DEFICIENCIES OF r-REGULAR k-EDGE-CONNECTED GRAPHS

L. Caccetta and Purwanto
School of Mathematics and Statistics
Curtin University of Technology
GPO Box U1987
Perth WA 6001
Australia.

ABSTRACT:

Let G be a simple graph having a maximum matching M. The deficiency
def(G) of G is the number of M-unsaturated vertices in G. A problem
that arises is that of determining the set of possible values of
def(G). In this paper we present a solution for the case of r-regular

k~edge-connected graphs.

1. INTRODUCTION

In this paper the graphs are finite, loopless and have no multiple
edges. For the most part our notation and terminology follow Bondy and
Murty [3]. Thus G is a graph with vertex set V(G), edge set E(G), v(G)
vertices and £(G) edges. However we denote the complement of G by G.

A matching M in G is a subset of E(G) in which no two edges have a
vertex in common. M is a maximum matching if !MI = |M’[ for any other
matching M’ of G. A vertex v is saturated by M if some edge of M is
incident with v; otherwise v is said to be unsaturated. A matching M
is perfect if it saturates every vertex of the graph. The deficiency

def(G) of G is the number of vertices unsaturated by a maximum matching
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M of G. Observe that def(G) = v(G) - 2|M|. Consequently, def(G) has
the same parity as v(G), and def(G) = 0 if and only if G has a perfect
matching.

Many problems concerning matchings and def(G) in graphs have been
investigated in the literature - see, for example, Bollobds and
Eldridge [2], Katerinis [8], Little, Grant and Holton [9] and Lovasz
and Plummer [10]. We have studied the function def(G) for the case
when G is a tree with each vertex having degree 1 or k, k = 2 [4] and
for the case when G is a cubic graph [5].

In this paper we obtain the upper bound of def(G) and the set of
possible values of def(G) when G is r-regular k-edge-connected. ’ We

find the set of possible values of def(G) by constructing the graphs.

2. THE UPPER BOUND

Let G be a connected graph on n vertices having a maximum matching
M. Since def(G) = n - 2[M[, then clearly def(G) = n - 2 for n =z 2.
Thus we need to look at restricted classes of graphs to obtain more
interesting results. In this paper we focus on the class of regular
graphs. A well known result of Petersen states that every 3-regular
connected graph with no more than two cut edges has a perfect matching.

When S ¢ V(G), G-S denotes the graph formed from G by deleting all
the vertices in S together with their incident edges. For E‘ < E(G),
G-E'denotes the graph formed from G by deléting the edges of E’. An
edge-cut set of a connected graph G is a subset E’ of E(G) such that
G-E’ is disconnected, but G-E” is connected for every proper subset E”
of E’. A k~-edge cut is an edge-cut set having k elements.

A component of a graph G is odd or even according as it has an odd
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or even number of vertices. The number of odd components of a graph G
is denoted by o(G). We can state Berge's formula ([1], p. 159) for a

graph G as :

. max _ _
def (G) = 5 “y(gy {0(6-8) - |s]}. (2.1)

Let G be an r-regular graph and § ¢ V(G). As a i1-regular graph is
a perfect matching, we may suppose that r = 2. Let Gl, G,...,
GO(G“S] denote the odd components of G~S. The number of edges in G

Jjoining the vertices of Gi to the vertices of S is denoted by ti' It

is clear that

r V(Gi) = 2€(Gi) + ti. (2.2)

A consequence of (2.2) is that t.l and r have the same parity. We let
lt denote the number of odd components of G-S that are Jjoined to S by

exactly t edges. Observe that Et = 0 when t and r have different

parity.

Lemma 2.1 : Let G be an r-regular graph, r = 2. Then there

exists a set S ¢ V(G) such that

1
§(F~2)
Z (r—Zt)Zzt s if r is even
r def(G) = t=0
1
Z(r 3)
(r-2t-1)¢ , otherwise.
Lo 2t+1
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Proof : Clearly def(G) =z o(G) and the result is true when

def(G) = o(G) since we can take S = ¢.

So suppose def(G) > o(G). By (2.1) there exists a set S < V(G) such
that

0(G-S) = |S| + def(G).

