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Abstract. Khosrovshahi and Ajoodani-Namini give a new method for extend-
ing t-designs with k = ¢ + 1. Based on their result, they obtain a recursive
construction for {-designs and for large sets of disjoint t—(v, k,)) designs with
k = ik+ 1. Independently, Teirlinck recursively constructs large sets with
the same parameters using a different method. In this paper, we generalize
their results to any k > ¢ + 1 and construct a family of large sets of dis-
joint 3—(v,5, (";3) /3) designs. That is, the family of all 5-subsets of a v-set
can be partitioned into 3 disjoint 3— (v, 5, (";3) /3) designs with v = 9m + 4
(m =1,2,3,...). To the author’s knowledge, this family of large sets is new.
We show that there is a large set of disjoint 4—(9m + 5,6, (9"‘2'*'1) /3) designs
for any m > 1 if there is a large set of disjoint 4—(13,5,3) designs.

1 Introduction

We begin by giving some general definitions. A t—(v,k,)) design is a pair
(X, B) which satisfies the following properties:
(i) X is a set of v elements (called points);
(ii) B is a family of k-subsets of X (called blocks);
(iii) any t-subset of X is contained in exactly A blocks.
A t—(v,k, ) design is called simple if it contains no repeated blocks. For

at—(v,k, ) design (X, B) and any fixed subset ¥ of X with |V| =5 <1, let

Australasian Journal of Combinatorics 4{1991),pp 229-235



B'={B\Y :Y C B € B} (Here B’s are all blocks in B containing Y). Clearly
(X\Y,B")is a (t —s)— (v — s,k — s, ) design, and is called a derived design of
(X,B). It is well known that a t—(v, k, X) design is also an s—(v,k, A,) design
with A, = A(‘::;) / (':::) Hence we have the following necessary condition for

the existence of & t—(v,k, ) design:

A(’t’::) =0 (mod (’::’)) (s=0,1,...,1—1).

38

Given a v-set X, let P,(X) denote the set of all k-subsets of X. Suppose
(X,B:), (X,B,),- -+, (X,B,) are n simple t—(v, k, A) designs. If By, By,---,B,
forms a partition of Pe(X) (namely, U, B; = P(X) and B.NB; = 0 for
all 1 <14 < 7 < n), then (X,B;),(X,B;), ++, (X,B,) is called a large set of
disjoint t —(v,k, \) designs (see [8]). Note that some use the term uniform
t—(v,k,A) partition. In that terminology, only when ] is the smallest positive
integer satisfying the necessary condition above, is the uniform t— (v,k, )
partition called a large set of disjoint t—(v,k, X) designs [2, 3, 6]. However,
large sets with A not necessarily the smallest integer are still very interesting
and important.

Khosrovshahi and Ajoodani-Namini (see [4]) give 2 new method of extend-
ing t-designs. Based on their result, they obtain a recursive construction for
t-designs and for large sets of disjoint t—(v,k,\) designs with k = ¢ 4+ 1. In-
dependently, Teirlinck (see [8]) recursively constructs large sets with the same
parameters using a different method. In this paper, we generalize their results
toany k > t+1, and construct a family of large sets of disjoint 3—(v, 5, (";3) /3)
designs with v = 9m +4 (m = 1,2,3,...). This family of large sets is new,
and the family of 3-(v,5, (";3) /3) designs, for v = 9m 44 (m = 2,3,...), is
not isomorphic to the known ones. We also show that there is a large set of
disjoint 4 —(9m + 5,6, (9"’2“) /3) designs for any m > 1 if there is a large set
of disjoint 4—(13, 5, 3) designs. '
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2 Main Results

Theorem 1 Suppose

(i) that Dy and D, are (simple) t—(v1,k,A;) and t— (v, k, \;) designs,
respectively, such that (7}1—,5 = ,;\‘,, = ¢; and
h-t

bt
(ii) that there ezist a large set of disjoint (k—2)—(v1—1,k—1, u=ktl) Jesigns
and a large set of disjoint (k—2)—(vy—1,k—1, 2=k} designs, where n

is an integer such that ns is an integer.

Then there ezists a (simple) t—(vi+vo—k+1,k,)) design Dy with
A= s("‘*"’k:’:““), such that D; contains a copy of Dy and a copy of D,.

