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Abstract: Let r be finite connected and G a group of automorphisms of r 

which is transitive on vertices. Suppose that, for a vertex 0 of r, S ~ G~(O') ::; Aut S 

for some simple group S with S acting primitively on the set r( a) of neighbours 

of 0, and suppose that G is minimal with these properties. Then one of: (i) G 

is a nonabelian simple group, (ii) r is a Cayley graph for a normal subgroup N 

of G and G = N.S, (iii) r is bipartite, (iv) r is a proper cover of a graph of the 

same valency and with the same properties. In the special case where r has prime 

valency this is result of Lorimer. More details of the structure of rand G are 

obtained for graphs which satisfy (ii) or (iii) but are not proper covers as in (1V). 

Constructions are given for several families of examples. 

1. Introduction 

Let r be a finite connected graph and G a subgroup of the automorphism 

group Aut r of r. Then G is said to be symmetric on r if G is transitive on the set 

fl = {(a,f3) I {o,f3} an edge} of ordered pairs of adjacent vertices of f, and G is 

minimal symmetTic if it is symmetric on r but no proper subgroup of G is symmetric 

on f. Note that symmetric graphs (that is those whose automorphism groups act 

symmetrically) are vertex transitive and hence are regular. The motivation for this 
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paper came f:om theorem of Lorimer [4] about minimal SY1ITillaetnc groups G 

of automorphisms of a connected graph r of prime valency v. Lorimer showed, 

es~;entla.lly, that one of the following is true for such G, r: 
(i) G is a nonabelian simple group; 

(ii) r a for a normal oJ ... '-' ..... ,.-u'"' N of G and G N 

(iii) r is bipartite; 

(iv) r is a proper cover of a 'E of such that group of automor-

induced G on is minimal syrnIIlet:nc. 

In [4] the result is stated differently: extra as~mrnptlOlns are made about r so 

that the conclusion is that G is (More information about the IllT""'rJ,ll P 

case (iii) is m [6J ). This eX])arl<le:Q version of Lorimer's theorem has been 

stated in this way to '""C,.u.',c,"" the inductive role of (iv) for rprl"/,,,nrr to 

For this to be red uction we need more 

information about the m to which are not proper 

of smaller eXaIItples. The aim of the paper is to look at the 

(ii) and in detail for a of synrun,etr:!c 

prime 

If G Aut r on a connected 

for vertex Q', the stabilizer GOt is transitive on the 

Q' in r, G is transitive on r 1. Moreover it shown 

a transitive permutation group of v 

with 

v r of 

f( Q') of nelf!hbOl1rs of 

Burnside, [9J, that 

induced 

by has a normal subgroup, we have S :::; :::; Aut S 

for some grou p S. K ote that S might be of order v. Moreover the 

group S acts primitively on r(a} (A permutation group on a set X is said to be 

T7'Tn.1.1.7,?if' on X if it is transitive on X and the only partitions of X invariant under 

the group are the trivial ones, namely {X}, and {{ x} I x EX}.) 

\!.Ie shall be concerned with finite connected graphs with a group G of automor­

phisms which is symmetric on r such that, for a vertex a, S :::; G~(O') :::; Aut S with 

S simple and primitive on f(a). First we show that the conclusions of Lorimer's 

theorem hold for such graphs. 
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Theorem 1 Let r be a finite connected graph of valency v and G ::; Aut r. 
Suppose that G is symmetric on r and that, for a vertex G', S ::; G~(O') ::; Aut S 

where S is simple and S is primitive on r( a). If G is minimal with respect to these 

properties then one of the following holds: 

(i) G is a nonabelian simple group; 

(ii) r is a Cayley graph for a normal subgroup N of G and G = N.S; 

(iii) r is bipartite; 

(iv) r is a proper cover of a graph 'E of valency v such that the group of automor­

phisms of'E induced by G is symmetric, S ::; G~(u) ::; Aut S with S primitive 

on 'E( (J) ((J a vertex of 'E), and is minimal with respect to these properties. 

