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Abstract: Let T be a finite connected graph, and G a group of automorphisms of I’
which is transitive on vertices. Suppose that, for a vertex a of I', § < Gz(a) < Aut §
for some simple group S with S acting pn’nﬁitively on the set I'(a) of neighbours
of &, and suppose that G is minimal with these properties. Then one of : (1 G
is a nonabelian simple group, (ii) T is a Cayley graph for a normal subgroup NV
of G and G = N.S, (iii) T is bipartite, (iv) I' is a proper cover of a graph of the
same valency and with the same properties. In the special case where I' has prime
valency this is a result of Lorimer. More details of the structure of I' and G are
obtained for graphs which satisfy (i) or (iii) but are not proper covers as in (iv).

Constructions are given for several families of examples.

1. Introduction

Let I be a finite connected graph and G a subgroup of the automorphism
group Aut T of I'. Then G is said to be symmetric on I' if G is transitive on the set
Iy = {(a, 8) ] {a, B} an edge} of ordered pairs of adjacent vertices of T', and G is
minimal symmeim’c if it is symmetric on I’ but no proper subgroup of G is symmetric
on I'. Note that symmetric graphs (that is those whose automorphism groups act

symmetrically) are vertex transitive and hence are regular. The motivation for this
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paper came from a theorem of Lorimer [4] about minimal symmetric groups G
of automorphisms of a connected graph I' of prime valency v. Lorimer showed,
essentially, that one of the following is true for such G, TI":

(i) G is a nonabelian simple group;

(ii) T is a Cayley graph for a normal subgroup N of G and G = N.Z,;
(iii) T is bipartite;
(iv) T is a proper cover of a graph T of valency v such that the group of automor-

phisms induced by G on T is minimal symmetric.

In [4] the result is stated differently: extra assumptions are made about I' so
that the only conclusion is that G is simple. (More information about the bipartite
case (iii) is given in [6] ). This expanded version of Lorimer’s theorem has been
stated in this way so as to highlight the inductive role of case (iv) for reducing to
graphs satisfying one of (i) to (iii). For this to be a useful reduction we need more
information about the graphs arising in cases (i) to (iii) which are not proper covers
of smaller examples. The aim of the paper is to look at the graphs arising in cases
(i) and (iii) in detail for a larger class of symmetric graphs than the class with
prime valency.

I G < Aut T’ acts symmetrically on a connected graph T' of prime valency v
then, for a vertex «, the stabilizer G4 is transitive on the set I'(a) of v neighbours of
a in T, since G is transitive on I';. Moreover it was shown by Burnside, see [9], that
a transitive permutation group of prime degree v (such as the group GE) induced
by Gq on I(a)) has a simple normal subgroup, so we have S < GL®) < Aut §
for some simple group S. Note that S might be cyclic of order v. Moreover the
group S acts primitively on I'(a). (A permutation group on a set X is said to be
primitive on X if it is transitive on X and the only partitions of X invariant under
the group are the trivial ones, namely {X}, and {{z} |z € X }.)

We shall be concerned with finite connected graphs with a group G of automor-
phisms which is symmetric on I such that, for a vertex a, § < Gf;‘“) < Aut § with
S simple and primitive on I'(a). First we show that the conclusions of Lorimer’s

theorem hold for such graphs.
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Theorem 1 Let I' be a finite connected graph of valency v and G < Aut T.

Suppose that G is symmetric on I' and that, for a vertex a, S < G‘;“” < Aut S

where S is simple and S is primitive on I'(e). If G is minimal with respect to these

properties then one of the following holds:

(i) G is a nonabelian simple group;

(i) T is a Cayley graph for a normal subgroup N of G and G = N.S;

(i1) T is bipartite;

(iv) T'is a proper cover of a graph T of valency v such that the group of automor-
phisms of £ induced by G is symmetric, S < GE(”) < Aut S with S primitive

on L(o) (o a vertex of ¥), and is minimal with respect to these properties.

