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Abstract

A (partial) triple system of order v and indez X, denoted T'S(v, ) (PTS(v, ),
resp.) is a set V of v elements and a collection B of 3-element subsets of V
called triples; each 2-subset of V appears in exactly (at most, respectively) X
triples of B. A covering by triples CT(v, ) is a collection B of triples covering
each pair on a v-set at least A times. The leave of a partial triple system is the
multiset of 2-subsets of V that contains {z,y} s times whenever {z,y} appears
in precisely A — s triples. Usually, the pairs of the leave are taken as edges of a
multigraph on v vertices. The ezcess of a covering similarly contains a pair s
times if it appears A + s times in triples of the covering. The neighbourhood of
an element z in a triple system is the multiset of pairs appearing in triples with
the element ; these pairs are often taken as edges of a multigraph on v — 1
vertices.

In this survey paper, known necessary and sufficient conditions for a multi-
graph to be the leave of a PTS(v,]), the excess of a CT(v, A), or to be a
neighbourhood in a T'S (v, A) are described.
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1 Introduction

There has been a large amount of research activity in recent times on graph-theoretic
problems in combinatorial design theory, and on the use of graph-theoretic tools in the
construction and analysis of designs. In this survey, we examine three problems that
concern the structure of triple systems, packings by triples (partial triple systems),
and coverings by triples. In each of the problems, we exploit both graph-theoretic
and design-theoretic constructions.

The basic theme of the three problems studied is to represent some structural
property of the triple system as a graph or multigraph. Then questions about the
structure can often be rephrased as questions about the corresponding multigraph.

We assume familiarity with standard graph-theoretic terminology (see Bondy and
Murty (1976), for example), and with basic results in combinatorial design theory (see
Street and Street (1987)). We employ a convenient notation to describe multigraphs,
as follows. If Gy and G, are multigraphs, then G; U G, is their disjoint union. For
integer k, kG is a multigraph obtained from G by replacing each edge of G by k
copies of the edge, and k{G} is k vertex-disjoint copies of G (i.e., the disjoint union
GUGU...UG).

2 Leaves

A multigraph M on v vertices is a A-leave if there exists a partial triple system of
order v and index A whose leave is M. For example, the 4-vertex multigraph Ky
with edge set {{1,2},{1,3},{1,4}} is a l-leave, but is not a 2-leave. In this section,
we examine the question: Which multigraphs are A-leaves?

The characterization of A-leaves is far from complete, even in the case ) = 1. We
first establish some basic necessary conditions, and then establish that recognizing
A-leaves is NP-hard. We then present the known sufficient conditions for a multigraph
to be a A-leave.

2.1 Necessary Conditions

Let M = (V, E) be a multigraph with [V| = v vertices and |E| = m edges. When can
M be a Aleave?

The most basic necessary condition is that M have no edge of multiplicity exceed-
ing A, and we assume this throughout. Now if M is to be a A-leave, there must be
a partial triple system (V,B) of index A whose leave is M. Consider the following
process. Starting with G = AK, (the complete graph on v vertices with every edge
having multiplicity ), form a sequence of graphs by removing, for each triple of B,
the corresponding triangle of G. At the end of this process, G and M are identical.
We derive an elementary necessary condition:

Lemma 2.1 A X-leave on v vertices and m edges has all vertez degrees congruent to

Mv —1) (mod 2), and has m = k(;) (mod 3).
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Proof: MK, has all vertex degrees equal to M(v — 1) and has )\g;') edges. The removal
of triangles leaves the vertex degrees the same modulo 2, and leaves the number of
edges the same modulo 3. O

This basic lemma provides parity and congruence conditions. Not surprisingly,
they are not sufficient. Consider the multigraph

C=2{Ks} = {{1,2},{1,3},{2:3},{4,5}, {4,6},{5,6}}

on the seven vertices {1,2,3,4,5,6,7}. It has six vertices of degree two, and one of
degree zero; it has 6 (= (Z) (mod 3)) edges. But is it a 1-leave?

Consider the partition of the vertex set V; = {1,2,3} and V, = {4,5,6,7}. Call
an edge a cross edge if it contains one vertex from each class; otherwise call it an
inside edge. Then C has no cross edges and six inside edges. Now suppose that C
is a 1-leave of the partial triple system (V,B). Each triple of B can contain pairs
corresponding to three inside edges, or to one inside edge and two cross edges. In
total, triples of B must account for twelve cross edges, and for the remaining three
inside edges (those not in C'). However, since the number of cross edges to deal with
is more than twice the number of inside edges, there can be no such partial triple
system B.

Graham (see Nash-Williams (1970)) gives an elegant construction for an infinite
family of graphs that meet the parity and congruence conditions, but are not leaves.
We give it in slightly more general form here. Choose a positive index A, and an order
v = 4t = 0 (mod 4) for which A(t — 1) = 0 (mod 2) and At = 0 (mod 3). Let G be
the multigraph on vertex set Zy;, whose edges are those pairs of vertices {i,7} with
i—j=2 (mod4), ) times each. G meets the necessary conditions of Lemma 2.1.
Now consider G it contains 4At? odd edges (edges {4, 7} with z — j = 1 (mod 2)), and
4 (;) even edges (edges with 1 — 7 = 0 (mod 2)). For G to be a A-leave, G = MKy \ G
must have an edge-partition into triangles. But every triangle in G contains at least
one even edge, and hence we require that 4\? < 2- 4)\(;) which holds only if t < 1.

In general, we obtain the necessary density condition:

Lemma 2.2 Let M be a v-vertez multigraph with m edges. If the vertices of M can
be partitioned into sets of size s and v — s so that M has ¢ cross edges, then M is o

X-leave only if
2()(;) +>\(U;3) ——m+c) > As(v—s)—c.

Proof: AK, has )s(;) + A(";”) inside edges and As(v — s) cross edges; M accounts for
¢ of the latter and m — ¢ of the former. The number of remaining inside edges must
be at least half the number of remaining cross edges. O

Together with the parity and congruence conditions, this density condition is still
not strong enough even to eliminate as candidates for A-leaves all multigraphs whose
complements (with respect to AK,) have edges appearing in no triangles. An easy
computation shows that the density condition cannot eliminate any graph having
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fewer than %(‘2’) — 3 edges; to see this, observe that if when s = v —s = and
¢ = 0 the inequality of the lemma holds, then it holds for all 1 < ¢ < v — 1 and all
0 < ¢ < m. So we may assume that s = § and ¢ = 0, and extract the inequality on
m. Thus, for regular graphs, the density condition cannot be violated if the degree is
less than A(¥ —1). Graham’s construction gives a regular graph of degree A(%) that
does violate the density condition (using the partition into odd and even vertices),
and hence is not a 1-leave.

Stinson and Wallis (1987) describe infinite families of graphs meeting the parity,
congruence and density conditions that cannot be realized as leaves for a simple
reason: the complement, which must be partitioned into triangles, contains either an
edge appearing in no triangle, or a pair of disjoint sets of vertices having no common
neighbours, and an odd number of cross edges between the sets.

Colbourn and Mathon (1987) developed a stronger necessary condition that ex-
tends the density condition. A pair of subsets X,Y of a multigraph M = (V, E) form
a fence for M if X and Y are disjoint and no vertex z € V' \ (X UY) is adjacent
to vertices both in X and in Y. The fence-degree of a vertex z € X UY, fd(z),
is the degree of the vertex z in the submultigraph of M induced on X UY. The
X-defect defx(X,Y) of the fence is the minimum number of edges in a subgraph H
on X whose vertex degrees degy satisfy degr(z) = fd(z) (mod 2) for all x € X. The
Y-defect defy(X,Y) is defined similarly, and the defect def(X,Y") is the sum of the
X-defect and the Y-defect.

