entringer, J.E. McCanna and L.A. Székely*
University of New Mexico, Albuquerque, NM 87131

We consider some instances of the general problem of determining the maximum size of a
graph of given order in which all vertex neighbourhoods are required to have a specified prop-

erty.

The concept of local property has been used in two senses in the literature. In the
restricted sense, a graph has a local property if all the neighbourhoods are isomorphic to a
particular graph. (By the neighbourhood of 2 vertex v we mean the subgraph induced by
the set of vertices adjacent to v.) In this case there is no extremal problem since the number
of vertices determines the number of edges, if there is a graph with that local property at
all. Indeed, the major problem is the problem of existence. Specific instances are dis-
cussed by Doyen, Hubaut and Reynaert [2]. For good survey papers see Hell [3] and
Sedlacek [6].

In the general sense, a graph has the local property P if all the neighbourhoods have the

property. From now on we use the concept of local property only in the general sense. In
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this case the existence problem is usually simpler and we focus on the extremal problem:
What is the maximum number of edges, ¢ = e(n), in a graph with order n and with a given
local property? By graph we will always mean a finite simple graph. The main objective

of the present paper is to raise interest in this fascinating and hard problem.

Consider the following instances.

I. All neighbourhoods are independent sets. In other words, the underlying graph is
triangle-free. This particular case of Turdn’s theorem was already solved in 1906 by

Mantel [4]: e <n*/4; the bound is tight.

II. All neighbourhoods are paths - for 3-connected planar graphs. Zelinka [7] proved

e <2n +3Ln/d) — 6 for n > 8; the bound is tight.

II1. All neighbourhoods are 1-regular (= perfect matching) graphs - for 3-connected planar

graphs. Zelinka [8] proved e < [%) (n —2); the bound is tight.

IV. All neighbourhoods are 1-regular graphs. As we learned from Zelinka [8], this class of
graphs was introduced in an unpublished lecture of D. Froncek in 1986. However, the
corresponding extremal problem was implicitly solved by Ruzsa and Szemerédi [5] in

1976. We are indebted to Professor Paul Erdés for pointing out this reference.

The result is e = o(n?)), and e can reach cr4(n)n, where r5(n) denotes the largest number

m such that there are m positive integers less than n no three of which form an arithmetic

¢
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progression. According to a result of F. Behrend [1], ry(n) 2 n
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In order to prove the result ¢ = o(n?) for IV, we recall the Ruzsa-Szemerédi theorem and

derive from it an upper bound e = o(n %) for a large collection of problems.

Theorem. (Ruzsa-Szemerédi [5]) If there is a triplet system on n vertices such that no six

vertices carry three or more triplets then the number of triplets is o(n?).

Theorem 1. Suppose G is a graph with n vertices and e edges, such that each edge belongs

to at least one triangle, but at most k. Then e = o(n?).

Proof. We are going to decompose G = UG, such that

- each G, has the same vertex setas G

- each wiangle of G is contained in some G;

- the edge set of G; is the union of some triangles of &, such that no edge belongs to two of
the triangles and no three triangles make a 3-cycle (using one edge from each of the
triangles)

- the number of G;’s is sufficiently small.

Then we can apply the Ruzsa-Szemerédi theorem to the triangle set of each G; separately

and get the theorem.

Introduce a graph 7" whose vertex set is the triangle set of G and two triangles make an
edge in T if, in G, they intersect in an edge. In T the degrees are bounded by 3(k —1).
Introduce a graph § whose vertex set is that of T and two different triangles make an edge
iff their distance is at most 2 in 7. In S the degrees are bounded by A =9(k — 1)%, while S
is (A+1) - vertex-colourable. Let G, be the spanning subgraph of G whose edge set is the
edge set of triangles of colour i, fori = 1,2,..,A+1. Thé second and third claims for G;
ensure the applicability of the Ruzsa-Szemerédi theorem. The fourth claim ensures that the
sum of the numbers of edges in the G,’s is still o(n?). The second and third claims hold

because of the definition of S and the existence of its (A+ 1) - vertex colouring. []
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Notice, that for graphs having 1-regular neighbourhoods, k = 1 and the Ruzsa-Szemerédi
theorem applies directly to the entire triangle set of the graph. Also, making the e = o(n®)
explicit in the theorem of Ruzsa and Szemerédi allows k& = k(n) to approach infinity (in a

sufficiently slow manner).