A more detailed version of this theorem will be proved in section 2. A graph
I" is said to be a cover of a graph I is there is an epimorphism ¢ : VI’ — VX of
the vertex sets which maps edges to edges (that is, if {a, f} is an edge of T then
{a¢,B4} is an edge of T) and is such that ¢ kinduces an isomorphism from the
induced subgraph on I"(cxj to the induced subgraph on L(a¢) for all vertices o of
T. If ¢ is not a bijection then T is said to be a proper cover of .

In the rest of the paper we analyse cases (ii) and (iil) of Theorem 1 in more
detail assuming that the graphs are not proper covers as in (iv). We construct
classes of examples in each case. We do not address the problem of constructing
covers of our examples with the required symmetry properties. Some constructions

of this type are given by Biggs [1].

Problem Given I', G, S,v as in Theorem 1 (i) to (iii), find all connected graphs
T which are proper covers of I' and have a group G of automorphisms which is
symmetric on I’ and induces the group G on I'.

Recall that a Cayley graph for a group G is a graph I' = Cay(G, X) (where
X CG,lg ¢ X and if z € X then 27! € X) with vertex set G such that g and
h are adjacent if and only if gh™! € X. Such a graph admits G, acting by right
multiplication, as a regular group of automorphisms. Also Cay(G,X) is connected

fand only if < X > = G. A graph I'is a Cayley graph if and only if Aut T’ contains
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a subgroup N acting regularly on vertices (that is N is transitive and N, = 1),
and in that case the vertex set of I' may be identified with N so that N acts by
right multiplication and, if « is identified with 15, =~ Cay(N,T(«)). We obtain a
more detailed description of the structure of I' and G for case (ii) of Theorem 1 in

Theorem 2 below.

Theorem 2 Let I, G, S,v be as in Theorem 1 and suppose that case (ii) holds

so that N is a normal subgroup of G = N.S and T' = Cay(NV,X) for some X =

X' C N,1y ¢ X,N = < X >. Suppose also that case (iv) does not hold. Then

one of the following happens:

(i) T=Cp, N =2Z,,paprimevs=]|85]|=2;

(ii) N = Z§ and S < GL(k,?2) is irreducible;

(iii) N = § is nonabelian, G = § x §, and X is a conjugacy class of involutions of
S such that Cg(z) is maximal in S for z € X

(iv) N = T* for some nonabelian simple group T, and G = NS < Aut T wr Si
such that S projects onto a transitive subgroup of Sk, and X is an S-orbit of
involutions in N such that Cs(z) is maximal in S for z € X.
Tius result will be proved in section 2. Our investigations of the bipartite case

lead to Theorem 3, which will be proved in Section 3.

Theorem 3 Let I', G, S,v be as in Theorem 1 and suppose that case (iii) holds so
that I' is bipartite, but that case (iv) does not hold. Then G has a minimal normal
subgroup N = T*, where T is simple and k > 1, such that N has two orbits in
VI, G = < NGq,a > for some 2-element a, and one of the following holds:
(i) T =Ky, and § =T}
(ii) T = Z, for some prime p and one of

(a) T=CypN=2pv=|5=2

(b) T is a Cayley graph for N.2, an abe_lizm normal subgroup of G,p = 2, and

Go = 8§ < GL(k,2) is irreducible;
(¢) G < AGL(k,p) and G/N < GL(k,p) is irreducible on N = Z;f;

(i) T is a nonabelian simple group and N is semiregular and one of
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(a) N=T=S8T = Cay(5.2,X) where X = X~ C 5.2\ S is an S-conjugacy
class of involutions such that Cs(z) is maximal in S for z € X; (Here
$.2 < Aut S))
(b) N =T = S, and G = NH is contained in the holomorph of N with
NNH=158<H<Aut §and H/S = Z3 for some s > 1;
(¢) G < Aut N;
(iv) T is a nonabelian simple group, N is not semiregular, G <. Aut N,G/N =
Z2s,5 > 1, and one of
() N=T;
(b) k > 1,k divides 2°, and, for & € VI, N, is a subgroup of a diagonal
subgroup of N = T*,
A diagonal subgroup of Ty x ... x Tk, where each T; ~ T, is a subgroup of the
form {(t%,...,1%) |t € T} ~ T where the ¢; € AutT.
A discussion of the graphs which arise, including constructions for several fam-

ilies of examples, is given in section 4.