Since def(G) > o(G), then S # ¢. The number of odd components joined

to S by at least r edges is

I“il
o(G-S) - L .
t=0 t
Now since G is r-regular we have
r-1 ril
r|s| z r (o(G-S) - L, )+ t 2
' tZo t tzo ¢
I‘il r—1
= r(|S] + def(G) - L)+ te
t=0 t tZO t
and hence
r-1 r—1
r def(G) = r L, - t 2
tZO t =0 t
r-1
= (r-t) ¢
tZO t

The result follows since Bt = 0 when r and t have different parity. [}

For connected graphs with deficiency not equal to one we have the

following lemma.
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Lemma 2.2 : Let G be an r-regular, connected graph having def(G) = 1.
Suppose that for any ¢ # V1 c V(G) every odd component of G = Vl is
Jjoined to V1 by not less than m edges, 1 = m =r - 2 (m = r(mod 2)).

Then there exists a non-empty set S ¢ V(G) such that G-S has
2z L def(G)
r-m
odd components joined to S by at most r-2 edges.

Proof : The result is trivially true when def(G) = 0. So suppose

def(G) = 2. From Lemma 2.1 we have ¢ # S ¢ V(G) with

r-2
r def(G) = tz (r-t) Zt

r-2

tZ (r=m) ¢,

A

r=2
(r-m) L
Lo

t

and hence

as required. o

Lemma 2.2 has a number of corollaries when G is k-edge-connected. It
is convenient to let ¥(n,r,k) denote the class of r-regular,

k~edge~connected graphs on n vertices.
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Corollary 1: Let G e §(n,r,k), 1 =k =r-2, - be a graph with

def (G) # 1. Then there exists a non-empty set S ¢ V(G) such that G-S

has

odd components each of which is joined to S by at most r-2 edges, where

k’ is the least integer not less than k having the same parity as r. o

When v(G) is even, def(G) is even and thus G has a perfect matching

if def(G) < 2. We thus have the following corollary to Lemma 2.2.

Corollary 2 : Let G € §(n,r,k), 1 =k = r-2 and n even, and let k’ be
the least integer not less than k having the same parity as r. If G
has fewer than 2r/(r-k’) disjoint edge-cut sets whose cardinality is of

the same parity as r and at most r-2, then G has a perfect matching. o
When k = r-2, Corollary 2 reduces to the following result mentioned in

Chartrand and Nebesky [7].

Corollary 3 : Let G € §(n,r,r-2), r 2 3 and n even. If G contains at

most r-1 (r-2)-edge cuts, then G has a perfect matching.

o
When k = r-1, we have the following well known result (see [1], p.
160).

Corollary 4 : Let G € §(n,r,r-1), r =z 2 and n even. Then G has a
perfect matching. ]
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Corollary 3 is usually regarded as a generalization of Petersen’s
result. We remark that Corollary 1 is a generalization of a result
(Theorem 2.1) proved in [5].

Bollobas and Eldridge [2] considered the problem of determining the
minimum possible value of a maximium matching of a graph G with
prescribed minimum and maximum degrees and prescribed edge or vertex
connectivity. A consequence of their results (Theorems 4 and 5) is

the following upper bound on def(G) for G € §(n,r, k).

Theorem 2.1 : Let

d = max{def(G) : G €§(n,r,k), k =r =n-1, r 23
and n is even when r is odd}.

Then

5
(a) 2fd -5 =d=2[d «

where
d = n(r” - 3r + 2) ,
° 2(r3 - 3r)
n(r - k') . s
(b) d = max {1, T TR } and d = n(mod 2), otherwise,

where k’ is the least integer not less than k having the same parity as

r and r* is the least odd integer greater than r. [u]

The above result does not give an exact value of d for every n, r
and k. We now extend Theorem 2.1 to obtain an exact value of d for k =

2. We need the following simple lemma.
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Lemma 2.3 : Let G be an r-regular graph, S ¢ V(G) and Go be an odd
component of G-5 which 1is joined to S by fewer than r edges.