Finally, for fence (X,Y), let €(X,Y) equal the number of edges between vertices
of X and vertices of Y, and ¢(Z) be the number of edges inside a subset Z of vertices
of M. Then we have:

Lemma 2.3 Let (X,Y) be a fence of M = MK, — M. M is a X-leave only if (X, Y)
15 even, and
(X, ¥) > 2u(X) + UY) - def(X,Y))

Proof: Consider those edges having one endpoint in X and the other in Y. Since
(X,Y) is a fence, any triangle containing such an edge has its third endpoint in X or
in Y. Thus €(X,Y) must be even. Moreover, for every two edges between X and Y,
either an edge inside X or one inside Y is accounted for. Removing all such triangles
leaves the fence-degrees unchanged modulo 2. Hence the number of edges inside X
and Y that remain is at least def(X,Y). O

This lemma includes the previous one: take X UY = V, which always forms a
fence. It further eliminates the trivial case for A = 1 when G has an edge appearing
in no triangle; for if e = {z,y} is such an edge, the fence ({z},{y}) establishes the
impossibility of G being a A-leave.

It does not appear to be feasible to check these necessary conditions efficiently,
nor are these conditions sufficient for a graph to be a A-leave.

2.2 Recognizing A-leaves

In this section, we examine the computational complexity of determining whether
a given multigraph is a A-leave. Colbourn (1983) has shown that the problem is
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NP-complete, even when A = 1.

We require some preliminaries in order to sketch the proof. Let G = (V,E) be a
simple undirected r-regular graph on n vertices. A latin background for G, B(G;m, s),
is an s x s array L = (&;;) which is a symmetric square with symbols from {1,2,...,m}
(where m > s). Every diagonal position £; contains the symbol m. In the first n
rows, each cell of L is either empty or contains a symbol from {r + 1,...,m}. In the
latter s — n rows, every cell is occupied by a symbol from {1,...,m}. L is a partial
latin square: every symbol appears at most once in each row and at most once in
each column. Finally, the n X n matrix A(L) = {a;;) defined by a;; = 1 if £;; is an
empty cell, and 0 otherwise, is an adjacency matrix of the specified graph G.

Given an arbitrary r-regular n-vertex graph G = (V, E), our first task is to
construct a latin background for G. We assume without loss of generality that
V = {L,2,...,n}. We can form a background B = (b;;) of size m > 2n by set-
ting by = mforalll <i<m. Forl <i<j<m,if {i,j} € E we leave cells b;
and bj; empty; otherwise, we set b;; = b;; = ((: 4+ j) mod n) + n. B is then a latin
background B(G;m,n).

Our next task is to extend the latin background L so produced to form a B(G;m,m).
To do this, Colbourn (1983) proves the following lemma using a “bordering” method
of Cruse (1974). Let P(:) be the number of occurrences of symbol 7 in L. Let
Np(@) = PL(i)+nfor 1 <i:<r, and Np(3) = Pr(i) forr + 1 < 2 < m.

Lemma 2.4 Let L be a B(G;m,s) with m even, for G an r-regular n-vertex graph
with n even. If for each 1 <4 <m, Np(i) > 25 — m, then there is a B(G;m,s+ 1),
L', for which Np:(i) > 2(s + 1) — m for all symbols 1 <1< m. O

Now applying the lemma repeatedly to the initial latin background B(G;m,n)
with m > 2n yields a latin background B(G;m,m). Moreover, an explicit construc-
tion of the background can be accomplished by using standard bipartite matching
algorithms to produce the required “bordering” in the lemma.

For such a latin background B(G;m,m) B = (b;;}, we define an idempotent latin
background IB(G;m —1,m — 1) to be an m — 1 x m — 1 square L = (£;;) obtained
by setting £;; = £;; = by; for 1 <i < 37 <m — 1, and setting diagonal cells £; = by,

Now we are in a position to prove the main complexity result.

Theorem 2.5 Deciding whether a graph is a I-leave 1s NP-complete.

Proof: Membership in NP follows from the observation that given a partial triple
system, one can easily verify whether or not its leave is a specified graph.

Let G be a cubic graph on vertex set {1,...,n}. To show that recognizing 1-leaves
is NP-hard, we first construct an JB{(G;2n —1,2n — 1) and an IB(G;2n +1,2n + 1)
using the efficient techniques based on bordering. Let v € {2n — 1,2n + 1} be
the order of a Steiner triple system. We construct a partial triple system on V =
{z1,... 2.} U{y1,..., %} U {z}. On the z;5, we place the triples of a Steiner triple
system of order v. Next we include blocks {z;, ¥, 2} for 1 <1 < v. Finally, whenever
the (z,7) cell of the idempotent background I B(G;v,v) is nonempty, containing the
element k, we add a triple {y;,y;, zx}. Idempotence ensures that k ¢ {1,7}.
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The leave R of the partial triple system so constructed contains all edges of the
form {;,y;} with 1 < i < 3and 1 < j < n, and also all edges of the form {y;,y;} for
{i,7} an edge of G. Let R denote the complement of R with respect to the complete
graph on V. R is a 1-leave if and only if R has an edge-partition into triangles. Now
R has an edge-partition into triangles if and only if G is 3-edge-colourable. Holyer
(1981) has shown that determining whether a cubic graph is 3-edge-colourable is
NP-complete. Hence determining whether R has an edge-partition into triangles is
NP-hard, and thus determining whether & is a 1-leave is NP-hard. O

It is important to remark that the proof establishes that for very dense graphs, it
is apparently difficult to determine whether or not the graph is a 1-leave. The graphs
employed have 4n — 1 or 4n + 3 vertices and have minimum degree 3n — 2 or 3n + 2.
If the edge density is restricted to be “small”, the complexity of recognizing 1-leaves
is then open.

2.3 Maximal partial triple systems

In most investigations of partial triple systems, we are concerned with those partial
triple systems to which no further triple can be added without forcing at least one
pair to appear more than A times. We call such partial triple systems mazimal, and
denote such a maximal partial triple system of order v and index A by MPT (v, ).
A partial triple system is maximal if and only if its leave is triangle-free; hence leaves
of maximal systems have a structural constraint in addition to the parity, congruence
and fence constraints given before. It remains open whether or not recognizing leaves
of M PTs is NP-complete.

In this section, we examine the possible number of edges in a maximal partial
triple system. A mazimum M PT(v,A), or MM PT(v, ), is a maximal partial triple
system of order v and index A with the most triples of any M PT (v, A); a minimum
MPT (v, A), or mMPT(v,]), is analogously one with the fewest triples.

2.3.1 Maximum partial triple systems

How many triples can a maximal partial triple system of order » and index A have?
Schonheim (1966,1969) and Spencer (1968) solved this problem for A = 1, and Stanton
and Rogers (1982) settled it in general.

A maximum partial triple system has the leave with the fewest edges; hence it is
natural to examine what the possible leaves are in order to determine MM PT (v, A)s.
First observe that if A > ged(v — 2,6), we can do no better than to include a triple
system of order v and index ged(v — 2,6) and an MMPT (v, ) — gcd(v — 2,6)). At
the other extreme, if A = 0, the MM PT has no triples at all. Thus we only need to
treat the cases with 0 < A < ged(v — 2,6).

Consider the necessary conditions for a leave L. If (v — 1) = 0 (mod 2), L must
have all vertex degrees even; otherwise L has all vertex degrees odd. Similarly, the
number of edges of L must be congruent to A(;) (mod 3). Specifically, we have the
following nontrivial cases:
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v (mod 6)
A 0 2 4 5
1 odd degrees odd degrees odd degrees even degrees
0 (mod 3) edges | 1 (mod 3) edges | 0 (mod 3) edges | 1 (mod 3) edges
2 even degrees even degrees
2 (mod 3) edges 2 (mod 3) edges
3 odd degrees
| 0 (mod 3) edges
4 even degrees
1 {(mod 3) edges
5 odd degrees
2 (mod 3) edges

When v = 0,2 (mod 6) and A = 1, the smallest possible leave has all vertices of
degree 1. An MM PT(v,1) with such a leave is realized by taking a Steiner triple
system of order v+1, eliminating all triples containing a fixed element z, and removing
the element x.

When v = 5 (mod 6) and X = 1, form a pairwise balanced design with one block of
size five, and all other blocks of size three (see Street and Street (1987) for existence
of these). Replace the block {u,w,z,y,z} of size five by two triples, {u,w,z} and
{u, z,y}. The resulting partial triple system has a leave which is a 4-cycle (z,z,w,¥y).
Since even degrees are required, a leave of one edge is impossible and hence four is
the minimum.