2. Proofs of Theorem 1 and Theorem 2.

In this section we prove the following technical version of Theorem 1. Then we

begin the more detailed analysis of the various cases leading to a proofl of Theorem

2

Proposition 2.1 Let I' be a finite connected graph of valency v and let G <
Aut T. Suppose that G is symmetric on T' and, for a € VI, § < G < Aut S
with S simple and primitive on I'(a); and let G be minimal with respect to these
properties. Let N be a minimal normal subgroup of G, so that N ~ Tk for some
simple group T and integer k > 1. Then one of the following holds:
(i) G = N =T is a nonabelian simple group;
(ii) G = NS and T is a Cayley graph for N;
(iif) T is bipartite, N has two orbits on vertices, and either

(a) T'= Kyp,v=1|S5]|is prime, S=T,N =5 x 5,

(b) N is semiregular, so | VI'|=2 | N |;
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() S < NE(@ < Aut §,G = < a,N >, N is nonabelian, G/N = < aN > =
Zy+ with k dividing 2°,s > 1.

(iv) T is a proper cover of some graph T with valency v and the group of automor-
phisms induced by G on T is symmetric, § < Gy < Aut S with S primitive
on (o) (o a vertex of L), and is minimal with respect to these properties.

If a normal subgroup N of G has more than two orbits on vertices then the
guotient graph 'y is defined as the graph with vertices the N-orbits, two N-orbits
being adjacent in I'y if some vertex in one is joined to some vertex in the other
N-orbit. In the proof of this proposition the graph T in (iv) will be T'y, but in

subsequent lemmas Z may be I'¢ for some other normal subgroup C of G.

Proof The subgroup NE‘“) is normal in Gﬁ“’)h Suppose first that N};(a) = 1.
Then, by the connectivity of I', Ny = 1. If N has more than two orbits then, by
[7, Lemma 1.6 and the remarks following], the quotient graph T'y with N-orbits as
vertices is such that the group of automorphisms induced by G is G/N; this group
is symmetric on 'y and the group induced by the stabilizer of an N-orbit on its
neighbours in I'y is permutation isomorphic to GE("). In particular I'; has valency
v and {'v) holds with © = I'y. If N has two orbits then (iii) (b) holds, while if N
is transitive then I' is a Cayley graph for N and G = NG,. In the latter case G4
acts faithfully on I'(a), and by the minimality of G we have G, = §,G = NS.

So now suppose that NE“’) # 1, whence § < N};(a) < Aut S. The group
M =< Ng|f € VT > is normal in G and by connectivity has one or two orbits in
VI. As N is 2 minimal normal subgroup and M < N it follows that N = M has 1
or 2 orbits. If V is transitive on VI then, by the minimality of G, we have G = N,
whence G is a nonabelian simple group. So suppose that N has two orbits. Then I'
is bipartite. If N is abelian then Ny > § has prime order v and by [8, Lemma 1.1],
I'=K,pandT =5=2,,N=25xS5. So suppose that N is non-abelian. There
is a 2-element a € G\ N which interchanges the two N-orbits and, by minimality,
G = < N,a > so GJN is cyclic of order 2* for some s > 1. Since N is a minimal
normal subgroup, < a > permutes the simple direct factors of V' transitively so k

divides 2°.
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Before starting on a more detailed analysis of the cases in Proposition 2.1 we
make the following observations about the structure of a stabilizer G4. It will be

used many times in the subsequent arguments.