A more detailed version of this theorem will be proved in section 2. A graph 

r is said to be a cover of a graph 'E is there is an epimorphism ¢ : vr ---+ VI: of 

the vertex sets which maps edges to edges (that is, if {G',,B} is an edge of r then 

{a¢,,B¢} is an edge of and is such that ¢ induces an isomorphism from the 

induced sub graph on r( G') to the induced subgraph on 'E( o:¢) for all vertices a of 

r. If ¢ is not a bijection then r is said to be a proper cover of I:. 

In the rest of the paper we analyse cases (ii) and (iii) of Theorem 1 in more 

detail assuming that the graphs are not proper covers as in (iv). 'lYe construct 

classes of examples in each case. We do not address the problem of constructing 

covers of our examples with the required symmetry properties. Some constructions 

of this type are given by Biggs [1]. 

Problem Given r, G, S, v as in Theorem 1 (i) to (iii), find all connected graphs 

f' which are proper covers of r and have a group G of automorphisms which is 

symmetric on f' and induces the group G on r. 
Recall that a Cayley graph for a group G is a graph r = Cay( G, X) (where 

X ~ G, Ie rt X and if x E X then x-I E X) with vertex set G such that 9 and 

h are adjacent if and only if gh- 1 E X. Such a graph admits G, acting by right 

multiplication, as a regular group of automorphisms. Also Cay( G, X) is connected 

if and only if < X > = G. A graph r is a Cayley graph if and only if Aut r contains 
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a N 

and in that the vertex 

on 

of f 

(that is N is transitive and Na = 1), 

identified with N so that N acts by 

right mt:unpl1<:at:lon if a identified with 1N,f ~ Cay(N,f(a)). We obtain a 

more detailed de:;CrllPt:lon of the structure of rand G for case (ii) of Theorem 1 in 

Theorem below. 

Theorem r, v be Theorem 1 and suppose that case (ii) holds 

so that N is aUCJl""'JUU of G N.S and r Cay(N,X) for some X = 
X-I C N, IN 1: X,N X ::mpp~ose also that case (iv) does not hold. Then 

one of the following hal)PE~ns: 

0) f = Cp,N 

Oi) N 

N S 

S 

N 

such 

involutions 

lead to Theorem 

and X is a conjugacy class of involutions of 

G = NS ::; Aut T Wi 5k 

and X is an 5-orbit of 

maximal in S for x EX. 

section 2. Our investigations of the bipartite case 

be proved in Section 3. 

Theorem 3 Let f, G, 5, v be as in Theorem 1 and suppose that case (iii) holds so 

that f is but that case (iv) does not hold. Then G has a minimal normal 

subgroup N , where T is simple and k ~ 1, such that N has two orbits in 

a > for some 2-element a, and one of the following holds: 

(i) f = 

(ii) T 

(b) 

(c) ::; 

T a nonabelian 

T' , 

and one of 

for N an abelian normal subgroup of G,p = 2, and 

IS lrn,;citlCH)le: 

is irreducible on N = z;; 
group and N is semiregular and one of 
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(a) N T S,f = Cay(S.2,X) where X = X-I <; S.2\S is an S-conjugacy 

class of involutions such that C s( x) is maximal in S for x EX; (Here 

S.2 ::; Aut S.) 

(b) N = T = S, and G = N H is contained in the holomorph of N with 

N n H = 1,S::; H::; Aut S and HIS Z2' for some s:2:: 1; 

(c) G::; Aut N; 

(iv) T is a nonabelian simple group, N is not semiregular, G ::; Aut N, G / N 

Z2' 1, and one of 

N=T; 

(b) k 1 j k divides 28
, and, for a E vr 1 N a is a subgroup of a diagonal 

subgroup of N Tk. 

A diagonal subg1'Oup of Tl ... x where each Ti ~ T, is a subgroup of the 

form {(t<Pl, ... ,ttPk) 1 t T} ~ T where the <Pi Aut T. 