Then V(Go) > r. o

Theorem 2.2 : Let Ge §(n,r,1). If for any non-empty set
S ¢ V(G) every odd component of G-S is joined to S by not less than m

edges, where 1 =m =r - 2 and m = r {(mod 2), then

(a) def(G) = 2 | %%E L ;;;E:—E 1}, if n is even ;
P +m 3r
(b) def(G) =1, if n < —————— [ =7 and n is odd;
r-m rn 1
(C) def(G)S]."‘ZL—Z?‘“L‘—é—-*—‘J_?J,
r“ -+ r +mn
otherwise;

where r* is the least oda integer greater than r.

Proof : The result is trivially true when def(G) = 0 or 1. So suppose
def(G) =z 2. Lemma 2.2 implies that there exists a non-empty

set S ¢ V(G) such that G-S  has ¢ = Fgﬁ def (G) odd

components, G1’ Gz""’ GE say, Jjoined to S by at most r-2 edges.

Simple counting of edges between these odd components and S yields

rls|zim

and hence
S| =4
r
Lemma 2.3 implies that V(Gi) =z r* for i = 1,2,...,¢. Hence
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i=1
z—zﬂw»llr*
r
Consequently,
rn
t=| rr* + m ]
Now, since ¢ =z Fgﬁ def (G) we have
r-m rn
def (G) = - L T J

Now when n is even, def(G) must be even and thus we can write

def (G) = 2 | 52" w11 >

proving (a). When n is odd, r is even and so r* = r + 1. Further,
def (G) must be odd. Hence
r-m

rn
35d€ff(G)-<——r‘—LmJ

Therefore

3r n
=l = lesagd

and thus

nerrem o 3y
- r r-m

2
r +r +m ( 3r
r r-m

So, if n < is odd, then def (G) = 1. When

2
I +r+m 3r

n =z —— r P ] is odd, then def(G) is odd and we can write
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def(G) = 1+2 | & | 1 -
r r +r +m

03]
f—

This completes the proof of the theorem. a

For the case when G € &(n,r,k) we have the following two

corollaries to Theorem 2.2.

Corollary I : Let G € ¥(n,r,k), with 1 = k = r~2 . Then

-k rn . .
(a) def(G) =2 | 50 L e 1], if n is even;
r2+r+k’ 3r
(b) def(G) = 1, if n is odd and n < = f — ] ;
(c)  def(G) =1+ 2] Lk’ L n -1 | ,otherwise;
2r 2 2 ’ ’

r-+r + k’

where k’ is the least integer not less than k which has the same

parity as r and r* is as in Theorem 2.2. o

Corollary II : Let G € §(n,r,k), with 1 s k = r-2 and n even. If G

has no perfect matching, then

er*+l_(,l. 2r —!
r r-k’
where r* and k’ are as defined in Corollary 1I. o

Remark 1 : In the next section we will show, by construction, that the
bounds given in Theorem 2.2 and Corollary I are sharp for m = 1.
rurther, the bounds given in Corollary II are sharp.

Remark 2 Corollary II is a generalization of a result of Wallis

[121.
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3. CONSTRUCTIONS

We make use of the following notations in the description of our
graphs. A matching of size t in a graph H is denoted by %t(ﬁ}. The
complement in H of a matching M of size t is dencted by ﬁtfﬁ); that is
ﬁtm) = H\M. Tt is very well known that K_.

1 has a Hamiltonian cycle

decomposition and that Kzn is the edge sum of n~1 Hamilton cycles plus
a perfect matching. let H ., H.,...,Hz denote the Hamilton
1 2 Lz(n“1)J

cycles of Kn‘

We now define three classes of graphs. For 0 = t = %(n—l) we define

Gg(n,t) = Kn\{Hx’Hz""’Ht}'

Observe that Go(n,t) is (n-2t-1)-regular and contains L;(n~1)Jmt

Hamilton cycles. For p = % n we form the following graphs from

Go(n,t);

Gp(n,t) = GO(n,t) U Mp(Ht) H

i

Gé(n,t) Go(n,t) V] Mp(Ht)

Observe that each of these graphs has i(n—i) -t Hamilton cycles. Ve
2

make use of the above graphs in the proof of the following result.

Theorem 3.1 : For 2 = k = r~2 = n-3, let

Din,r,k) = {def(G) : Ge¥(n,r,k}}.