Lemma 2.2 I I',G,S are as in Proposition 2.1 then G, has exactly one com-

position factor isomorphic to S, and every other composition factor has order less

than | 5 |.

Proof Fori > 1let Gi(a) denote the subgroup of G4 fixing pointwise every vertex
distant at most i from a. If Gi(a) # 1 then, for each vertex A at distance ¢ from
o, Gi(a)T® is a subgroup of Gg(ﬁ) fixing a point of () at distance ¢ — 1 from
«. Consequently every composition factor of Gi(@)F® is a composition factor of
some proper subgroup of S or of Qut S and hence has order less than | S| (This
uses the simple group classification in the assertion that | Out S | < | S1.) Thus
each composition factor of Gi(a)/Gi+1(a) has order less than | S |. This, together
with the fact that Go'® has one composition factor S and all others have order less
than | S |, completes the proof.

First we consider the case where the subgroup N of Proposition 2.1 is abelian.

Lemma 2.3 Let I',G,S, N,v be as in Proposition 2.1 with N abelian.
(i) If Proposition 2.1(ii) holds then either
(3) T = Cp,p, a prime, v =|§|=2or
(b) N = 2§,§ < GL(k,2), S irreducible.
(ii) ¥ Proposition 2.1(iii) holds then either
(2) T = K,4,and v = | § | is prime, or
(b) T' = Cop, N = Z,,p a prime, v = | S| =2, or
(¢) N = Z¥.T is a Cayley graph for Cg(N) = N.2, an abelian regular normal
subgroup of G, G = Cg(N).Gq, and Go = § < GL(k,2) is irreducible, or
(d) N = Z¥, and G < AGL(k,p) with G/N < GL(k,p) irreducible.

Proof In case (i), [ = Cay(N,X) with X C N, X = X1, and if o is the vertex
identified with 1y then Gy acts primitively on () = X. Forz € X,{z,2 7} isa
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block of imprimitivity for G4 in T(a) and hence either z = z~! whence N = Z§,
or I'(a) = {z,z7'} whence v = 2 and I' is a cycle. In the latter case I'is a cycle
of prime length since N is a minimal normal subgroup. In the former case N is
self-centralizing in G (see [8]) so Go = § < GL(k,2) and by the minimality of N, §
is irreducible.

In case (iii) either I' = K, ,,v = | S | prime, or (iii)(b) holds. Suppose the
latter, so V is semiregular with two orbits. Let C = Co(N). If C = N then (ii)(d)
holds, so assume that C > N. If Cq # 1 then I = K, , with v = | § | prime. So
assume that Co = 1. Then C is regular and abelain and T' = Cay(C, X) for some
X CCX =X I ois identified with 1¢ then X ¢ C\ N, and as above either
| X |=2 whence I' = Cy,,p a prime, or X consists of involutions. In the latter case
N = Zf and G4 < Aut N = GL(k,2). As T is connected G is faithful on I'a)
and by minimality G = CGq = C.S and § is irreducible.

From now on we may assume that N is nonabelian, so N = T* T a nonabelian
simple group. Next we treat the case where the centralizer C of N in G is nontrivial.
Then G is not simple and, if C' has more than two orbits then Proposition 2.1 (iv)
holds with ¥ = I'c. The following lemma deals with the case where ¢ has at most

two orbits.