A discussion of the graphs which arise, including constructions for several fam-

ilies of is given in section 4. 

2. Proofs of Theorem 1 and Theorem 2. 

In this section we prove the following technical version of Theorem 1. Then we 

begin the more detailed analysis of the various cases leading to a proof of Theorem 

2. 

Proposition 2.1 Let r be a finite connected graph of valency v and let G ::; 

Aut r. Suppose that G is symmetric on r and, for a E VT, S ::; G~(a) ::::: Aut S 

with S simple and primitive on r( a); and let G be minimal with respect to these 

properties. Let N be a minimal normal subgroup of G, so that N ~ Tk for some 

simple group T and integer k :2:: 1. Then one of the following holds: 

(i) G = N = T is a nonabelian simple group; 

(ii) G N Sand r is a Cayley graph for N; 

(iii) r is bipartite, N has two orbits on vertices, and either 

(a) r = KV,Vl v = lSI is prime, S = T, N = S x Si 

(b) N is semiregular, so ! vr 1= 2 I N I; 
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(c) S ~ Aut S,G a, N >, N is l1Ul,ldL't:ll.dl.l.. G / N < aN 

Z2' with k dividing 2\ 2 l. 

(iv) r is a proper cover of some graph r; with 

induced by G on r; is symmetric, S ~ 

v and the group of au tomof­

~ Aut with S nn,nll,tnrp 

on a vertex of and is minimal with respect to these properties. 

If normal N of G has more than two orbits on vertices then the 

quotient graph r N is defined 8.."l the with vertices the two N -orbits 

being aOllac,ent In if some vertex in one joined to some vertex in the other 

N-orbit. of pn)pc.Slt.lon the '\" "-' In will be but in 

hC:I"nl1PT1t. lemmas may fc for some other normal subgroup C of G. 

Proof The is normal in first 1. 

1. more than two 

[7, 

of aU1COIJD.OIlJn.lSIJIlS Gis this group 

IS 

v and N 

IS 

acts of NS. 

now SUl:lDo:se that :s; The group 

lH :=< IT COlh'1E:ctl.'nt:y has or two orbits in. 

Fr. 1\~ minimal normal M it follows that N = A1 has 1 

or :2 orbits. N is transitive on Iff then, the HUHHUa"UCJ of we have G N , 

whence G nonabelian So suppose that N has two orbits. Then f 

1S If ,S abelian then order v and Lemma 1.1], 

r= and N SU1)p<)Se that N is non-abelian. There 

is a 2-element G \ N which 'nt"rr'h~n(l',p<: the two N-orbits 

G = < .IV, a > so is cyclic of order for some s 2 1. Since N is a minimal 

normal subgroup, < a > permutes the direct factors of Il transitively so Ie 
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Before starting on a more detailed analysis of the cases in Proposition 2.1 we 

make the following observations about the structure of a stabilizer GO'. It will be 

used many times in the subsequent arguments. 

Lemma 2.2 If r, G, S are as in Proposition 2.1 then has exactly one com-

position factor isomorphic to S, and every other composition factor has order less 

than \ S \. 

Proof For i 2:: 1 let denote the subgroup of GO' fixing pointwise every vertex 

distant at most i from a. If Gi( a) i= 1 then, for each vertex f3 at distance i from 

a, Gi(a)r(.t:l) is a subgroup of G~(f3) fixing point of r(f3) at distance i - 1 from 

a. Consequently every composition factor of Gi( a )r(,B) is a composition factor of 

some proper subgroup of S or of Oui S and hence has order less than \ S \. (This 

uses the simple group cla.<;sification in the assertion that \ Out S I < I S \.) Thus 

each composition factor of Gi(a)IGi+l(a) has order less than \ S I. This, together 

with the fact that G~(a) has one composition factor S and all others have order less 

than I S \, completes the proof. 

First we consider the case where the subgroup N of Proposition 2.1 is abelian. 