For v = 4 (mod 6) and X = 1, we proceed similarly and then eliminate the
element z and all triples containing it. The resulting partial triple system has a leave
consisting of *3* disjoint edges and a 3-star {{y,u}, {y,v}, {y,w}}. Hence it has all
degrees odd and has 0 (mod 3) edges. Since odd degrees are required, at least § edges
are needed in the leave, and since ¥ = 2 (mod 3), ¥3* + 3 is indeed the minimum
possible number of edges in the leave.

When A =2 and v = 5 (mod 6), form MMPT(v,1)’s with leaves

{{a,8},{b, ¢}, {c,d}, {a,d}} and {{a, b}, {b,d}, {c, d},{a, c}}.

Take the union of these and add the triples {{q,, ¢}, {a,b,d}}. The result has leave
{{c,d},{c,d}} and is an MMPT(v,2).

When A = 2 and v = 2 (mod 6), the smallest admissible leave is a pair of parallel
edges {{a, b}, {a,b}}. To obtain an M PT(v,2) with such a leave, begin with a triple
system of order v + 1 containing the triple {a,b,c}. Delete the triple {a,b,c} and
replace every triple of the form {c,z,y} by the triple {b,z,y}. Then delete element
¢, and duplicate every triple not containing b. The result is an M PT (v, 2) that leaves
the pair {a, b} uncovered, but covers each other pair exactly twice.

For the remaining cases with v = 2 (mod 6), we construct the minimum leave as
follows. For A = 3, take the union of the leavesfor A =1 and A = 2. For A = 4, we
take the union of the leaves of two MMPT(v,2)’s. For A = 5 we take the union of
an MM PT(v,1) whose leave contains the edges {{a,b},{c,d}} and an MMPT(v,4)
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whose leave contains {{a,c}, {a,c}, {b, c}, {b,c}} and then add the triple {a, b, c}; the
resulting leave consists of ¥;* disjoint edges and a 3-star.
In summary, we have the following leave graphs of MM PT (v, \)’s:

v (mod 6)

A 0 1 2 3 4 5

0 | v{K1} | v{K:1} v{K1} v{K1} v{K.} v{K1}

1| 2{Ka} | v{Ks} 2{K,} v{K1} | K130 5K} | (v - 4){K1}uC,
2 | v{K1} | v{K1} | (v-2{Ki}U2K, | o{K:} v{K1} (v~ 2){Ki}U2K,
3 | ${K2} | v{K1} 3K, U %2{K,} v{K1} | K13 U 52K} v{K1}

4 | v{Ky} | v{K1} | (v —3)}{K1}U2Ky: | v{K:} v{K1} (v~ 4){K:}UCy
5 | ¥{K,} | v{K1} K130 52 {K,} v{K1} | K13 UK.} | (v - 2){Ki} U 2K,

The leaves of MM PT(v,\)’s are not unique in general for v = 2 (mod 3).

2.3.2 Minimum maximal partial triple systems

At the other extreme, we ask: what is the minimum number of triples in & maximal
partial triple system of order v and index A? Equivalently, how many edges can a
triangle-free A-leave on v vertices have?

Novék (1974) determined this minimum in the case A = 1.

A well known theorem in graph theory, Turdn’s theorem, ensures that the maxi-
mum number of edges in a triangle-free multigraph on v vertices with edge-multiplicity
at most A is achieved (uniquely) by AK|y/2),[v/2]- The following simple lemma follows:

Lemma 2.6 Letv > 6 and A > 1. Let v; = |v/2] and vy = [v/2]. Then if A =0
mod ged(vy — 2,6) and A =0 mod gedfvy — 2,6), the minimum MPT(v, ) has leave
isomorphic to MKy, v, .

Proof: By Turédn’s theorem, we need only show that MK, ., is a A-leave under the
conditions of the lemma. The congruence conditions on A ensure that triple systems
of index A and orders v; and v, exist; taking the union of these on disjoint sets of
elements gives the PT'S(v, A) whose leave is AK,, ,,,. O

In general, AK,, », may have the wrong vertex degrees and may have the wrong
number of edges modulo three. Nevertheless, all of the cases are handled by variations
of the simplest case described. Novdk (1974) shows that the following procedure
constructs an mMPT (v, 1) for all v:

1. Let n; be the nearest integer to § for which a T'S(ny, 1) exists. Let ny = v —mny.
2. Let By be the triples of a T'S(n1,1) on a set X of ny elements.

3. Let B; be the triples of an MM PT(n,,1) on a set ¥ of n, elements disjoint
from X.

4. Let Bs be a set of triples obtained by adding, to each pair on Y in the leave of
B3, an element of X so that no pair with one element from X and one from Y
is covered more than once.
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5. Then (X UY,BiUB; U Bs) is an mMPT(v).

Novék’s proof first determines the maximum number of edges in a triangle-free graph
with all vertex degrees of the same parity as n — 1 (a candidate to be a leave),
establishing in the process a bound on the maximum number of edges in a leave.
Then the construction given is shown, by analysing the various cases modulo 12, to
realize the minimum.

To state Novék’s theorem explicitly:

Theorem 2.7 A minimum mazimal partial triple system of order v (mMPT(v)) has
(v* + d(v))/12 triples, where
d(v) =-2Zv + 36 ifv=0 or & (mod 12)
= -Zv ifv=2 or § (mod 12)
2w+ 4  ifv=4 (mod 18)
-Zv +16  ifv =10 (mod 12)

fi

It

= -1 ifv=1ord (mod12)
=3 ifv=3 (mod 18)
= 11 ifv="7Tor 11 (mod 12)
=15 ifv =9 (mod 12).

2.3.3 The spectrum of maximal partial triple systems

At this point, we know the maximum and minimum possible numbers of edges in a
Aleave of a maximal partial triple system. What values between the maximum and
the minimum can be realized?

Severn (1984) addressed this question for A = 1, and obtained strong partial
results; we explore these in this section. Let m(v) denote the minimum number of
triples in an MPT{v) (as determined in Novik’s theorem), and let M(v) be the
maxiroum number of triples. Severn proves the following:

Theorem 2.8 Forv odd, if m(v) <t < M(v) then there exists an M PT (v, 1) having
ezactly t triples except when v = 1,3 (mod 6) and { = M(v) — 1.
Theorem 2.9 Forv even, m(v) <t < M(v), there is an MPT (v, 1) having t triples

Lodft= 3’%% med 2; or

2. ift > m(v) + s(v).

Moreover, if t # ¥ (mod 2) and t < m(v)+ h(v), no MPT(v,1) exists.

The functions h(v) and s(v) are determined by the congruence class of v modulo

12 as follows:

v (mod 12) h{v) s{v)
0 (v-18)/6 (2v—18)/6
2 (v+4)/6 (2v+2)/6
4 (v+2)/6 (2v-—2)/6
6 v/6 (2v+6)/6
8 (v—14)/6 (20— 10)/6

[
<

(v—-4)/6 (2v-2)/6
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Severn conjectured that, if v is even, t # %5 mod 2, and m(v) + h(v) < t <
m(v) + s(v), that there is no MPT(v, 1) having exactly ¢ triples. Very recently,
Colbourn, Rosa and Znam (1991?) settled the remaining cases, showing that the
answer is indeed negative, ezcept when v = 8 (mod 12) and the number of triples is

m(v)+ s(v) —

2.4 Leaves of small degree

Until this point, for sufficiency we have been concerned primarily with the number
of edges in a leave, and have not considered the structure of the leave. Short of
characterizing )-leaves, a natural objective is to identify strong sufficient conditions.
We first recall the following conjecture of Nash-Williams (1970):

Conjecture 2.10 Let G be a graph with mazimum degree k that has v > 4k + 2
vertices, and that meets the parity condition on degrees and the congruence condition
on number of edges modulo three. Then G is a 1-leave.

The constants chosen are such that the density condition must be met, and Gra-
ham’s construction shows that they cannot be reduced without violating the density
condition.

A weaker formulation of Nash-Williams’s conjecture is that for each k there exists
an integer ng such that if G has maximum degree k, has more than n; vertices and
meets the parity and congruence conditions, it is a 1l-leave. Remarkably, little is
known even about ns, although Nash-Williams’s conjecture would imply ns < 13.

Recently, Gustavsson (1991) has proved the weaker form of Nash-Williams’s con-
jecture:

Theorem 2.11 Every n-vertez m-edge graph G having all vertex degrees of the same
purity asn — 1, m =0 (mod 3), and minimum degree at least n(1 — 1072*) has an
edge-partition into triangles.