209



Then

(a) D(n,r,k) = ¢ , if n and r are odd;
_ . r-k’ rn
(b) Dn,r,k) ={d : 0sd=2]| 5= L ?Fyf;j?~JJ N
d is even}, if n is even;
¥+ o+ k’ 3r
(¢) D{n,r,k) = {1}, if n < = [ — 1 is odd
and r is even;
r~k’ ™m
(d) Din,r,k) = {d : 1 sd=1+2| 5| — ]

r+r + k’

- % ] . d is odd}, otherwise;

where k’ is the least integer not less than k which has the same

parity as r and r* is the least odd integer greater than r.

Proof : As the number of vertices of odd degree is even, part (a) is
obvious. So suppose that at least one of n or r is even. The upper
bound on def(G), Ge$¥(n,r,k), is determined in Corollary I of Theorem
2.2.

First we consider the case when n is even. We will exhibit for each

r-k’
r

even d, 0 =d =2 | 5

L F;;£%“§7 1 a graph Ge¥%{n,r,k) with
def(G) = d. For d = 0 we take the graph Gn/z(n,%(n—r)) if r 1is even,

and the graph Go(n.%(n—r—l)] if r is odd. Now consider d =z 2. Then n

rr* + k‘ 2r
= r [ r-k’ 1

Define
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[
]
—_—
d
ad

n-s - (&-1)r* ,

o
i

and

k” = rs - k' (£~1) .

Making use of the fact that for any non-negative real numbers a, b and
c with b = 0 and = < 1,

b
[e=1-=1T

e .

ol

we have

s = [ 1-T5 e

]

—
o
+

TR TS

= s 2T TE0

We claim that p = r*. Suppose that p < r*. Then

n < s + ir*
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1
|
—_
=
=
*
+
=
~—
o=
—_

_prr* o+ k/ rd
=T =1

* 4+ k! rn
[ rr L .

= = ]1 (using the

bound on d)

A

n, a contradiction.

Thus p = r*. Furthermore, since n and d are even, r* is odd and

n-s - (&-1)r*

~
i

=n +d+r¥* - (r* + 1)¢,

p must be odd. Also

k “=rs - k’(£-1)
= r(f-d) - k’(£-1)
= -rd + £(r-k’) + k’
rd

z‘fd*‘f;_—k—,-l (r-k’) + k'.

Hence k” has the same parity as r and

k/ = k" <r.
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The required graphs are constructed as follows. Take an empty graph

f{s with vertices ul, uz,...,us. When r is even we take £-1 copies Gl,
7 ¢ 1 -
Gz,...,Gem1 of lel(r+1,1) and one copy G, of Gik”(p,é(p r+1)).
2 2
Observe that G,, 1 = i = {-1, has k' vertices v, , v, ,...,v. ,
i i1 iz ik
say, of degree r-1 and r+l1-k’ vertices of degree r. Further, GZ has k”
i - R s
vertices Voo Vpgrooo ’VEk” say, of degree r-1 and p-k” vertices of

degree r. Each Gi’ 1 =1 = ¢, contains %(r~2) Hamilton cycles and
thus is k’-edge-connected. We form a graph ﬁle §(n,r,k) by adding the

following edges. For 1 = i = s and 1 = j =k’ , join v, . to

ij
u, if i+ j~-1= z(mod s). Join vij to u, if (i-1)k! + j =z
(mod s), where s + 1 s i =fand 1 = j =k’ if 1 < &£ and 1 = j = k" if
i = £. Since k/ = k our é; is k-edge connected. Since each G 1 =
i = ¢ has a Hamilton cycle it follows that def(fil) = ¢ -85 =d. On
the other hand, by choosing S = (ul,uz,...,us} (2.1) implies that
def(G) = £ - s =d. Thus def(§) = d.

When r is odd the required graph éz can be obtained by following the

above construction taking G, as the graph :

i

G1 (r +2, 1) for 1l =1i = £-1;
E(I““k""Z)

and G1 (p, %(p“‘l‘)) for 1 = L. Note that k’ and k” are defined
=(p-k”)
2

relative to r. This proves part (b).
Now consider the case when n is odd. Then r is, of course, even.