Lemma 2.3 Let r,G,S,N,v be as in Proposition 2.1 with N abelian. 

(i) If Proposition 2.1(ii) holds then either 

(a) r Cp,p, a prime, v = I S 1= 2, or 

(b) N = Z~,S ~ GL(k,2),S irreducible. 

(ii) If Proposition 2.1(iii) holds then either 

(a) r Kv,v, and v = 1 S I is prime, or 

(b) r = G2p , N = Zp, p a prime, v = I S I = 2, or 

(c) N = ,r is a Cayley graph for Gc(N) = N.2, an abelian regular normal 

subgroup of G, G = Gc(N).GO', and GO' S ~ GL(k,2) is irreducible, or 

(d) N Z;, and G ~ AGL(k,p) with GIN ~ GL(k,p) irreducible. 

Proof In case (ii), r = Gay(N, X) with X :;;; N, X = X-I, and if a is the vertex 

identified with IN then GO' acts primitively on rea) = X. For x E X, {x, X-I} is a 
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block of lrnpnmltrvlty for Go: in and hence either = x-I whence N = 
or } whence v = In the r 
of 

is irreducible. 

In 

holds, 

assurne 

XcC, 

IX 
N 

and by HUUHIHL.LlUj 

minimal normal subgroup. In the former case N is 

so Go S of N,S 

C N. 

Then C 

0:: is identified 

C2P ,p a 

Aut N 

G= CG o 

r Cay(C, 

1 c then X C \ and 

then 

So 

for some 

either 

C01.l:oil:;'Lb of involutions. In the latter case 

corrnc:ctt;Q G Of faithful on r( 0::) 

irreducible. 

From now on we may N nonabelian 

group. where centralizer C of N in G nontriviaL 

Then G is not 

holds with 

has more than two orbits then fJrf"\nr,,,,t,nn 2.1 (iv) 

lemma deals with the case where C has at most 

two 

Lemma 2.4 r, 5, v be as in t'rc)Po'sltJton 2.1 with N and 

suppose that the eentralizer C of N in .:Ju·pp()se further that Propo-

sition does not hold. Then N = T 

(1) If holds then C G=};x c::: Sx and Cay(5, 

where X is a ""..-""".">,.,.,, class of involutions in sueh that is maximal 

in 5 for x EX. 

If f-'rt')nr",,1'lnn holds then we are in (iii)(b) and either C = 5 or 

C= ::; Aut S. Moreover either 

for X ~ \ S an ..... (·,........,""':r"'r·u class of involutions in 

such is maximal in S for x EX, or 

(b) C Sand G contained in the holomorph of N = 5 with G = N.H, N n 

H = 1, S ::; H ::; Aut S, = Z2" for some s ~ 1. 



Proof Since Proposition 2.1(iv) does not hold, C has 1 or 2 orbits. If N were 

not semi regular then Proposition 2.1 (iii)(c) would hold and we would obtain r 
I<v,v, N = 5 x 5, and C would have at least one composition factor 5 so that 

(N x C)o' would have at least two composition factors 5 contradicting Lemma 2.2. 

Thus N is semi regular so that we are in case (ii) or case (iii)(b) of Proposition 2.l. 

Moreover C induces on each N -orbit a group isomorphic to Tk so that (N x C)o' has 

a normal subgroup isomorphic to Tk and this normal subgroup must act nontrivially 

on r( a). It follows from Lemma 2.2 that T = 5, k = 1 and either C S, or we are 

in case (iii)(b) and C = 5.2. In case (ii) of Proposition 2.1 r = Cav(S, X) with X a 

self-inverse conjugacy class of S and as GO' 5 is primitive on r( a) X, it fo11O\\'s 

that X consists of involutions and C s( x) is maximal in S for x EX. In case (iii )(b) 

of Proposition if C = S.2 then r = Cav(C,X) with X ~ C \ S a self-inverse 

S-conjugacy class in C. Since Proposition 2.1(iv) does not hold, C S.2 :::; Aut 5 

(that is C"I S x Z2). As S is primitive on X,X consists of involutions and Cs(X) 

is maximal in S for x EX. Similarly if C = 5 and CG( C) = N.2 = S.2 then 

r = Cay(S.2,X) for some X satisfying the above properties. If cG(e) = N then 

G is contained in the holomorph of N = 5. Thus G = N.H, where N n H = 
1,5:::; H S Aut 5. By minimality G =< N x C, V > where V is a 2-element which 

interchanges the bipartite halves, and so H / 5 ~ Z2' for some s :2: l. 