In other words, ny < 10%*k. Gustavsson’s method employs a key lemma that
every partial latin square of order n in which each symbol occurs at least n(1 —1077)
times has a completion to a latin square. The asymptotic result of Theorem 2.10 is
a substantial breakthrough in determining leaves of small degrees, but for fewer than
10%* vertices it provides no information.

What can be said about small degree for small orders? Of course, characterizing
leaves with maxirmum degree 1 is trivial; there remains the case of maximum degree
two. Rogers (1985) first considered this case, showing that for order nine, every
quadratic (2-regular) graph except 4 U Cs is a 1-leave. Colbourn and Rosa (1986)
established the general theorem:

Theorem 2.12 Let G be a graph on v = 1 (mod 2) vertices with every vertez of
degree 0 or 2, and having 0 (mod 8) edges if v = 1,3 (mod 6), and 1 (mod 3) edges
ifv =05 (mod 6). Then G is a I-leave unless v =7 and G = 2{C3} U Ky, or v =9
and G = 04 U Cf5.

Colbourn and Rosa (1985) and Franek, Mathon and Rosa (1989) enumerate small
partial triple systems with quadratic leaves.
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2.5 Subgraphs of Jeaves

In view of the apparent difficulty in establishing strong sufficient conditions, one might
ask whether certain subgraphs are forbidden from appearing in any leave. Colbourn
(1987b) addresses this question, and shows in a strong sense that every graph meeting
the basic necessary conditions appears as the subgraph of a leave. In particular, he
shows:

Theorem 2.13 There is o polynomial p(n) such that, for any n-vertez graph G hav-
ing 0 (mod 3) edges:

s if G has all vertex degrees even, there is a number z < p(n) for which G together
with z isolated vertices is a I-leave; and

e if G has oll vertez degrees odd, there are numbers z < p(n) and y < 2 such that
(3, together with x disjoint edges and y disjoint 8-stars, is a I-leave.

This establishes that there are no forbidden induced subgraphs, or forbidden sub-
graphs, for leaves. Theorem 2.13 follows directly from Gustavsson’s theorem (2.11),
with p(n) < 10%n.

2.6 ‘Work Points

1. Is there an efficient algorithm for checking the density condition on leaves?

2. (\Tash Williams’s con;ectvre) IfG = (V E)is an n- vertex m- edge graph Wlth

, thﬁ 6‘ kaa an edge- partx‘cfon into tnangics (eqmaalentlyé if G has

all '*thc es of degree congruent fo n — 1 mod 2, maximum degree Ay < L‘ffi}

and a number of edges congruent to (’2‘) mod 3, then G is a l-leave.)

3. Is it NP-compiete to determine whether a graph is a 1-leave of a maezimal partial
triple system?

4. Extend Novak's theorem to bigher index; that is, determine the number of
triples inoan mM PT (v, A).

~

Fwtend ¢ Severn (1984), as completed by Colbourn, Rosa and
Zndm | , to higher index; that is, determine the spectrum of numi:s:rs of

i.mplm it oan M'PF(U A).

o

3 Excesses

There is & n
ab most A ¢
than A triples. A covering by triples of order v and index A, or OT(v, ) is & set

atural duality between packing triples on a set so that every pair appears
: d covering the pairs by triples so that no pair appears in fewer

v

14
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of v elements, and a collection (multiset) of 3-element subsets of V' (triples as usual)
for which every unordered pair of elements appears in at least A of the triples.

The ezcess of a CT'(v, ) is a multigraph whose vertex set is the element set of
the covering, and in which each pair {z,y} appears as an edge s times exactly when
it appears in A + s triples of the covering.

A multigraph is a A-exzcess if it is the excess of some CT'(v, A).

A covering by triples CT'(v, A) is minimal, and denoted M CT (v, A) if every triple
contains at least one pair that occurs in only A triples. A minimal covering with the
fewest triples is minimum, and denoted mMCT (v, A); one with the most triples is
mazimum, and denoted MMCT (v, X).

3.1 Necessary Conditions

Let M be a v-vertex multigraph. When is M a A-excess? We examine basic necessary
conditions. As with leaves, we obtain parity conditions on degrees, and a congruence
condition on the number of edges.

Lemma 3.1 Let M be a v-vertez multigraph. If M is a A-ezcess, all vertices of M
have degree = A(v — 1) mod 2, and the number of edges in M = ~/\('2’) mod 3.

Proof: If M is a A-excess, the multigraph M’ obtained by adding A additional edges
between every pair of vertices of M has an edge-partition into triangles. Thus M’
has all vertex degrees even, and since M = M'\ AK,, M and AK, have the same
parity of vertex degrees, namely A(v — 1) mod 2. By the same token, M’ has 0 (mod
3) edges and hence the number of edges of M plus the number of edges of AK, is 0
(mod 3), giving the congruence condition of the lemma. O

When v = 0,1 mod 3, the parity and congruence conditions for a graph to be a
1-excess are the same as those for a graph to be a 1-leave. Consider the graph K, ,.—»
with n» = 3 (mod 6). It is a 1-leave — in fact, it is a 1-leave with the maximum
number of edges when 2n — 2 = v = 4 (mod 12) (by Theorem 2.7). Is it a 1-excess?

Suppose that K, ,_» is a 1-excess of a CT(2n—2,1) (V, B). Partition the elements
of the covering into two classes of sizes n and n—2 using the bipartition of the putative
excess K, n_p. Call an edge inside if it has its endpoints in the same class, cross
otherwise. There are then ('2') + (";2) inside edges of triples of B, and since every
cross edge appears in two triples, there are 2n(n — 2) cross edges. Since any triple
can use at most two cross edges and requires at least one inside edge, this requires

that .
() (e

which in turn requires that n < 3.
This argument can be generalized along the same lines as for leaves:

Lemma 3.2 Let M be a v-vertex multigraph. Suppose that the vertices of M can be
partitioned into sets of sizes s and v — s so that c of the m edges of M cross between
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the two classes of the partition. Then if M is a A-ezcess,

2[A(Z)+(”;S)+m—c] > As(v — s) + c.

Proof: The left hand side is twice the count of inside edges in the required covering,
and the right hand side is the number of cross edges. O

A multigraph is a 0-excess if and only if it has an edge-partition into triangles.
Holyer (1981a) shows that deciding whether a graph has an edge-partition into tri-
angles is NP-complete, and hence:

Lemma 3.3 Deciding whether o multigraph is a O-ezcess is NP-complete. O

3.2 Minimum Excesses

What is the fewest edges that a A-excess can have? Fort and Hedlund (1958) settle
this problem for A = 1, and Engel (1981) settled it for all \. We consider this problem
in some detail here.

First we note that if A > ged(v — 2,6), the minimum excess of a CT'(v, A) is the
same as that of a CT(v, A — ged(v — 2, 6)), since we can take the union of the covering
with smaller index and a triple system of index ged(v — 2,6) to obtain the covering
with larger index. Moreover, a minimurm excess of a CT'(v,0) is void (has no edges).
It remains to treat the following nontrivial cases:

v (mod 6)
A 0 2 4 5
1 odd degrees odd degrees odd degrees even degrees
0 (mod 3) edges | 2 (mod 3) edges | 0 (mod 3) edges | 2 (mod 3) edges

2 even degrees even degrees

1 (mod 3) edges 1 (mod 3) edges
3 odd degrees

0 (mod 3) edges
4 even degrees

2 (mod 3) edges
5 odd degrees

1 (mod 3) edges

First we consider the cases for index one. When v = 5 (mod 6), the minimum
excess is a 2-cycle (two copies of an edge); to produce a covering with this excess,
use the CT(5,1) with triples {abc, abd, abe, cde} having excess {{a, b}, {a,b}}. Now
a pairwise balanced design with one block of size five and all other blocks having size
three exists for all v = 5 (mod 6); replacing the 5-block by a copy of the CT(5,1)
gives a CT(v, 1) whose excess is a 2-cycle.