For def(G) = 1, the graph Go(n,—zl-;(n—r—l)) has the required properties.
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So suppose def(G) = 3. Then part (¢) of Corollary 1 to Theorem 2.2

. . ~ ro4+r o4k 3r -

implies that n = - [ =l B For each odd d, 3 =d = 2 |
réi L 5 n : 1o~ % j , a graph @3 e §(n,r, k) with def(@g) = d can

r-+r + K’
be obtained by following the description used in defining @1 . Note
that here r* = r + 1. This completes the proof of the theoren. [}
Remark : Consider the graphs Ci and 62 defined in the above proof. If
# !
we set p = r* and d = 2, thenn = | EE»Fi‘E~ [ r%if 11 - Consequently

the bound given in Corollary 11 of Theorem 2.2 is sharp. Note that él

and 62 are well defined when k = k’ = 1.

4. REGULAR GRAPHS WITH PRESCRIBED DEFICIENCY

In the previous section we established that the bounds given in
Theorem 2.2 are sharp for m # 1. In this section we consider the case
m = 1. 1In our first result we establish a lower bound on n for a

graph Ge%(n,r,1) having def(G) = d.

Theorem 4.1 : Suppose GeS(n,r,1), where r is an odd integer greater
than 1 and n is an even integer greater than r. Let d = def(G), and
suppose that d = t (r-1) + g + 2 where t and q are integers, 0 =q < r

- 3.

Then
(2)  n=me)d+ (e3) [ oe
if r-g-2 = t = %(r—S) ;
d
(b) no= (re2)d + (r+1) [ == ] + 2r,

if max {%(r~1), r-gq-2} = t = r-3;
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(c) nZ(r+2)d+(r+1)f;%]+zf%1’

otherwise.

Proof : Since n 1is even, d is even. The result is trivially true
when d = 0. So suppose d = 2. By (2.1) there is a non-empty set S c

V(G) such that o(G-S) = |S| + d. Following the proof of Lemma 2.2 we

conclude that G-$ has ¢ = ;g% ] odd components, Gl, GZV.A,Ge say,

Jjoined to S by at most r-2 edges. Lemma 2.3 implies that v(Gi) z r+2

for every 1 = i = {. Denote the remaining components of G-S by qu,

G, ,...,G

242 p’

We have

r|s|

v

e(G) -

He~1v

e(G,)
i

i=1

v

0(G-S) + [s] -1

(since G is connected)

(d + ]s]) + |s| -1
and hence
d-1
Is| = [ =1
Further

n =z (r+2)¢ + o(G-S) - L + |S|

i

(r+1)2 + 2|s| + d

v

(r+1) [_r%] +d+2f§{—;]

il

(r+2)d + (r+1) [";(:i—f'] + 2 fg—%
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This proves (c).
We need to consider the case whenr - gq-2s=stsr - 3.

Then]’-r—‘_i—l]=t+1andrzs. We have

d-1
Is| = [ =1
- r t{r-1) + q + 1 ]
r - 2
=t + 2.
Hence
0(G-S) = [s] +d
zt+2+d
_ rd
HE=ARE
We distinguish two cases according to the value of v(Gi), where [ ;§% 1
+ 1 =i = 0o(G-S). Suppose that V(Gi) 2 r for such some i. Then
rd rd
nz(r+2) [ ] +r +0(GsS) - =7 1= 1+ [s]
rd d
z (r+1) r}—:'-l‘.]*‘r"'d"l*’z(rm.]'*l)
d
= (r+2)d + (r+3) r;T] +r+ 1
=n . (4.1)
If, on the other hand, v(Gi) =r - 2 for every i, then £ = [ FE%

and each Gi has at least r edges going to S. If V(Gi) =z 3 for some i,

then there are at least

r v(Gi) - (V(Gi)(V(Gi) - 1))

= 3r - 6
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edges between Gi and S. Consequently

r|s| =2+ 3r -6+

i}

£+ 3r -6 +

and hence

rd + 2r - 6

But this contradicts the fact that ¢

for every [ ?2% T+ 1=1so0(G8).

o
v

(r+1) | —E% 1+

r-

v

=n_ .
2

r(o(G-s) - ¢ - 1)

r(|s| +d-¢- 1)

rd
[ — 1. Therefore v(Gi)

Hence |S| =z r and

(r+2)¢ + o(G-S) - £ + |8

2|s| +d

(r+2)d + (r+1) | ;ST 1+2r

(4.2)

Inequalities (4.1) and (4.2) imply that

nz min{n1

Now we have

.nz} .

n -n =2] FgT 1+1-r

1 2

=2t +3 ~-r.
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Hence no=n when t = %(r~3). This proves (a) and (b) and completes

the proof of the theorenm. o

That the above bounds are sharp follows from our next result. We

make use of some of the graphs defined in the previous section.