In case (ii) of Proposition 2.1, if N has trivial centralizer then N = Tk with T a 

nonabelian simple group, r = CaV(N,X), and G = NS:::; Aut N = Aut T Wi Sk. 

Moreover 5 must permute the simple direct factors of N and so 5 must project onto 

a transitive subgroup of 5k; and as 5 is primitive on rea) = X, where a = IN,X is 

an 5-orbit of involutions. Theorem 2 follows from Lemmas 2.3 and 2.4, and these 

remarks. 

3. The bipartite case 

Let r, G, 5, v be as in case (iii) of Proposition 2.1, and hence case (iii) of 

Theorem 1, so that r is bipartite and some minimal normal subgroup N of G has 

two orbits on VT. The cases where N has nontrivial centralizer were treated in 
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Lemmas and may assume that N = Tic for some 

nonabelian group T and k and that G $ Aut N = Aut T wr Sk. 

be the two N-orbits in yr. We shall 

normal sulbglrot:Lps of N on r. 
Let and ''''''''-'1'','''''"''' the action of several 

Lemma 3.1 If the DomtwH,e stabilizer 

I<v,t" and N 5 Aut S 

Proof 1. We 

G 

for all sut)sclnp1~s modulo k. 

line of argument 

and 

that 

and k = Lemma 1.1] r 

of .6.1 in N nontrivial then r = 

assume that Tl Afl . We are in case 

and we may assume that 

Afl M2 with Ml = Tl X Ta x ... 

the Mrorbits in 

18 a nr.,nt .. ,,,,,«1 normal subgroup of 

direct power of copies of T, it follows 

have only one composition factor 5, 

VVe assume from on that N acts UU'".Llll .. u'.lj on each of 

look at the case where some nonidentity element of Tl fixes a point, that is Tl is 

not semi regular on yr. 

Lemma 3.2 Suppose that NU::>.d = 1 and that some nonidentity element of Tl 

fixes a Then N = T $ G $ Aut T. 

Note that in any example for which Lemma 3.2 holds, N must have two con-

jugacy classes of subgroups ( containing No: and N (3,0:' E 

interchanged by G. 

Proof ,\Ve may assume that (T1)0: =I 1 for a E .6. 1 . Then, as (Td~(O:) <J , it 

follows that S $ (Td~(O:). ,\Ve are in case (iii)(c) of Proposition 2.1: G = < N,a > 

and we may take Tt = Ti+l for all i 

element of Ta = fixes a point of 61 

have length, it follows that S $ 
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least two composition factors S, contradicting Lemma 2.2. So k ::s 2. Suppose that 

k = 2. If (T2 )O' =/:- 1 then we would obtain a contradiction as above and hence T2 

is semiregular on ~1, and so Tl = TfJ is semiregular on 6 2 = 6i. Thus (TI)~(O') 

is regular. However S ::s (Tl)~(O') ::s Aut Sand S is primitive on rea), and such 

primitive groups are not regular (see [3]). Thus k = 1. 

Lemma 3.3 Suppose that N(t:;,.d = 1 and that Tl is semiregular on vr. Then 

either N is semiregular on vr or k > 1 and for a E vr , NO' is a subgroup of a 

diagonal subgroup of N = Tl X .,. X Tk. 

Recall that a diagonal subgroup of Tl x ... X Tk is a subgroup of the form 

{(tfl, t f2 , .. . , t<Pk) It E T} ~ T where the <Pi E Aut T. 