Lemma 2.4 Let I',G, 5, N,v be as in Proposition 2.1 with N nonabelian, and
suppose that the centralizer C of N in G is nontrivial. Suppose further that Propo-
sition 2.1(iv) does not hold. Then N =T = §.
(1) If Proposition 2.1(ii) holds then C' = §,G = N xC = Sx S and I = Cay(S, X)
where X is a conjugacy class of involutions in S such that Cg(z) is maximal
in Sforze X.
(ii) If Proposition 2.1(iii) holds then we are in case (iii)(b) and either C = § or
C = 852< Aut §. Moreover either
(a) T'= Cay(S.2, X) for X C(5.2)\ S an S-conjugacy class of involutions in
5.2, such that Cg(z) is maximal in S for 2z € X, or
(b) C = S and G is contained in the holomorph of N = S with G = N.H,Nn
H=15<H<Aut S,H/S = Z3:, for some s > 1.
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Proof Since Proposition 2.1(iv) does not hold, C has 1 or 2 orbits. If N were
not semiregular then Proposition 2.1 (iii)(c) would hold and we would obtain T' =
Kyy,N = § x 8, and C would have at least one composition factor S so that
(N x C)o would have at least two composition factors S contradicting Lemma 2.2.
Thus N is semiregular so that we are in case (ii) or case (iii)(b) of Proposition 2.1.
Moreover C induces on each N-orbit a group isomorphic to T* so that (N x ()4 has
a normal subgroup isomorphic to T* and this normal subgroup must act nontrivially
on I'(a). It follows from Lemma 2.2 that T = S,k = 1 and either C = S, or we are
in case (iii)(b) and C = $.2. In case (ii) of Proposition 2.1 T = Cay(S, X) with X a
self-inverse conjugacy class of § and as G4 = S is primitive on I'(a) = X, it follows
that X consists of involutions and Cg(z) is maximal in S for ¢ € X. In case (ii1)(b)
of Proposition 2.1, if C = 5.2 then I' = Cay(C,X) with X € C\ S a self-inverse
S-conjugacy class in C. Since Proposition 2.1(iv) does not hold, C = 5.2 < Aut S
(that is C' s S x Z3). As S is primitive on X, X consists of involutions and Cs(X)
is maximal in S for £ € X. Similarly if C = S and Cg(C) = N.2 = 5.2 then
I' = Cay(5.2, X) for some X satisfying the above properties. If C6(C) = N then
G is contained in the holomorph of N = §. Thus G = N.H, where NN H =
1,5 < H < Aut S. By minimality G =< N x C,y > where y is a 2-element which
interchanges the bipartite halves, and so H/S ~ Z;. for some s > 1.

In case (ii) of Proposition 2.1, if N has trivial centralizer then N = T* with T a
nonabelian simple group, I' = Cay(N,X), and G = NS < Aut N = Aut T wr S;.
Moreover S must permute the simple direct factors of N and so S must project onto
a transitive subgroup of Si; and as S is primitive on I'(a) = X, where a = 1y, X is
an S-orbit of involutions. Theorem 2 follows from Lemmas 2.3 and 2.4, and these

remarks.

3. The bipartite case

Let T',G,S,v be as in case (iii) of Proposition 2.1, and hence case (iii) of
Theorem 1, so that I" is bipartite and some minimal normal subgroup N of G has

two orbits on VI'. The cases where N has nontrivial centralizer were treated in
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Lemmas 2.3 and 2.4, so we may assume that N = T* = Ty x ... x T} for some
nonabelian simple group T and integer k£ > 1, and that G < Aut N = Aut T wr Si.
Let A; and &g be the two N-orbits in VI'. We shall investigate the action of several
normal subgroups of N on T

Lemma 3.1 If the pointwise stabilizer N4,y of &1 in NV is nontrivial then T' =
Ku,v,andN:SXS§G§AutSwr Zg.

Proof Let M; = N,y # 1. We may assume that T < M;. We are in case
(iii)(c) of Proposition 2.1, so G = < a, N > and we may assume that T? = i1
for all ¢, taking subscripts modulo k. Now Af{ = A; so Tz < My = Ny,).
Continuing this line of argument we have N = A{i x My with My =T1 x T3 x ...
and My = Ty x Ty x ... with k > 2 even. Let o € £;. Now the M;j-orbits in
Lo are of equal length greater than 1, so M’lr (® is a nontrivial normal subgroup of
NE@) Since J\Ilr (a), a quotient of M, is a direct power of copies of T, it follows
that ]\llr(a) ~T =~ S. by Lemma 2.2, My can have only one composition factor S,
and so k = 2. By [8, Lemma 1.1] I' = K, 5.