Theorem 4.2 : Suppose d = t(r-1) + g + 2 is an even non-negative

integer, where q,r and t are integers, r is odd and 0 = q =r - 3.

Let
r+1 R ifd=20
(r+2)d + (r+3) [i] +r 41, if r-q2 =t = L(r-3)
nl = r-1 ’ 2
d . 1
(r+2)d + (r+1) [ = 1+2r, if max{5(r-1), r-q-2}s t = r-3
d d-1 .
(r+2)d + (r+1) | =~ 1+27 — 1 . otherwise.
Then for every even n z n, there exists a Ge%(n,r,1) with def(G) = d.

Proof : Assume that n =z n, is even. First we observe that the graph
Go(n,%(n-r—l)) € §(n,r,1) and has a perfect matching. This proves the

result for d = 0. For d =z 2 we consider four cases.

Case 1 : r-q-2s=t = % (r-3).

Recall that the graph Gp(n,h), p = % n and 1 = h < % n has 2p
vertices of degree n - 2h, n - 2p vertices of degree n -~ 2h - 1 and
is hamiltonian. We form a graph G: € §(n,r,1) with def(GT) = d
as follows. Take the empty graph it+2 with vertices ‘H'“z'“"“t+y
the complete graph Kr with vertices vl,vzp..,vr, rt + g + 2 copies
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Gi’Gz""’G of G (r + 2, 1) and the graph

Ttz T L)
2
1

Grt+q+3 =G, (r+2 +n- n, z(n - n o+ 2)). Observe that

—{n-n_+q+4)

2 1
Gi’ 1 s1i=rt+q+ 2, has exactly one vertex, Vipy SaYs of degree r -
1 and the graph Grt+q+3 has (r - g - 2) vertices, Vr(t+1)+q+3
’vr(t+1)+q+4""’ Vit S3Y of degree r-1. Add the edges uivj if 1 =

J (mod(t+2)). This defines the graph G: . Observe that

]

#*
V(G1) t+2+r+ (rt+q+2)(r+2)+r +2+n- n

B

(r+2)(rt =t +q+2)+ (r+3)(t +1) +1r+1

+n-n
1

(r+2)d+ (r+3)f ?gf l1+r+1+n-n

* *
It is easy to verify that G1 is connected and r-regular. Thus G1 €

${(n,r,1). Further, taking S = (ul,uz,. },b G -~ S has rt + g + 4

CoWy

odd components each having a Hamilton cycle and hence

def(G) =rt +gq+4 -t - 2

=d,

as required.
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Case 2 : max{%(rwi), r-q-2ysts=sr-3

#*
We form a graph G; € §(n,r,1) with def(Gz) = d as follows. Take the

. L

empty graph Kzrﬂt‘l with wvertices R rt + q + 2

copies Gl’Gz""’Grt+q+2 of G1 (r + 2, 1) and the graph Gqu+3 =
S(r+1)

G (r + 2 +n - n, %(n - n + 2)). As in Case 1, above, the

1
5 (n—n1+q+4)

graph Gi' 1 =1is=rt+q+ 2, has exactly one vertex, v.l say, of degree

r - 1, and the graph Grt+q+3 has (r - g - 2) vertices, Vrt+q+3’

Vrt+q+4""’vrt+r say, of degree r -~ 1. Add the edges : uiuj for

every 1 = i=randr+ 1= js2r - t- 1; viuj, if 1 = jlmod r), 1 =i
*
=71t +r, 1 = j=r. This defines the graph 62 Observe that

i

#*
V(Ga) 2r -t -1+ (rt +q+2)(r +2) +1r +2 +n - n,

i
-

+ 2)(rt =t + g+ 2) + (r+ 1)t + 1)

i

r+2)d+ (r+1)] ;§T ]+2r+n-n

*
Again it is easy to verify that G; is connected and r~regular. Thus G2

€ §(n,r,1). Further, taking S = {ul,u ,...,ur), G - S has (rt + q + 3)

2
odd components each having a Hamilton cycle and r - t - 1 components

each a single vertex. Hence
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#
def(GZ) rt +q+3+r-t-1-r1
=d,

as required.