Ruzsa and Szemerédi gave a construction for a triplet system on n vertices with
(1/100)r5(n)n triplets with no six vertices spanning three triplets. Fortunately, no two trip-
lets intersect in two vertices in their construction so that, taking all pairs covered by triplets
as the edge set for a graph, we get a graph with cr,(n)n edges, in which the neighbourhoods

are 1-regular.

We also give a construction for such a graph here since we think this construction is better

motivated geometrically.

Construction 2. Suppose 1 < q, <a,<... <a, <n/2, where m = r;(n/2) and no three term
arithmetic progression occurs among the a’s.  Consider the following vertex set:
{1, ):1 <j<n,1<i<3}. Make triplets of those three vertices which lie on a straight line
of the type y = ax +b. Define a graph G by making edges from those pairs of vertices
which are covered by a triplet. Drop from G the isolated vertices. Notice that three edges
coming from different triplets can make a triangle if and only if a, + a, = 2a,, for the cor-
responding straight lines. Also, no two triplets - being parts of straight lines - intersect in

two vertices. Finally, for ¢ < 1, ry(em) = ¢’ry(m) for some ¢”. [}

V. All neighbourhoods are paths (of possibly different lengths at least 1). Theorem 1
applies with £ =2, e = o(n”). We have such graphs with cnlogn edges for some values

of n.
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Construction 3. Let O, denote the k-dimensional cube, whose vertices are the k-di git0—-1
sequences so that n =2%, Fori=1,2,...,k -1 set
Al ={(a,a,.. .a;_0la; ,...a,,a,¢,.a,_,10a;, ,...a,):
a,=0orl, for m<i and m>i+1}
and
Al ={(a,a,...a,_,00a;,,...a,,a,a,...a,_11a, ,...a,):
a,=0orl, for m<i{ and m>i+1}.

k-1 '

Define Q, by adding to the edge set of O, the set U A ;’ where ¢; =0 or I (so the definition
j=1

of 0, depends on the choice of #;’s). In Q; all neighbourhoods are paths. Without loss of

generality we consider only the neighborhood of 00...0. List the vertices:

1) 1000...0
2) 1100...0
3) 0100...0
4) 0110...0
5) 0010..0
2n-1) 000...01.

Out of this sequence ihe odd-numbered vertices always belong to the neighbourhood of
00...0, the even-numbered ones may or may not. If they do, they are connected to the two
neighbouring (in the list) vertices by edges from Q,. If they d§ not, their neighbours on the
list above make an edge, since if (00...0,v) € A}", then the pair made from the two (l‘ist)

neighbours of v belong to AJH"‘ 1
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VI All neighbourhoods are cycles, possibly of different length.

Theorem 1 applies withk =2, ¢ =o(n 2). There are such graphs with cn logn edges for

some values of n. Construction 3 goes through with slight modifications.

Construction 4. Set

Al={{0a,...a,_1,1a,...a, 0}:a,=00r1, 1<m <n},

Al={{0a,...a,_\0,1a,...a,_,1}:a,=00rl, 1<m <n}

n-1

and set E(Q;) = E(Q,) U U A,:’, where ;=0 or 1. The definition of O, depends again on
j=1

the choice of #;’s. In the course of proving Construction 4, it is easy to check that the

neighbourhood of 00...0 is a cycle. ]

VII. All neighbourhoods are unions of disjoint copies of the same graph H. Theorem 1

holds with k = max degree in H, e = o(n?).

The following theorem gives a good lower bound in the case of some interesting H’s:

Theorem 5. Suppose there is a graph L such that every neighbourhood in L is the bipartite
graph H. Then we have infinitely many graphs G, with |V(G,)| = n, |e(G,)| = ¢cry(n)n,

such that each neighbourhood in G, is a disjoint union of copies of H .

Proof. Set G, = G XL, where G is the graph from Construction 2. By X we denote the
graph product in which two points in the product of the vertex sets make an edge iff their
projections both are edges. Denote by Ny, (v) the subgraph of H induced by the neighbours
of v. We recall the well-known fact, that for a bipartite graph M, K, X M is the juxtaposi-
tion of two copies of M. Now observe, that for ge V(G) and [e V(L)
N (8,1) =Ng(g) XNy (I). Since Ng(g) is a juxtaposition of some edges and N, (/) is the
bipartite graph H, N;(g) XN, (!} is the disjoint union of some copies of H. We leave the

enumeration of edges and vertices in G, to the reader. []
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Applications. For H an even cycle or a path with-at least three edges we have a bipartite

graph H for which L exists (see [2]), therefore Theorem 5 applies.
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