When v = 2,4 (mod 6), take a triple system on v — 1 elements with index one
zontaining the triple {a,b,c}; add a new element co. Remove the triple {a,b,c},
and add triples {oe,a, b}, {co, e, c}, {oo,b,c}. Finally, for all triples {a,z,y} with
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{z,y} # {b,c}, add a triple {00, z,y}. The result is a CT(v,1) whose excess consists
of % disjoint edges and a 3-star, which is easily seen to be minimum.

When v = 0 (mod 6), we proceed in a similar way starting with a pairwise balanced
design on v — 1 elements having a unique block of size 8, and triples otherwise. Let
{a,b,¢,d, e} be the 5-block. Add an element oo, and for all triples {a,z,y} add a
triple {o0,z,3}. Then remove the 5-block, and on {0, a,b,¢,d, e} place the triples
{ooab, coac, bed, bee, deco, dea}. The result has excess consisting of § disjoint edges.

Now we turn to higher index. For index two and v = 5 (mod 6), the mini-
mum number of edges in an excess is four; hence the union of two CT(v,1)’s with
minimum excess give a CT(v,2) with minimum excess (although not all C7'(v,2)’s
with minimum excess are obtained in this way). For index two and v = 2 (mod 6),
the minimum excess also has four edges. To produce a CT(v,2) whose excess has
only four edges, begin with a CT'(v,1) whose excess contains ¥=% disjoint edges and
the 3-star {{a, b}, {a,c}, {a,d}}. Take its union with a MM PT(v,1) whose leave
contains the same *3* edges and the two further edges {{a, b}, {c,d}}. This union
has all edges appearing twice ezcept that {a,c} and {a,d} appear three times, and
{c,d} appears only once. Adding the triple {a, ¢, d} then gives a CT(v,2) with excess
{{a ¢}, {a,c}, {a, d}, {a, d}}.

For index three, v = 2 (mod 6), take the union of

1. a CT(v,1) whose excess is the %% edges E, the edge {e, f}, and a 3-star
{{a, 0}, {a,c},{a,d}},

2. an MPT(v,1) whose leave is E and the edges {{a,d}, {b,c},{e, f}}, and
3. a CT(v,1) whose excess is E, the edge {b, c} and the 3-star {{a, d}, {a, e}, {a, f}}.
The resulting CT(v,3) has excess E and {{a,b},{a,c},{e,d} {a,e},{a, f}}.

For index four and v = 2 (mod 6), take the union of

1. a CT(v,1) whose excess is (n—4)/2 edges F and the 3-star {{a, b}, {a, ¢}, {a, d};
2. a CT(v,1) whose excess is F and the 3-star {{a, c},{b, ¢}, {c,d}};

3. a PTS(v,1) whose leave is F and the edges {{a, b}, {c, d}}; and

4. a PTS(v,1) whose leave is F and the edges {{a, d}, {b,c}}.

The resulting CT(v,4) has excess {{a,c},{a,c}}.

For index five and v = 2 (mod 6), we give a somewhat different construction.
Partition the vertices into s = |v/4] classes Vi,...V, with all classes of size four,
except possibly the last which has size four or six. On each class V; of size four,
form a 1-factorization Fo;, Fii, Fay; and if the last class has size six, form instead five
1-factors Fp,, ..., Fu,. Now form five MMPT(v,1)s B, ..., Bs so that B; has leave
Uz, Fji, reducing the first subscript modulo three for the classes of size four. Then
on each class of size four, place the triples of a T5(4,2), and if there is a class of size
six, place the triples of an minimum covering CT(6,1). It is easily verified that the
resulting C7T'(v,5) has a 1-factor as its excess.

In summary, we have the following excess graphs of mMCT(v, \)’s:
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v (mod 6)

A 0 1 2 3 4 5

0 | v{K:} | v{K:} v{K.} v{K,} v{K;} v{K:}

1| ${K2} | v{K,} Ky 3USH{K,} v{K1} | K15US2{K2} | (v - 2){K:1}U2K,
2 | o{K.} | v{Ki} | (v~ 3){K1}U2K,, | v{K:} v{K1} (v —3){K1}U2K;,
3| 2{K:} | v{K1} Ky 5 U8 {K,} v{K1} | K130 52{K>} v{K.}

4 | v{Ky} | v{Ki} | (v-2){K JU2K, | »{K.} v{K;i} (v - 2){K 1} U2K,
5| 2{KJ.} | v{K1} 3{K2} v{K1} | K13 U%2{K} | (v = 3){K1}U2K,,;

3.3 The spectrum for minimal coverings

How many triples can a minimal covering by triples contain? Mendelsohn and As-
saf (1987) settle this question for index one (they call minimal coverings by triples
imbrical designs).

First we determine the maximum possible number of triples. Every triple must
contain a pair that appears only in that triple. Define a covering on element set
X U{oo} with | X| = v—1, whose triple set C contains all triples of the form {cc, z,y}
for z,y € X. C has (”;1) triples.

Lemma 3.4 The mazimum number of triples in an MCT(v,1) is (";1).

Proof: Let B be the triples of any minimal covering, with the maximum number of
triples, on X U {oo}, |X| = v — 1. If B = C, the covering has (””2”1) triples and we
are done. Otherwise, there is a triple in B not containing co, say {a,b,c}. Since B is
minimal, at least one pair of {a, b, c}, say {a, b}, appears only in this triple of B (and
hence there is no triple {co, a, b} in B at present). Remove the triple {a, b, ¢} and add
the triple {co, a, b} to form a set B’ of triples. In general, B’ need not be a covering,
since {a,c} and {b, ¢} may not be covered; if either is not, add a triple containing it
together with oo to obtain a larger minimal covering. Under the assumption that C
is maximum, therefore, B’ is a maximum minimal covering. B’ shares one more triple
containing co with C than does B. Hence repeating this argument, we transform B
into C, with the result that B has (";1) triples if it is maximum. O

To obtain the possible numbers of triplesin a minimal covering, we consider a more
general augmentation operation. Given a minimal covering B and a fixed element oo
of the covering, suppose that B contains a triple {a, b, ¢} not containing co. At least
one of the pairs in {a, b, ¢} is essential in that it appears only in this triple of B (since
B is minimal); at most all three of the pairs in {a, b, c} are essential. Removing the
triple {a,b, ¢} and adding triples with co for each essential pair of {a,b,c} results
in a minimal covering that has zero, one or two more triples than the original. To
determine the possible numbers of triples, it would therefore suffice to show that, for
every possible number of triples less than the maximum, there is a minimal covering
having a triple not containing oo and having two essential pairs; for if such a covering
exists, augmentation on the specified triple increases the number of triples by one.
More precisely, we have:
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Lemma 3.5 Let B be an MCT(v,1) having b triples. Let co be an element of the
covering. Let T = {z,y,z} be a triple of B mot containing oo, and having ezactly
two essential pairs, {z,z} and {y, z}. Suppose further that {co,z,y} is a triple of B.

Then for all b< b < (";1>, there is an MCT (v, 1) containing b’ triples.

(”;1) — 1 triples, and

Proof: If T is the only triple of B not containing oo, B has
we apply augmentation to T'. Otherwise, there is a triple 7" s£ T', not containing co;
applying augmentation to 7" gives an MCT(v,1) B' having b, b+ 1 or b+ 2 triples,
and having at least one more triple containing co. Moreover, B’ still contains T,
and T still has two essential pairs (no augmentation makes {,y} essential, or makes
{z,z} or {y, z} inessential). Then, applying the lemma repeatedly to B’ handles (at
least) the numbers of triples b+ 2 < b < (";1 . To obtain b+ 1 triples, we apply
augmentation to T in B; and to obtain b triples, we simply take B. O

Theorem 3.6 An MCT(v,1) with b triples exists if and only if

A < b (“;1),

except forv="T, b= 8.

Proof: Necessity follows from the characterization of minimum coverings, and from
Lemma 3.4 giving the upper bound. Now it is an easy exercise to verify that the
minimum coverings for A = 1 with v = 0,2,4,5 (mod 6) all have the property that
some triple T has exactly two essential pairs. Let T' be a triple intersecting T in
exactly two elements (some such T” exists since 7' has an inessential pair), and let co
be the element in 7"\ T'. Then apply Lemma 3.5 to obtain the result.