Case 3 : t=r-q-3.
*
We construct the required graph G3 as follows. Take the empty graph

K with vertices u,u,.

41 and the graphs Gl’Gz""’G

T rt+q+3

defined in Case 2. Labelling the vertices of Gi’ 1 =1=rt+qg+3
as in Case 2, add the edges : Viuj if i = jlmod(t+1)). It is easy to

#*
verify that G3 is connected and r-regular. Further

i

*
V(Gs) t+ 1+ (r+2)(rt+gq+2)+r+2+n- n,

It

(r +2)(rt =t + g+ 2) + (r+ 1)(t + 1) + 2(t + 1)

+ N - n
1

i

(r+2)d+ (r+1)] ;%1 1+ 2f %;% T+n- n,

L}
]

#
and so G3 € &(n,r,1). Taking S = {ul.u }, G-S has rt + q + 3

SRS N

odd components each having a Hamilton cycle. Hence

*
def(GB) rt +g+3-t-1

=d ,

as required.
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Case 4 : t=zr -~ 2.

Let t = alr - 2) + b, where a and b are integers with O = b
<= r - 3. We have

d-1 1

n = (r+2d+ e [ S ]eaid

t+g+l 1

= (r+2)d+ (r+ 1)t +1)+2t+2] =i

= {r +2)d+ (r +1)alr -2) +b+ 1) + 2alr - 2} +2b

Substituting for d and simplifying we get
n o= ar> +bro + (2b - 3a + g+ 3)r + b+ 2q + 2a + 5,
where

1, ifbsr ~q-~-3

2, otherwise.

We begin our constructions by defining a graph Tr(p) for a positive
integer p. This graph will form the basic building block in our
constructions to follow. Take p - 1 disjoint copies, GI’GZ”"’Gp~1
say, of the star K and one copy, G_ say, of the star K . Let

1,r-1 P 1,r-2
Xy be the centre of Gi' The graph Tr(p) is formed by adding a new

vertex, y say, and joining y to each xi, 1 =i =p. Observe that for p

> 1, Tr(p) has pr vertices of which (r - 2) + (p - 1)(r ~ 1) have
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degree 1. In using Tr(p) as a building block the vel;tices y and xp
need to be identified. For convenience we relabel Xp as z.

We consider two subcases according to the value of b. First suppose
that b =r - q - 3. Take a copies T1'T2""’Ta of Tr(r - 1), and
one copy Ta+1 say, of Tr(Z I_—;-bj + 1). We relabel the vertices y and
z of Ti by A and Zi’ respectively. Now add the edges YiZi4 for 1 =i
< a. We form the graph G’ as follows : if b is even, add a new vertex

U, and join it to z3 if b is odd, add the star K1 -1 and join its

centre to 21' Observe that

ar{(r = 1) + r(b + 1) + 1, if b is even
v(G') = (4.3)

ar{(r - 1) + br + r, otherwise.

From the graph G’ we form the graph G” as follows. Let A =r - 2 -
1

2(b - L§ b |) - q. Observe that A is odd and A = r - 2.
Recall that the graph H = G (r+2+n-n_, l(n-—n +2)) defined
1 1 17 2 1

~(r+2+n-n _-A)

2 1
in Section 3 has A vertices, ux,uz,...,u% say, of degree r - 1 and all
other vertices have degree r. Further, the graph H2 =
. . (r+2,1) has 2] %bJ +1 vertices, VsV Vo
E(rﬂnz[_gbj ) 2[5b_[ +1
say, of degree r - 1 and all other vertices of degree r. Take A
vertices, u;,u'z,...,ui say, of G’ that are adjacent to z, and have

degree one in G’ (note that there are at least r - 2 = A vertices of G’

adjacent to z that have degree 1 in G’) and the 2| %b ]+ 1

neighbours, v’/ ,v’, ...,v’ say, of y .G is formed
1 1 a+1
2|=b]+1
2
from G’- {ul,uz,...,u 2 ya+1} by adding the graphs H1 and H2 along

with the edges :
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. . 1
u,z, for 1 =i = A ; vivs for 1 51 =2 | 5 b J + 1
Observe that
v(G”") =v(G') +r + 2+ n -~ n - A+ oro+ 1. (4.4)