We assume from now on that N acts faithfully on each of 41,02, Next we

look at the case where some nonidentity element of T3 fixes a point, that is T} is

not semiregular on VI

Lemma 3.2 Suppose that N(4,) = 1 and that some nonidentity element of T}
fixes a point. Then N =T < G < Aut 7.

Note that in any example for which Lemma 3.2 holds, N must have two con-
jugacy classes of subgroups (containing N, and N, g;a € Oy, B € H;) which are
interchanged by G.

Proof We may assume that (T1)q # 1 for @ € &y, Then, as (T3 )1,;(0) 4 Nz;:(a), it

follows that § < (T;)I;(G). We are in case (iil)(c) of Proposition 2.1: G = < N,a >
and we may take T = Tyyq for all i (mod k). ¥ k > 2 then some nonidentity
element of Ty = ng fixes a point of Ay = Ai‘i and so, as the Ty-orbits in 4\

have equal length, it follows that 5§ < (T3 2®) Thus N, > (T1)a % (T3)a has at
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least two composition factors S, contradicting Lemma 2.2. So k < 2. Suppose that
k=2 If(T3)s # 1 then we would obtain a contradiction as above and hence T2
is semiregular on A;, and so Ty = T is semiregular on A; = A%, Thus (Tl,f;(")
is regular. However S < (Tl)f,‘“) < Aut § and S is primitive on I'(«), and such

primitive groups are not regular (see [3]). Thus k = 1.

Lemma 3.3 Suppose that N(pyy =1 and that Ty is semiregular on VI'. Then
either N is semiregular on VI'or k > 1 and for a € VT, N, is a subgroup of a
diagonal subgroup of N =T} x ... x T}.

Recall that a diagonal subgroup of Ty x ... x T} is a subgroup of the form
{(t91,4%2,.. 1) |t € T} ~ T where the ¢; € Aut T.

Proof Suppose that IV is not semiregular and that T is semiregular on VI'. Then
case (iii)(c) of Proposition 2.1 holds so G = < N,a > with T = Ty for all 4.
Let j be the least integer such that ¥ = T} X ... x Tj is not semiregular. Then
2 £ 7 £ k. We may assume that YI(Q) #lforae Ay. ThenVY, is a subgroup
of a diagonal subgroup of ¥ = T} x ... x Ty since (T1 X ... x Tj_1)a = 1. Now
Y =Ty x. .. x T+2 taking the subscripts modulo k, and ¥'** is such that (Y“z)mz
acts nontrivially on I‘(a“z). Since o’ € A8 = Aq it follows that (Y“’)E(") # 1.
Now (Y“z)a is a subgroup of a diagonal subgroup of 73 x ... x Tj42. Ij < k then
Yan (Y“Q)a = 1 whence N, > Y, x (Y“Z)a has at least two composition factors S,
contradicting Lemma 2.2. So j = k and N = Y, and the lemma is proved.

Theorem 3 now follows from Lemmas 2.3,2.4,3.1,3.2 and 3.3.

4. Constructions and discussions

There are many examples of graphs satisfying the conditions of Theorem 1 with
G a nonabelian simple group: a second paper of Lorimer [5] classifies all such cubic
graphs oﬁ. up to 120 vertices. The purpose of this section is to give constructions
for classes of graphs satisfying the conditions of Theorem 2 or 3 to illustrate the

various types of examples which arise. We begin with Theorem 2. There are many
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Cayley graphs on Z% as in Theorem 2(i1), perhaps the best known are the folded

cubes.

4.1  Cubes and folded cubes The cube Q) has vertex set Z§ with vertices
adjacent if they differ in one coordinate. The vertices of the folded cube Oy are
pairs of antipodal vertices, that is {z,y} where z + y is the all-1 vector. Now Qr
satisfies the conditions of Thecrem 1 with G = Z%. Ay with the alternating group
Ay permuting coordinates, and Qf is 2 double cover of 0 and so is an example
of Theorem 1(iv). Factoring out by < (1,1,...,1) > =~ Z, we obtain the group
A acting onop. If k is odd then A acts irreducibly on the normal subgroup
257" and Theorem 2(ii) holds, while if k is even then (4 and oy are bipartite and
g arises in case (i1)(b) of Theorem 3.