If v = 1,3 (mod 6), first we handle the cases for & > P-(Kéﬂl + 2. Take any triple
system of order v and index 1, and replace some triple {z,y, z } by {{w,z,y},{w,=, 2},
{w,y,2}} (w ¢ {z,y, 2} is chosen arbitrarily). Then applying Lemma 3.5 using co =
y and a triple containing {w,z} and not containing y gives the required coverings.

For v = 1,3 (mod 6), the cases when b = &)elll are realized by triple systemns, so
it remains only to treat the cases when b = ﬁ‘%ﬂ + 1. Mendelsohn and Assaf (1987)
call these coverings failed designs. The necessary conditions for the excess of such a
covering specify that the excess is a 2-regular multigraph on 3 edges, for which there
is only one choice — a triangle, say {{z,y},{z, 2},{y, #}}, for which {z,y,2} is not
a triple.

Now if v = 7, there are four blocks through z, say {zyl,zy2, 223,224} (the four
elements are distinct since every pair not in the excess occurs in only one triple). There
are two additional blocks through v, say {yze,yzB}. But {a,8} N {1,2,3,4} =0
since none of the pairs {{y, 1}, {y,2}, {#,3}, {2,4}} are repeated. Hence at least nine
elements are required, and no minimal covering on 7 elements with 8 triples exists.

Mendelsohn and Assaf (1987) produce MCT(v,1)’s for v € {9,13,15} having
b= 33/3612 +1 triples. Then since for all w > 2v + 1, w = 1,3 (mod 6), there is a
Steiner triple system of order w having a subsystem of order v (the Doyen-Wilson
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(1972) theorem), we obtain the required MCT(w,1) by replacing the subsystem of
order v by a failed design of order v. O
The extension to higher index appears not to have been studied.

3.4 Quadratic excesses

A complete characterization of excesses that is computationally tractable appears to
be impossible. It is therefore of interest to ask for strong sufficient conditions for a
multigraph to be an excess. In analogy with Nash-Williams’s conjecture for leaves,
Colbourn (1987a) made a similar conjecture for excesses:

Conjecture 3.7 For every d > 0, there is an integer myg for which any multigraph G
of mazimum degree d, meeting the parity and congruence conditions to be a I-ezcess,
18 a l-ezcess if G has more than my vertices.

Little progress has been made on this conjecture. The cases d € {0, 1} are settled
by the existence of minimum coverings. For maximum degree 2, any candidate to be
an excess must have all vertex degrees equal to 0 or 2, and the candidate multigraph
is guadratic. Colbourn and Rosa (1987) show that the necessary conditions for a
quadratic multigraph to be a l-excess are sufficient:

Theorem 3.8 Fvery quadratic multigraph on v =1 (mod 2) vertices, and having e
edges with e = 0 (mod 3) when v = 1,3 (mod 6) or with e = 2 (mod 3) when v =5

(mod 6), is o 1-czcess.

The corresponding problem of determining which quadratic multigraphs are ex-
cesses of minimal coverings remains open.

3.5 Excesses and leaves: nuclear designs

The similarity between the necessary conditions for a multigraph to be a leave and
to be an excess suggests that we may ask for a multigraph to be both a leave and an
excess. If an m-vertex multigraph is both a A-leave and a p-excess, the parity and
congruence conditions are equivalent to: n = 0,1 (mod 3) or A+ p = 0 (mod 3), and
A = p (mod 2) when n = 0 (mod 2). These conditions are not sufficient: consider,
for example, the 1-leave Kgop16,43 — we have seen that this 1s not a 1-excess.

Using techniques of Opencomb (1984), Colbourn, Hamm and Rosa (1985) estab-
lished that:

Theorem 3.9 Every I-leave on an odd number of elements is a 41-ezcess.

Proof: Let G be the l-leave of an MPT(v), v = 1 (mod 2). Write v = 8s — 1,
t < 8. Partition the elements of the M PT into eight sets Sy,..., Ss, each of size s or
s~ 1. Now let B be the set of blocks of a Steiner quadruple systermn of order 8 on the
clements {S4,..., 5s}. Each block of the quadruple system selects four of the sets;
construct the PTS containing those triples with all three elements within the union of
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these four sets. The PT'S has at most 4s elements, and thus by a result of Colbourn
and Hamm (1986) has an embedding into a T'S(v, 3). Repeating this for each of the
fourteen blocks of the Steiner quadruple system, and taking the union of the resulting
TS(v,3)’s gives a T'S(v,42). Then removing the triples of the MPT(v,1) with which
we started, we obtain a CT'(v,41) whose excess is G. O

A similar technique shows that when the number of elements is even, every 1-leave
is an 83-excess. Colbourn, Hamm and Rosa (1985) make a strong conjecture in this
vein:

Conjecture 3.10 A I-leave on v elements is a p-ezcess for

p=1 ve {47910}

p=2 v=1 (mod2), v¢ {79}
p=3 v=0,4 (mod 6), v¢ {410}
p=>5 v=2 (mod6)

That these are lower bounds follows from considering the leaves of mMPT(v,1)’s.

Mendelsohn, Shalaby and Shen (19917) consider a related problem. A nuclear
partial triple system NPT S{v,A) is a PTS(v, ) (V,B) with the property that there
exist a CT(v, ) (V,C) and a PTS5(v,A) (V,D) for which B =CN D, and |B] is the
largest possible such intersection. The special case when the nuclear design is the
same as the PTS arises precisely when the A-leave of the PT'S is isomorphic to the
A-excess of the CT.

They establish that:

Theorem 3.11 A nuclear PTS(v, A)
1. is an MM PT (v, A) when A(v — 1) is even; and

2. has |v/6] fewer triples than an MM PT(v,X) when A(v — 1) is odd.

3.6 Work Points

1. Is it NP-complete to decide whether a graph (or multigraph) is a A-excess of a
minimal covering of index A?

2. Determine the necessary and sufficient conditions for a quadratic multigraph to
be the excess of a minimal covering by triples of index one.

3. Prove (or disprove) Conjecture 3.7.

4. Characterize the graphs for which the density condition for 1-leaves and the
density condition for l-excesses hold simultaneously (and thereby determine a
necessary condition for a graph to be both a 1-leave and a l-excess).

5. Prove or disprove Conjecture 3.10.
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4 Neighbourhoods

In this section, we examine another graph-theoretic problem on triple systems. Let
(V,B) be a TS(v, A), and let z € V. Consider the multiset of triples

B,={BeB:ze B}.

The netghbourhood of «, N (B), is the multiset of pairs {{y, z} : {z,y,2} € B.}. The
neighbourhood contains the v — 1 elements of V' \ {z}.

We view the neighbourhood of an element z as a multigraph on the remaining
v — 1 elements, whose edges are the pairs appearing in triples with z. In general,
a multigraph is a A-neighbourhood if it is the neighbourhood of some element in a
triple system of index A. The basic question we address here is: what multigraphs
are neighbourhoods?

This neighbourhood problem is a special case of the characterization problem for
A-leaves:

Lemma 4.1 G is a A-neighbourhood if and only if G 1s a A-regular A-leave.

Proof: Suppose that G is the neighbourhood of z in a TS(v, A) (V, B). Consider the
partial triple system (V'\ {z}, B\ B.); its leave is G.

In the other direction, suppose that G = (X, E) is A-regular and is the leave of
a partial triple system (X, B} of index A; choose an element z & X, and let C be all
triples of the form {{z,y,z} : {y,2} € E}. Since G is A-regular, C contains every
pair of the form {z,y} with y € X X times; moreover, any triple system of index X
containing the triples of C has G as the neighbourhood of z. To complete the proof,
observe that (X U {z},BUC)isa TS(|X|+1,A). O

Interest in neighbourhoods stems primarily from the effort to explore the structure
of triple systems. Moreover, the structure of one neighbourhood can often be used
to determine properties of the triple system itself. As an example, if the neighbour-
hood of some element is a multigraph having no regular factor, the triple system is
indecomposable.

First we examine the necessary conditions. Suppose that G is a A-regular multi-
graph on n vertices. If G is to be a neighbourhood, some T'S(n + 1, A) must exist
and hence A = 0 mod(ged(n — 1,6)); this is equivalent to the parity and congruence
conditions for G to be a A-leave (Lemma 2.1).