Of these, there are f vertices of degree one, where

f=ar(r-2)+ (r-2) +br-1) +2 [>b]-b+1-2
=ar? + (b - 2a)r + q + 1. (4.5)
Identify these vertices as wl,wz,..‘,wf.
*
We form the graph G4 from G” as follows. Take  copies,
Gx’Gz""'Gf say, of the graph G1 (r + 2,1). Observe that each
=(r+1)
2

G,, 1 s1i=f, has exactly one vertex, ;i say, of degree r - 1 and all

other vertices of degree r. Let the neighbour of W in G”, be w&.
£

The graph G4 is now formed from G” - {wl,wz,...,wf) by adding the

graphs Gl’Gz""’Gf and the edges ;iwi for 1 = i = f. Observe that

v(G:) = v(E") + (r + 1Ff .

. ¥*
Now (4.3) and (4.4) together with a 1little algebra yield V(GA) =
n = n . It is immediate from our construction that G: is r-regular and

connected.

#*
W = i i
e now show that def(G4) = d, as required. Letting S = {v : v is

adjacent to a vertex of degree 1 in G’}, we have
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S| =alr - 1) +b + 1

and
*
o(G4_S)=f+a+2
=ar2+(b—-2a)r+a+q+3
(using (4.5)).
*
Further, every odd component of G4 - S which is not a single vertex,

has a Hamilton cycle.

Hence,
#* * S
def (G,) = o(G, = S) - | |
=ar2+(b—23)r+a+q+3—a(r-—1)—b—1
= (alr - 2) +b)(r = 1) + g+ 2
= d, as required.
The only case that remains is that when b = r - g - 2. Take
T,T,...,T_ as above and let T be the graph T_(b + 2). Label the
1”72 a a+1 r

vertices ' and z; in Ti’ 1 =1i=<a+ 1, as before. Now add the edge

Yi Zi+ for every 1 = i = a and the edge ZYa4r Call the resulting
G1 (r + 2, 1) has r - g - 2 vertices,
-2-(q+4)

i

graph G’. The graph f

v,V ""’vr“q~2 say, of degree r - 1 and all other vertices of

degree r. Let v/,v/,...,v/ be (r - g - 2) vertices of G’ that
1’2 r-q-z

are adjacent to z, and have degree one in G’. Note that d (21) =r.
GI

We now form the graph G” from G .

The graph G’ contains at least (r - b ~ 3) vertices,
u ,uz, . ,\.11__:0”3 say, in 'I'1 of degree 1 having distinct neighbours
u; ,u’a, . ’u;—b«3 none of which are z,- We form &” from G’ -~
(ul L IR SR v; ,v'z, . 'V,r-q—z} by adding the graph fi together
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with the edges : viz ,1=i=sr-q-2; Ul Yo 1=1i=r-~-5b~ 3.

Observe that

v(@) =w(6) - (r-q-2) - (r=b=-3)+r +2

i

ar(r - 1) + (b + 2)r —r + g+ b+ 7
= ar® + (b ~a+1)r +b+qg+ 7.

Further, each vertex of G” has degree 1 or r. The number of vertices

£’ of degree 1 is

f@ =ar{r -2) + (r-2)+ (b+ 1) r-1) - (r - q-2)

- {r - b~ 3)
2
= ar + (b - 2Zalr + q + 2.

* A
We form the graph Gs from G in the same way as we formed the graph

#
G4 from G” except that here we take Gi to be the graph G1 (r +2,1)
={r+1)
2

For 1 =i = f’ - 1 and Gf, to be the graph G1 (r+2+n-n,
2(r+1+n—n1) !

[y

Z (n - no+ 2)). Following the same argument we can establish
#* *
that Gs € §(n,r,1) and def(Gs) = d (here taking S as above, we have
R *
[s] = alr-1) + b+2 and o(GS - S) = f’+ a + 2). This completes the

proof of the theorem. o
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