Note that for the special case k = ¢ + 1, Khosrovshahi and Ajoodani-Namini
have already proved this theorem. We will give the proof in the next section.
In the above theorem, if one of D, and D, is not a (¢ + 1)-design, then D; as
constructed in the proof is not a (¢ + 1)-design, either. The following results
for the special case k = £+ 1 can be found in [4], and Corollary 2 for k = ¢+ 1

can also be found in [8].

Theorem 2 Suppose that there are large sets of disjoint t—(vy, k, (’2::) /n) and
t—(vy, k, (‘;:_":) /n) designs, respectively, and that there are large sets of disjoint
(k—2)—(v1~1, k~1, ”—*:'%’—il) and (k—2)—~(v2~—~1,k~1,22—'%‘i1~) designs, respectively.
Then there ezists a large set of disjoint t—(vy +vy—k+1,k, (”‘“”;_’:““t) /n)

designs.

We will give the proof in the next section. From the above two theorems we

get:

Corollary 1 Suppose that there ezists a (simple) t—(v,k,)) design, and let

s = (;—i;; If there ezists a large set of disjoint (k—2)—(v—1,k—1,r=k1)
-t

designs, where n is an integer such that ns is an integer, then there is a

(simple) t—(v + m(v — k + 1),k,s("”‘+"}:(_"""+1))) design for any m > 0.
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Corollary 2 Suppose there ezist a large set of disjoint t —(v,k, (::t)/n) de-
signs and a large set of disjoint (k—2)—(v—1,k—1, ”;iil) designs. Then there
is a large set of disjoint t—(v + m(v—k+1),k, ("“”",:9’;“”) /n) designs for

any m > 0.

Application. There is a large set of disjoint 3—(12,4,3) designs and a large
set of disjoint 3 —{13,5,15) designs which is not a large set of disjoint 4~
(13,5,3) designs (see [2, 6]). By Corollary 2, there is a large set of disjoint
3—(9m +4,5, (9"‘2“) /3) designs for any m > 1. Simple 3—(9m +4,5, (9"’2“) /3)
designs are already known to be existent which are also 4—(9m + 4,5,3m)
designs. But the large set of disjoint 3—(9m + 4,5, (9'“2“) /3) designs is new,
and our 3—{9m + 4,5, (9"'2‘“) /3) (for m > 1) designs are not isomorphic to
the known ones.

There is a large set of disjoint 4—(14, 6,15) designs (see [2, 3]). If we can
construct a large set of disjoint 4—(13,5,3) designs, then there is a large set
of disjoint 4—(9m + 5,86, (9”‘;1)/3) designs for any m > 1. The existence of
simple 4~ (9m + 5,6, (9"‘“)/3) design is believed to be unknown for m > 2

2

(The 4-{23,6,57) design is in [5]).

3 Proofs of Main Results

Proof of Theorem 1. Let X = {1,2,...,v; +v;—k+1} and Denote all
t-subsets of X by T1,T3,..., T(.,+.,!~H1), respectively. Partitiop all k-subsets
(called blocks) of X into the following k-+1 disjoint classes:
Co={{z1,22,..yZa} EPu(X) 121 <23 < -+- <z <1 + 1},

Cy = {{z3,22,.-., 24} € Pa(X) 12y <23 <-++ < Tiemy <01 < Zi},y
C;={{z1,23, ., Ta} EP(X) t 21 << Ty < Hl=F <Tpojp1 < - c< 2k},
‘ ey

Cir ={{z3,22,.. ., 2} E P(X) 121 <v1—k+2 <23 < 25 <+ < i},
Co={{z1,20,. ..,z } € B(X) 11— k+1 <&y <2y < -+ < 2}
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Let n;; be the number of blocks B in C; containing T;. Since Cy,C;,C,,...,C)

is a partition of P,(X), 3 J 07, is the number of k-subsets of X containing T;.

So
Xk:ni': <v1+v2~k+1—1).
= k-t
Suppose we can construct a collection B; of k-subsets of X from C; such
that any t-subset T: of X is contained in sn;; blocks in B; (j = 0,1,.. k).
Then by the above equation, (X, U,—oB') is the requiredk t—(vy+v2—k+
1,k .s(""“” "“)) design. Now we try to construct such B;. Let

X;={L,2,...,u1—3}, Jj=0,1,....k—1;

Vi={nn+2-j4,m+3—j,...,004+va—k+1}, j=1,2,...,k

Note that X;UY; = X\{v;+1—j}for 0 < j < k.

