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Abstract. Khosrovshahi and Ajoodani-Namini a new method for extend-

"-U"'<HI"'-UO with k t + L Based on their they obtain a recursive 

construction for and for setsofdisjointt-(v,k,>.) with 

k t + L Teirlinck sets with 

the same TUI'!"~.n'lI"t:,pr~ 

their results to any k 

a different method. In this paper, we 

t + 1 and construct a of large sets of dis-

joint 3-(v,5, (11;3)/3) desH?:ns. That 

mSJ'Olnt 3 can be pa:rtl1;lOIled. 5, 

(m 1,2,3, ... ). To the author's Irn,,.,.'tul ... r1 

V-~.U.LJ"",",I'''' of a v-set 

Uv':;'A",.l.J.O with v = 9m + 4 

this family of large sets is new. 

We show that there a U.I..:>IVU"''' 4-(9m + 5,6, (9m
2
+1)/3) designs 

for any m 1 if there is a set of rh ","',,,n1- (13,5,3) designs. 

1 

We begin some general definitions. A t-(v,k,>.) design is a pair 

(X, B) which satisfies the following ...... .,...r~n ... ' .. ,."P'" 

(i) X is a set of v elements (called points); 

(ii) B is a family of k-subsets of X (called blocks); 

(iii) any i-subset of X is contained in exactly>. blocks. 

A t-(v,k,>.) is called simple if it contains no repeated blocks. For 

a t-(v,k,>.) design (X,B) and any fixed subset Y of X with IYI = s S; i, let 
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B' = {B\Y : Y C B E S} (Here B's are all blocks in B containing Y). Clearly 

(X\Y, S') is a (t - 8) - (v - s, k - 8, A) design, and is called a derived design of 

(X, B). It is well known that a t-( v, k, A) design is also an ..'l-( v, k, A.) design 

with A. = A (:=:) / (;=:). Hence we have the following necessary condition for 

the existence of a t - (v, k, A) design: 

A(:=:) =,0 (mod (~=:) (8 0,1, ... ,1-1). 

Given a v-set X, let Pk(X) denote the set of all k-subsets of X. Suppose 

(X, Bd, (X, B2 ),···, (X, Bn) are n simple t-(v, k, A) designs. If B1, B2 ,"', Bn 

forms a partition of Pk(X) (namely, Ui=l Bi = Pk(X) and Bi n Bj 0 for 

all 1 i < j ~ n), then (X, Bd, (X, B2 ),···, (X, Bn) is called a large set of 

disjoint t (v, k, designs [8]). Note that some use the term uniform 

t-(v, k, A) partition. In that terminology, only when A is the smallest positive 

integer satisfying the necessary condition above, is the uniform t (v, k, A) 

partition called a large set of disjoint t-(V,k,A) designs [2,3,6]. However, 

large sets with), not necessarily the smallest integer are still very interesting 

and important. 

Khosrovshahi and Ajoodani-Namini (see (4]) give a new method of extend

ing i-designs. Based on their result, they obtain a recursive construction for 

t-designs and for large sets of disjoint t-(V,k,A) designs with k = t + 1. In

dependently, Teirlinck (see [8]) recursively constructs large sets with the same 

parameters using a different method. In this paper, we generalize their results 

to any k 2:: t+ 1, a.nd construct a family oHarge sets of disjoint 3-( v, 5, (t/;3) /3) 

designs with v = 9m + 4 (m = 1,2,3, ... ). This family of large sets is new, 

a.nd the family of 3-(v, 5, (t/;3) /3) designs, for v = 9m + 4 (m = 2,3, ... ), is 

not isomorphic to the known ones. We also show that there is a large set of 

disjoint 4 - (9m + 5,6, (9m2+1) /3) designs for any m > 1 if there is a large set 

of disjoint 4- (13,5,3) designs. 
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2 Main Results 

Theorem 1 Suppose 

(i) that Dl and Dz are {simple} t-(VI,k,Al) and t-(v2,k,>''l) designs, 

respectively, such that C .. :': t ) S; and 
h-t 

(ii) that there exist a large set of disjoint (k-2)-(vl-l,k-l, 'V1-:tl) de.signs 

and a large set of disjoint (k-2)-(vz k-l, va-;±l) designs, where n 

is an integer such that ns is an integer. 

Then there existJ a {simple} t-(Vl+V2-k+1,k,A.) design Da with 

>. S("1±V2k-:::.~+1-t), such that D3 contains a copy of Dl and a copy of D 2 • 

Note that for the special case k t + 1, Khosrovshahi and Ajoodani-N amini 

have already proved this theorem. We will give the proof in the next section. 

In the above theorem, if one of Dl and D2 is not a (t + 1 )-design, then as 

constructed in the proof is not a (t + I)-design, either. The following results 

for the special case k = t + 1 can be found in [4], and Corollary 2 for k = t + I 
can also be found in [8]. 

Theorem 2 Suppose that there are large sets of disjoint t-( VI, k, (v~-=-:) In) and 

t-( V'l, k, (~-=-tt) In) designs, respectively, and that there are large sets of disjoint 

(k-2)-(Vl-l, k-I, and (k-2)-(V'l-1, k-l, V2-:+l ) designs, respectively. 

Then there exists a large set of disjoint t-(Vl+V'l- k + 1,k, (v1±v2k-:::.~+1-t)ln) 

design.s. 