Next we consider the conditions for a A-regular multigraph to meet the density
conditions to be a A-leave (Lemma 2.2):

Lemma 4.2 If G is a A-regular multigraph on n > 8 wertices, and a TS(n + 1, )
exists, then G meets the density condition to be a A-leave.

Proof: Consider any partition of the n vertices of G into classes of sizes s and n — s.
If the density condition fails, it must fail when all edges of G are inside the classes,
and hence we need only check that

()53

162



Simplifying, we require 3s2 —3ns-+n?—2n > 0, which holds for all n > 8, independent
of s. O
It is easy to verify that the density condition cannot exclude any multigraph on
fewer than four vertices. Thus the density condition only excludes some multigraphs
meeting the parity and congruence conditions on 4, 5, 6 and 7 vertices. The only
simple graph excluded is the 2-regular 6-vertex graph containing two disjoint triangles.
Colbourn (1987a) made the following conjecture:

Conjecture 4.3 Let G be a A-regular n-vertez multigraph, and let X = 0 mod ged(n—
1,6). Then if G meets the density condition to be a A-leave, G is a A-neighbourhood.

Unlike the analogous problems of characterizing leaves and excesses, progress on
proving this conjecture has been substantial, as we shall see in the remainder of this
section.

4.1 Index Two

The first nontrivial case of the neighbourhood conjecture is for index two. The density
condition rules out only two quadratic multigraphs, namely the disjoint union of a
triangle and a double edge, and the disjoint union of two triangles.

Colbourn and Rosa (1987a) show that the neighbourhood conjecture holds for
index two:

Theorem 4.4 Let G be a 2-regular multigraph on n = 0,2 (mod 3) vertices other
than 2K, U K3 and K3 U K. Then G 1s a neighbourhood in o T'S(n+ 1,2).

The strategy of the proof is quite similar to the quadratic leaves theorem, Theorem
2.12. We outline the construction for the case n = 0,2 (mod 6), the other case being
similar. First we describe the construction when the quadratic graph G contains a 2-
cycle. Write n = 2¢+2, and let Q' be the (2t)-vertex graph obtained by removing the
vertices of one 2-cycle from G. We construct a T'5(2¢+3,2) on {oo, 4, BYU(Z;x {0,1})
in which N is isomorphic to G. Without loss of generality, suppose that @ consists
of e even length cycles Cy,..., C. of lengths 2¢,...,2¢c,, respectively, and 2d odd
length cycles: Li,...,Lq of lengths 24y — 1,...,2{, — 1 and Ry,..., Ry of lengths
2ri+1,...,2r + 1. Let a; = Y021 @, and bj = ap + Y100 (4 + ).

We then label the vertices of @' so that each even length cycle C; is the cycle
((aj)(h(a'j + ]')0) s :(aj + Cj)o, (a'j + CJ')11 (a'j +e - 1)11 A (aj + 1)11 (aj)l)‘ (When
¢; = 2, this is a 2-cycle on {(a;)o,(a;)1}.) Then odd length cycles are mapped in
pairs, L; and Rj, as follows. L; is mapped onto ((b;)o, (b; + 1)o,. .., (bj + £)o, (b5 +
£ — 1)1, (b + &5 — 2)1,...,(bjh); for k = &; + r;, R; is then mapped onto (ko, (k —
Doy ---(k—7i)o, (b —rj —1)1,(k—7;)1,...k1). Having labelled vertices in this way,
we take N, = Q' U{{4, B},{4, B}}.

Now we choose neighbourhoods for A and B. Form a collection of edges E on
Z, x {0,1} by taking each edge of the form {i,7:} twice, and edges of the form
{20, (2 +1)o}, {21, G+ 1)1} and {4, {2+ 1)o} one each; then remove from this collection
the edges in the mapping of @'. What remains is a 3-regular multigraph R. Now R
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can be factored into a l-factor and a 2-factor; to get the 1-factor, take all edges of
the form {71, (i + 1)o} that remain in R, along with edges of the form {7;, (¢ + 1);}
required to complete the 1-factor F'. Now let the neighbourhood of A4, N4, be R\ F
together with a 2-cycle on {co, B}. Now Np is to contain the edges of a 1-factor F,
and the edges of an arbitrary 1-factor on Z; x {0,1} containing no edge of E.

The key observation to make at this point is that no matter what cycle lengths Q'
contains, it remains only to partition all edges on the fized multigraph M containing all
edges on Z; x {0,1} less those in F into one one-factor F' and a collection of triangles.
The neighbourhood of B then contains FUF”, and the triangles complete the required
T5(2t + 3,2). The required partition of M is a problem in mixed differences, since
M has the automorphism 7; — (i + 1);; Colbourn and Rosa (1987a) give solutions
for the difference problem.

To complete the case when n = 0,2 (mod 6), it remains to handle the case when
(G has no 2-cycle. Suppose that G contains an h-cycle with h > 4; form G’ by
replacing the h-cycle by a 2-cycle {4, B} and an (h — 2)-cycle. Now proceed as
before, ensuring that some edge of the (A — 2)-cycle is {ip,%:}. Then a pullup of
the resulting T°'S(2¢ + 3,2) is the replacement of the triples {co, A, B}, {c0,40,%1},
{A, 10, (1 + 1)o} and {B,2;,(i + 1)o} by the triples {co, 4,i0}, {o0, B, i1}, {4, B,4,}
and {ig,73, (1 + 1}jo}. After pullup, the neighbourhood of oo is isomorphic to G.

The final case arises when G consists of § disjoint triangles, and this is easily
handled using pairwise balanced designs with the single exception when G = 2{K;}.

When n = 3,5 (mod 6), the strategy is quite similar; as a result of the change in
parity, we remove a triangle from G (when one is present), and proceed as above to
map the remaining cycles. Pullups can be used in a very similar way to handle the
case when the shortest odd cycle (of which there must be at least one) has length at
least five.

Theorem 4.4 has an important corollary for larger index:

Corollary 4.5 Let G be a A-reguler multigraph with X even, on n = 0,2 (mod 3)
vertices. Then G is a neighbourhood in o TS(n+ 1, 7).

Proof: Let s = % By Petersen’s theorem, G has a 2-factorization into s 2-factors
Gi,...,G,. By the theorem, each is the neighbourhood of an elementin a T'S(n+1, 2);
their union is a T'S(n -+ 1, X) with an element having neighbourhood G. 1

4.2 Index Three

For index three, there are three small cubic multigraphs that are eliminated by the
density conditions, namely: the disjoint union of two triply repeated edges, a 4-cycle
with two opposite edges duplicated, and the unique 3-regular 6-vertex multigraph -
with connectivity one.

Colbourn and McKay (1987) showed:

Theorem 4.6 Every n-vertex cubic multigraph meeting the density condition is a
netghbourhood in a T'S(n -+ 1,3).
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Their proof relies on partitioning cubic multigraphs into almost regular factors. A
nontrivial path factor in a graph is a spanning subgraph in which each component is
a path of length at least one. We outline the construction for the easiest case, when
n = 0,2 (mod 6).

Lemma 4.7 Let G = (V, E) be a cubic multigraph on n = 0,2 (mod 6) vertices.
Then if n > 8, G is a 3-neighbourhood.

Proof: Colbourn and McKay show that every cubic multigraph G has a nontrivial path
factor H containing at least one path of length one {z,y}. Let H’ be the complement
of H with respect to G; H' has maximum degree two. Form @' by adding an arbitrary
matching on the odd degree vertices of H'. Q' may be a multigraph. Now using the
solution for index two, form a PTS(n + 1,2) By in which the neighbourhood of the
new element, co, is @".

Form @ from H — {z,y} by adding a matching on the odd degree vertices of H,
so that every cycle formed has even length (which is possible since n — 2 is even). @
is a 2-regular simple graph on V' \ {z,y}; in addition, Q has a 1-factorization Fy, F,
since every cycle length is even. Using the quadratic leaves theorem (Theorem 2.12),
form a PTS(n —1,1) with triples D on V' \ {z} whose leave is @); form a collection of
triples B, as the union of D, {{z,y,2}: {y, 2} € Fi}, {{o0,y,2} : {y,2} € F;}, and
the triple {oco, z,y}.