For j = 0, by the existence of D;, we construct a collection By of k-subsets
of X such that (Xo,Bo) is a copy of Dy, i.e., a t—(v1, k, A1) design. If T} ¢ Xo,
then n;o = 0. If T; C X, then n;p = (';:::) and sn;go = A;. T; is thus
contained in sn;o blocks of By for every i. For j = k, we similarly construct
a collection By of k-subsets of ¥; such that (Y%, Bi) is a copy of D,. So, T} is
contained in sn;, blocks of B, for every 1.

We consider the general case 0 < j < k. Let (X1, B1y), (X1,Bsy), -+,
(X1,Bn1) be a large set of (k—2)—(v;—1,k—1, w=kil) designs. By deleting
the points v;+1—7, v;+2—7,..., v —1, we obtain the correspoding derived
designs (X, By;), (X1,B2;), -+ (X1,Bn,;), which together form a large set
of (k—1—j)~(v1—j, k—j,ﬂ:,—fﬂ) designs.

Similarly, let (Yi-1,B]4_1), (Ya-1,B541), - -+, (Yee1, BL s_;) be a large set
of (k—2)—(vy —1,k—1,%2=+1) designs. By deleting the points v;+3—F, v1+4—k,

«+y v1+1—7, we have the corresponding derived designs (Y5, B1;), (Y5, B ;),
-+, (Y5, By, ;) which together form a large set of (j—1)— (v, —k+j, 7, uokily
designs.

Note that for any block B € C;, |[BNX;| = k—j and |BNY;| = j. For
every BM) € B; ; and every B® ¢ B ;, BOUB® is a block in C;. Now
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given any permutation ¢ on {1,2,... ,n}, let
Climy = U Bij 0Bl
i=1

where Bi; © Bl ; = {AUB : 4 € Bi;, B € Bl ). Hence Cpiuy C C;. We
claim that T} is contained in ™% blocks in C(j) for every i.

If n;; = 0, the claim is obvious. Assume ni; # 0. Then vi+1—5 ¢ Tt. Let
TV ={teT:t <v+1-5}(C X;), T® = {teT:t>uv+1-5} (CY).
ni; # 0 implies that [TV < k—j and |T7| < j. Let I = 7—|T*|. Then
TP = =1, T = |1 = TP = 1 =541 with 0 < I < k—1. Choose any
(k—t—1)-subset Z; of X;\T") and any I-subset Z, of VAT, Then T Uz,Jz,
is a block in C;. Clearly we have (1‘:::1’) choices for Z; and (”’”f”) choices
for Z;. Therefore n; ; = (",:::_‘:)(""l}‘“).

Case 1. | =k ~1. Then ]T}(I)I = k—j and ]:_(1) is a block in one and only one of
the (k—1-7)~(v1~j, k—j, 9=5%1) designs (X}, By ), (X;, Ba)), o (X5, Bn ).
T = j=(k~t) and T{? is contained in (","_‘:) /n = n;;/n blocks of (Y}, B..)
(u=1,2,...,n). Hence, T} is contained in ni,j/n blocks in C(j ).

Case 2. I = 0. The discussion is similar to Case 1.

Case 3. 0 < I < k—t. Then TV is contained in (‘;::'::11) /m blocks of (X;, B, ;)
(v=1,2,...,n), and T{(z) is contained in (""{'H) /m blocks of (Y;,B. ) (u =
1,2,...,n). So T} is contained in DN (’;‘:::f) /n (”rlk“) /n = n;,j/n blocks of
Cio)-

Finally, let m = sn and 0y,0,,...,0,, be m permutations on {1,2,...,n}
and B; = U, C(;,.)- Then T; is contained in m(n;;/n) = sn;; blocks in B;.
Therefore (X, U?:o B;) is the required t—(vitv,—k-+1, k, s ("1 +',:':"“)) design. If
Dy and D, are both simple, then s = )‘1/(’2::) <1. Choose oy = (12 --- n),
1 <1< m. Then the design (X, Uj=0 B;) has no repeated blocks and thus is
simple, '

Proof of Theorem 2. We use the notations in the proof above. Let
(Xo,B10), (Xo,Ba), -+, (Xo, B o) be a large set of disjoint {—(vy, k, (';:::) /n)

designs, and (Y, B! ), (Ye,BS,), -, (Y, B}, ;) a large set of disjoint ¢ —
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v, k, (727)/n) designs. Choose o; = (12 --- n)i, i =1,2,...,m. Define
k-t

k-1
B; = Bi,oU B:',, U C(J‘m)'
1

i=
Then we can verify that (X, B;), (X,B,), -, (X, B,) is the required large set.
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