Proof Suppose that N is not semiregular and that Tl is semiregular on vr. Then 

case (iii)( c) of Proposition 2.1 holds so G = < N, a > with Tr = Ti+1 for all i. 

Let j be the least integer such that Y = Tl X .,. x Tj is not semiregular. Then 

2 :::; j ::s k. We may assume that y!(O') f:. 1 for a ~1' Then yO' is a subgroup 

of a diagonal subgroup of Y = Tl X ••• x Tj since (Tl x '" X Tj-l)O' = 1. Now 

Ira
2 

= Ts x ... X Tj+2 taking the subscripts modulo k, and ya
2 

is such that (lra2)oa2 

acts nontrivially on r(aa 2
). Since aa 2 

E ~f = ~l it follows that (}ra2)~(O') =/:-l. 

Now (ya
2

)O' is a subgroup of a diagonal subgroup of T3 x ... X Tj+2. If j < k then 

yO' n (ya
2

)O' = 1 whence N Oi ~ yO' X (ya
2

)0' has at least two composition factors S, 

contradicting Lemma 2.2. So j = k and N = Y, and the lemma is proved. 

Theorem 3 now follows from Lemmas 2.3, 2.4, 3.1, 3.2 and 3.3. 

4. Constructions and discussions 

There are many examples of graphs satisfying the conditions of Theorem 1 with 

G a nonabelian simple group: a second paper of Lorimer [5] classifies all such cubic 

graphs on up to 120 vertices. The purpose of this section is to give constructions 

for classes of graphs satisfying the conditions of Theorem 2 or 3 to illustrate the 

various types of examples which arise. We begin with Theorem 2. There are many 
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on in known are folded 

cube vertex set with vertices 

The of the folded cube 

odd then Ak a.cts 

property to 

for Let and S be 

Let k be an such that S 

and \.-UJ.Li:ll'UGL 

of .hJ in Set G 

of G. Now denne a on 

all-l vector . 

. ih with the alterrlatmg group 

18 an eX;:l,mple 

Z2 we obtain group 

on normal UU'''F.''.vUfJ 

and 

understood a.nd 

a nonabelian 

ex:anlples, for most 

of the 

the most difficult 

.~U.k.'''-.HJlHJ of the 

QUL'''-.J.'JU.f; 1\J of S 

cosets 

minimal normal 

class of involutions N that X generates Nand 

Let 

r 
generates is connected and r admits G. In 

on X, If S = Z k with k S must act nr1rYn+"",,1 if T 

Xl, .. , ,.Tt of t ~ k In"'llOlutlons, then we can take X to be the under 

of ,1, ... 1) E For other groups S a different choice of O'P1,pr,,,t1nO' 
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set X for Tk may 

maximal in S for x E 

an ex''UIlple with S nMTTlih'IJ'p Note that Cs(x) 

and must preserve the partition of the k entries 

determined by equality of x-entries. Thus each element of X must determine 

different such partition. For example suppose that T has a generating set Y1, .. , '1jt 

of t involutions, and that the subgroup M of S stabilizing the first entry of elements 

of N is maximal in S and has t orbits on entries. Then let x = (Xl,' ., E N 

be such that Xi = Y j if i is in the orbit of M on entries and let X be the set of 

of x under S. Then S acts primitively on X since Cs(x) M is maximal 

in S, and < X > = N, again since the stabilizer of an entry is maximal in S. 

These examples are fairly typical of satisfying Theorem For 

such graphs the group G has a minimal normal subgroup N Tk and simple 

subgroup S which complements N and which permutes the simple direct factors of 

N transitively. A group G with these n .. ,"\n." .. t,,,,,,, a twisted wreath product of T by 

S [2, Section 3]). The groups discussed above were " .. r"-n·,,,,,, wreath products, 

but the problem of constructing ex:arn.pl(~s for twisted wreath products is similar. 