The Cayley graphs arising in case (iii) of Theorem 2 are easily understood and
there will be an example for each self-inverse conjugacy class X of a nonabelian
simple group S such that Cs(z) is maximal, for z € X. The nature of the graphs
satisfying Theorem 2(iv) is a litile less clear. We give examples, for most pairs
T,S, of Cayley graphs for T* admitting T*.9 (for some k) satisfying most of the
conditiuns of Theorem 2(iv): the primitivity of S on I'(a) is the most difficult

property to guarantee,

4.2 Cayley graphs for 7% Let 7 and S be simple groups with T nonabelian.
Let % be an integer such that § is isomorphic to a transitive subgroup of the
symmetric group S;. (This is equivalent to choosing a proper subgroup M of §
and considering the action by right multiplication on the k = | S M | right cosets
of MinS.) Set G=Tuwr§ =T*.5. Then N = T* is & minimal normal subgroup
of G. Now we define a Cayley graph on TF admitting G. Let X be an S-invariant
class of involutions in N such that X generates N and define I" = Cay(N, X). Since
X generates N, T is connected and I" admits G. In order for this to be an example,
5 must act primitively on X. If § = Z, with k prime, and if 7" has a generating set
Z1,.. ., 2 of © <k involutions, then we can take X to be the set of images under

Sof (z1,...,2:,1,...1) € T*. For other groups S a different choice of generating
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set X for T* may give an example with § primitive. Note that we require Cs(z)
maximal in S for £ € X, and Cs(z) must preserve the partition of the k entries
determined by equality of z-entries. Thus each element z of X must determine a
different such partition. For example suppose that T has a generating set 1, ...,y
of ¢ involutions, and that the subgroup M of § stabilizing the first entry of elements
of N is maximal in S and has t orbits on entries. Then let = = (z1,...,7k) € N
be such that z; = y; if i is in the jth orbit of M on entries and let X be the set of
images of z under S. Then § acts primitively on X since Cs(z) = M is maximal
in §,and < X > = N, again since the stabilizer of an entry is maximal in S.
These examples are fairly typical of graphs satisfying Theorem 2(iv). For
such graphs the group G has a minimal normal subgroup N = T* and a simple
subgroup § which complements N and which permutes the simple direct factors of
N transitively. A group G with these properties is a twisted wreath product of T by
S (see {2, Section 3]). The groups discussed above were ordinary wreath products,
but the problem of constructing examples for twisted wreath products is similar.
Next we consider examples satisfying the conditions of Theorem 3. There are
many examples in case (ii)(b), some having been mentioned in 4.1 above. Also
constructions of examples in case (ii)(a) are obvious and need no more discussion.

We next describe a general construction which applies in cases (ii)(c), (iii)(b) and

(iii)(c).

4.3 Examples for Theorem 3(ii) and (iii)

(a) In these cases we have G = < NGq,a > for some 2-element a interchanging
the two halves A1 and A of the bipartition, and with N semiregular with orbits
Ly and A;. Set M = G,. Then VT may be identified with the transversal (that
is & set of right coset representatives) N U Na for M in G, so that o = 1y and
I'(a) € Na, say I'(a) = Xa with X C N. It is difficult to get precise conditions on
X in general so let us suppose that a normalizes M and a® € M which is true in
many cases. Then the image of the edge {1y,za},z € X, under a is {a,x”z} since
Mza® = Mz®", and the image of this edge under (2¢)~1 € N is {(z%)7a, 1N}

whence (2¢)7! € X. This is condition (z € X implies (z¢)™* ¢ X) is the condition
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for T' to be undirected. An element m € M sends za € I'(a) to z°™* g, so

amae
s

" € X whence X is an M-orbit in N on which M acts primitively.