We will give the proof in the next section. From the above two theorems we 

get: 

Corollary 1 Suppose that there exists a {simple} t-(v,k,>.) design, and let 

s = ("~fr If there exists a large 3ft of disjoint (k-2)-(v-l,k-l, 
h-t 

designs, where n is an integer such that ns is an integer, then there as a 

{simple} t-(v +m(v - k + l),k,s("-t+~~t-k+l))) design for any m > O. 
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.01"OIIIR1"'V :2 there ezi$i a large .set of c,Ua'/uuu, In) de

Then there .set (k-2)-(v-l, k-l 

ut of di8joint t (v + m( v - k + 1), k, 'UC."UHL.' for 

any m > o. 

pu,cauc)n. There is a set of rh"" .... "nt- ...... '"'~ .. F.L .. > and a large 

set of disjoint 3 Qe~'HUlS which is not a set of disjoint 4 

(13,5,3) 2, there is a set of disjoint 

3-(9m+4, 5, e""2+1) /3) for any m 1. 5, (9m:z+I) /3) 

u.'V<»JI<..l.'" are known to be existent which are also 4-(9m + 4,5,3m) 

set of disjoint 3 (9m + 4,5, (9";+1) /3) is new, 

and our 3 e~ma+l)/3) m 1) are not to 

the known ones. 

There is 

construct a 

3 

set of Ull)IV!J.l~ 

set of disjoint 

Proof of Theorem 1. Let X 

i-subsets of 

[2, 3]). If we can 

... 'V.>A,.,' .... "" then there is a set 

Qe~nglls for any m 1. The existence of 

is believed to be unknown for m 2 

{1, 2, ... , VI + Va k 1} and Denote all 

Partition all k-subsets 
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Let ni,j be the number of blocks B in C j containing n. Since Co, C l , C2, .•• , C k 

is a partition of Pk(X), 2:1=0 ni,; is the number of k-subsets of X containing Ti • 

So 
k 

"'n° 0 L..J t,) 

j=O 
(

VI + V2 - k + 1 - i) . 
k - t 

Suppose we can construct a collection B; of k-subsets of X from Cj such 

that any i-subset Ti of X is contained in sni,,i blocks in Bj (j = 0,1, ... , k). 

Then by the above equation, (X, uj=o B j ) is the required t - (VI + V2 - k + 
1, k, s ("1 +~~_~k+1)) design. Now we try to construct such B j. Let 

X; = {I, 2, ... ,VI - j}, J O,l, ... ,k -1; 

Y; = {VI + 2 - j, VI + 3 - j, . .. VI + V2 k + I}, j = 1,2, ... , k. 

Note that X,iUY; = X\{vl+l-j} for 0 j < k. 

For j = 0, by the existence of Db we construct a collection Bo of k-subsets 

of Xo such that (Xo, Bo) is a copy of Db a t-( VI, k, AI) design. If Ti rt X o, 

then ni,O = O. If Ti C X o, then ni,O ("~-=-tt) and sni,O = AI. Ti is thus 

contained in sni,O blocks of Bo for every i. For j = k, we similarly construct 

a collection Bk of k-subsets of Yk such that (Yk, Bk) is a copy of D 2 • So, n is 

contained in sni,k blocks of Bk for every i. 

We consider the general case 0 < j < k. Let (Xl, Bl,l), (XI,B2,1), "', 

(Xl, Bn.d be a large set of (k-2)-(Vl-I,k-l, designs. By deleting 

the points Vl+1-j, vl+2-j, ... , vl-I, we obtain the correspoding derived 

designs (Xj,B 1,;), (Xl, B2,;), "', (XI, Bn ,;), which together form a large set 

of (k-l- j) (Vl- j, k- j, "1-:+1) designs. 

Similarly, let (Yk - 1 , BLk-l), (Yk- 1 , B~,k-l)' "', (Yk- 1 , B~,k-l) be a large set 

of (k-2)-( V2 1, k-I, "2-:+1) designs. By deleting the points vl+3-k, vl+4-k, 

... , V1+1 we have the corresponding derived designs (y;,B~), (y;,B~,j)' 

''', (y;,B~,j) which together form a large set of (j-I)-(V2-k+j,j, "1-:+1) 

designs. 

Note that for any block B E Gj, IBnXjl = k-j and IBnY;1 = j. For 

every B(l) E Bil,j and every B(2) E B:
2
,j' B(l) U B(2) is a block in Gj • Now 
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given any permutation (J' on {1,2, .. ,n}, let 

where o {AUB A E We 

claim that Ti is contained in ¥ blocks in for every i. 

If ni,} 0, the claim obvious. Assume ni,} =I O. Then VI + 1 f/. n. Let 

TP) {t E T. VI + 1 - j} 1j ). 

ni,j =I 0 ) Then 

11:·(2)1 )' -I, k t Ch . . oose any 

for 

(u 1, 

Case 2. 

Case 3. 0 

(11. = 1, 

1,2, ... , 

and 

and any I-subset of Then TiU UZ2 

and (1.71-;+1) choices 

a block in one and one of 

contained ni,jln blocks in 

O. The discussion to Case 1. 

k-t. Then is contained in (1.7r:t:/) blocks of 

... , and TP) is contained in (v2
- 1Hl) blocks of (lj, 

Ti contained in (vLt_l In (v2
- Zk+l) In blocks of 

.. ,n} 

con tained in m( ni,j In) Sni,j blocks in 

lSi 5 m, Then 8 j ) has no CI..J'C;a.I,,;;U. blocks and thus is 

Proof of Theorem 2. We use the notations in the proof above. Let 

B1,0), "', (Xo,8n ,o) be a set of t-(vl,k, (v~-=-n 
and set of disjoint 
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(v2,k, ('t:n/n) designs. Choose (7, = (1 2 ... n)i, i = 1,2, ... ,m. Define 

k-l 

Bi = Bi,o U B~,k U C(j,u;)' 
j=l 

Then we can verify that (X, Bt), (X, B2 ),' • " (X, Bn) is the required large set. 
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