Next we consider examples satisfying the conditions of Theorem 3. There are 

many ex:am.pl(~S in case (ii)(b), some having been mentioned in 4.1 above. Also 

constructions of examples in case (ii)(a) are obvious and need no more discussion. 

We next describe a construction which applies in cases (ii)( c), (iii )(b) and 

(iii)( c). 

4.3 Examples for Theorem 3(ii) and (iii) 

(a) In these cases we have G = < NGa , a > for some 2-element a interchanging 

the two halves L::.l and L::.2 of the bipartition, and with N semiregular with orbits 

L::.1 and L::.2. Set M = Ga. Then vr may be identified with the transversal (that 

is a set of right coset representatives) NuN a for M in so that 0' IN and 

r( 0') ~ say r( 0') = X a with X ~ N, It is difficult to get precise conditions on 

X general so let us suppose that a normalizes M and a2 E M which is true in 

many cases. Then the image of the edge {IN, xa}, x EX, under a is {a, x a 2} since 

Mxa2 = , and the image of this under (xa
2
)-1 E N is {(xa)-la, IN} 

whence (xa)-l EX. This is condition (x E X implies (xa)-l E X) is the condition 
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r 

N 

a 

(1, .. ,1) 

Theorem 

( c ) In Theorem 

N.S 

such 

of 

above 

defined above sat:lS!les 

from ex,:1mplE:s of 

ditions of 

An element M 
1 
a j 

an A{-orbit in N on which M 

G 

n 

np'rrnll!1nU entries, hI and 

of standard basis k. 

OU"''''.L'~''' most of the conctltl()nS of Theorem 

not a minimal normal wu..J"','VU 

minimal normal in 

T such that N T {I} 

T. In 

the above ass:unmtioI1S on a 

the 

aut,omorp.rllsm a E Aut S \ 

k, that is a 

Then a satisfies the ",,,c"'T1'1ni',,,,nQ 

Identliwd with NUN a and with = Xa 

the conditions of 

constructed in similar to 

be 

but not 

suppose T has an autornorpIllsl:n E that a2 

T,a >, 

the con­

group, and 

T and normal­

izes the OC('Hn,U("\~' 

coset 

AI of vertex a. Set G 

and define r to be the 
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that r(a) {Mxa I Mx E ~(a)}. Note that m E M maps Mxa E rea) to 

111 xam = 111 x( ama- 1
) a E r( a) (since ama-1 EM), so this graph r satisfies 

Theorem 3(iv)(a). The stabilizer M fixes a point in both parts of the bipartition, 

namely M fixes M and Ma. A graph in case (iv)(a) need not have this property, 

but if it does then it will arise in the way described above. 

Examples in case (iv )(b) of Theorem 3 are the most difficult to describe in 

general. We give just one class of examples with S = T. 

4.5 Bipartite graphs with diagonal action In Theorem 3(iv)(b), N = Tk ::; 

G = < N, a > with a a 2-element. We shall take here a = (1,2, ... , k) of order 

Ie = 28 such that N = Tl X ••• X Tk and Tt = Ti+l for all i. So G = N. < a >. 

Let S {(t, . .. ,t) I t E T} and set M = S. < a2 > ::; Aut T. Note that m E S 

acts on t = (t 1, ... , tk) E N by t m = (ti, ... , tr). The vertex set of r ,vill be 

the coset space [G : M] which can be identified with the tranversal V U Va for 111 

in G where V = Tl X .,. X Tk - 1 • Then for (l' = M,Ga = M and rea) ~ Va. 

An element m EM::; Aut T maps a coset Mva,v E V, to Mvam = Mv ama
-

1 

a 

since ama-1 E M, and vama
-

1 
E V. So rea) = Xa with X ~ V an M-orbit in 

V such that C s( x) is maximal in S for x EX. This can be achieved for example 

by choosing t E T to be an involution such that CT(t) is maximal in T and taking 

X = {( t m , t m , ... t m , 1) I m E M} ~ V. 
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