(b)  One class of examples satisfying (ii)(c) can be easily obtained as follows. Let
N = Z},‘ with p prime, G’ = N.Si, with Sk permuting entries, M = § = A; and
a = (1,2). Let X be the set of standard basis vectors z; = (0*‘"110’“*), 1<1 <k,
The graph I = Cay(N, X ) with group G satisfies most of the conditions of Theorem
3(ii)(c); unfortunately N is not a minimal normal subgroup. The subgroup C =<
(1,...,1) > of N is normal in G and the quotient graph I'c and group G/C satisfy
Theorem 3(ii)(c) if p does not divide k (for in that case N/C' is minimal normal in
G/C).

(¢) In Theorem 3(iii)(b) G has a normal subgroup T' x T such that N = T x {1}
and &G = NH with S = HN(T xT) = {(t,t) |t € T} >~ T. In this case H =
<M,a>=<S5a>]H:M|=2, and the above assumptions on a all hold. The
subset X is an M-conjugacy class of T (for T =~ § < M < Aut T) and we require
Cr(z) maximal in T for z € X in order that § = T be primitive on I(a).

(d) In Theorem 3(iii)(c), N = T* < G < Aut.N. Let Cay(N,X) be one of the
graphs obtained from the construction in 4.2 satisfying Theorem 2(iv) admitting
N.S = 1"wr § and suppose that S has an automorphism a € Aut § \ S of order 2
such that < S, a > still acts transitively of degree k, that is a lies in the normalizer
of Sin Sk. Let G =T wr < S,a>= < NS,a >. Then a satisfies the assumptions
above and the graph with vertex set identified with N U Na and with T (o) = Xa

defined above satisfies all the conditions of (iii)(c).

Examples for Theorem 3(iv)(a) may be constructed in & similar manner to

4.3(d) from examples of Theorem 1(3).

4.4 Almost simple bipartite graphs Let © be a graph satisfying the con-
ditions of Theorem 1(i) but not (iv) admitting 7', a nonabelian simple group, and
suppose that T' has an automorphisin ¢ € T such that > € T and ¢ normal-
izes the stabilizer M of vertex a. Set G = < T,a >, identify VI with the
coset space [T': M] and define I' to be the graph with vertex set [G : M] such
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that ['(a) = {Mza |Mx € Z(a)}. Note that m € M maps Mza € I'(a) to
Mzam = Mz(ama™) a € T(a) (since ama™ € M), so this graph T' satisfies
Theorem 3(iv)(a). The stabilizer M fixes a point in both parts of the bipaftition,
namely M fixes M and Ma. A graph in case (iv)(a) need not have this property,
but if it does then it Will arise in the way described above.

Examples in case (iv)(b) of Theorem 3 are the most difficult to describe in

general. We give just one class of examples with § = T.

4.5 Bipartite graphs with diagonal action In Theorem 3(iv)(b), N = T* <
G = < N,a > with a a 2-element. We shall take here a = (1,2,...,k) of order
k=2°suchthat N =Ty x ... xTx and T? = T4, foralli. So G = N. < a >.
Let § = {(t,...,t) |t € T} and set M = 5. < a® > < Aut T. Note that m € S
acts ont = (t1,...,t) € N by t™ = (,...,t"). The vertex set of I' will be
the coset space [G' : M] which can be identified with the tranversal V U Va for M
in G where V = Ty x ... x Ty_;. Then for ¢ = M,Go = M and I'(a) C Va.
An element m € M < Aut T maps a coset Mva,v € V, to Mvam = Mv*™e "4
since ama™! € M, and v*™*"" € V. So I'(a) = Xa with X C V an M-orbit in
V such that Cs(z) is maximal in S for z € X. This can be achieved for example
by choosing ¢ € T' to be an involution such that Cr(t) is maximal in T and taking

X = {(t™,t™,...t™1) | me M} CV.
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