The union B = B;UB; has F, UQ' as the neighbourhood of oo, but the important
fact is that all edges of G that are not at present in the neighbourhood of oo are in
the neighbourhood of z. Let Z be the edges in the neighbourhood of co but not in G,
and O be the edges in G but not in the neighbourhood of co. T and O are matchings
on the same vertex set. Thus, replacing all triples of the form {co, a, b} for {a,b} € T
by {z,a,b}, and all triples of the form {z,c,d} for {¢,d} € O by {co,c,d}, gives a
triple system of order n + 1 in which element co has neighbourhood G. 00

The case when n = 4 (mod 6) is more complicated: the order is not admissible for
A= 1or A = 2, so neither the solution for index two nor the quadratic leaves theorem
can be used in the same way. Nevertheless, Colbourn and McKay (1987) obtain
results that are analogous to, but more restricted than, the quadratic leaves theorem
and the neighbourhood theorem for index two; then using certain factorizations of
cubic multigraphs into nontrivial path factors, they combine these results in a manner
quite similar to the easier case outlined here.

4.3 Simple Neighbourheoods

Using the solutions for indices two and three, and the quadratic leaves theorem,
Colbourn (1989) obtained the following theorem:

Theorem 4.8 Let G be a n-vertex A-regular simple graph, other than two disjoint
triangles. Then if A = 0 mod ged(n — 1,6), G is a A-neighbourhood.

We indicate the main ideas of the proof here, showing in the process a stronger
result: for n > 8, n = 0,2 (mod 3), every A-regular n-vertex multigraph with A = 0
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mod ged(n — 1,6) is a A-neighbourhood. First, we observe that we may assurme that
A > 4 from the results of previous sections.

Now suppose that the index is even. If n = 0,2 (mod 3), the result is obtained
(more generally for multigraphs) in Corollary 4.5. This leaves only n = 1,4 (mod 6).
For even index, we have A = 0 (mod 6).

Lemma 4.9 Let G be a 6-regular simple multigraph onn =1 (mod 6) edges. Then
G 15 o neighbourhood in ¢ TS(n + 1,6).

Proof: By Petersen’s theorem, G has a 2-factorization @y, @», Qs. In addition, since
n = 1 (mod 3), there is an element z that does not appear in a triangle in Q. For
1= 1,2,3, let {y;, z;} be the neighbours of z in §;. Let R; be the result of replacing
the edges {{z,4:}, {2, }} in Qi by the single edge {y:, z}. Since z is not in a triangle
of @1, Ry is simple; R, and Ry may each have a multiple edge. Now since Ry is a
simple quadratic graph with n — 1 = 0 (mod 3) edges, there is a PTS(n,1) whose
leave is Hy; let By be the triples of this system. For Ry, proceed as follows. If R,
has no multiple edge, form a PT8(v,2) B, by taking the union of a PT'S(n, 1) with
leave R, and a T'S(n,1). Otherwise, if R, has a repeated edge at {y,, z,}, form S, by
choosing any other edge {a,b} of R,, removing the edge {a, b} and one copy of the
edge {y2, 22}, and adding the edges {{a,ys}, {b, 2:}} (this cannot introduce repeated
edges). Now take the union of a PTS(n,1) with leave S; and a T'S(n,1) in which
the neighbourhood of z contains {{a, b}, {y2, 22}}; produce B; by replacing the triples
{{z, 0,8}, {z,v2, 22} } by {{=,a,y2}, {z, b, 22}} in this union. By is a PTS(v,2) whose
leave is K,. Proceed similarly to produce B; from R3. Finally, let B, be the triples of
a TS(n, 1) having the triples i = {{z,y1, 23}, {z, v2, 21}, {=, y3, 22}, {v1, y2, ¥} }. Now
the system with triples C = By UB, UB; UB, is a PT'S(n, 6) with leave Ry U Ry U Ra.
Then B = C\UU {{v1, z1,¥a}, {v2, 22, 1}, {¥3, 23,92} } is the collection of triples of a
PTS(n,6) with leave (= Q; U Q, U Q3. O

Repeated application of Petersen’s theorem to factorize the graph then handles
all simple graphs with n =1 (mod 6).

A similar strategy handles the case when n = 4 (mod 6).

For odd index, the strategy is somewhat different. When the index is even, Pe-
tersen’s theorem ensures that the graph is 2-factorable; for any odd degree A, however,
there are graphs with no regular factor of degree less than A\. Hence we cannot par-
tition the graph as before into regular factors. Nevertheless, we can adapt the ideas
used in the case when A = 3. We require a graph-theoretic result:

Lemma 4.10 Let G be o A-regular n-vertez graph G with A\ odd. Then G has a
nontriviel path factor containing a path of length one.

Proof: Add an arbitrary I-factor ' to G to form G', a (A+1)-regular graph. Petersen’s
theorem ensures that G’ has a 2-factor . Then deleting one edge from each cycle in
@\ F' is a nontrivial path factor H. If H has any path of length one, we are done.
Otherwise, if H has a path of length £ > 2, we can delete one further edge to split the
path into paths of lengths 1 and £ — 2, and we are done. Otherwise H has all paths
of length 2. Hence it remains only to handle the case when n = 0 (mod 6). For some
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2-factorization (1, ..., Q(rs1)/2 of G’, consider the edge-partition of ¢ into subgraphs
G; = Qi \ F. If any one of the {G;} has a cycle other than a triangle, or a path of
length different from two, it is easily seen that the desired path factor exists. Now
@ has An/2 edges, and hence one of the subgraphs, say G;, has at least ;’\ﬁ- edges.
Thus if we have not yet obtained the required path factor, G; has at most I}?Y paths
of length two.

First, whenever G; contains a 2-path in which the two endvertices are adjacent
in G, we add the edge in (7}, turning the 2-path into a triangle. Now consider the
neighbours of the vertex on a triangle. If adjacent to any vertex of another triangle,
or to the endpoint of a 2-path, the required factor is easily produced. Thus each
vertex on a triangle is adjacent only to other vertices on the triangle, and to centers
of 2-paths. Similarly, an endvertex of a 2-path can be adjacent only to centers of
other 2-paths; otherwise, we can combine two 2-paths with the additional edge to
form a 5-path which can in turn be repartitioned as a 1-path and a 3-path.

Since the degree is odd, every triangle has at least one edge connecting a vertex of
the triangle to a vertex not on the triangle. Hence, there must remain some 2-paths.
Moreover, since the 2-paths account for twice as many edges at the centers of 2-paths
as at the leaves, an elementary counting argument shows that the number of edges
required to account for the degrees in G of the endvertices of the paths in G; exceeds
the degree remaining to be accounted for at the centers of the paths, O

With this lemma in hand, we now address the neighbourhood problem with n =
0,2 (mod 6) and all odd X:

Lemma 4.11 Let G be a A-reqular multigraph on n = 0,2 (mod 6) vertices, n > 8,
with A > 5 odd. Then G is a A-neighbourhoad.

Proof (sketch): This parallels Lemma 4.7 closely. Find a nontrivial path factor H of
@ having a path {z,y} of length 1. Let R = G — H. Choose an arbitrary matching
M on the vertices of degree A — 2 in R, so that R + M is (A — 1)-regular; then
apply Corollary 4.7 to obtain a T'S(n + 1, A — 1) whose additional poeint, co, has
neighbourhood R + M. Next form a simple quadratic graph @ from H \ {z,y} by
adding a matching M’ on the odd degree vertices so as to form only even length
cycles. Let Fi, F; be a 1-factorization of @, and form a T'S(n + 1,1) in which the
neighbourhood of co is F; U {z,y} and the neighbourhood of z is F; U {co,y}. Take
the union of the two triple systems to form a T'S(n + 1, A); then interchange the role
of z and co in the triples involving the pairs in Noo \ G and in G\ N,,. O

It remains only to consider the case when n = 4 (mod 6); here, Colbourn (1989)
uses a decomposition of the graph into a nontrivial path factor with at least two paths
of length one, a spanning subgraph of maximum degree two, and a spanning subgraph
with all vertex degrees from {A — 4, A — 3}; the ingredients are more complicated, but
the basic strategy remains the same.

4.4 Neighbourhood Uniform Triple Systems

Until this point, we have been concerned with a single neighbourhood in a triple sys-
tern. One might instead ask that every neighbourhood be isomorphic; we call such a
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triple system neighbourhood uniform. Naturally every triple system whose automor-
phism group acts transitively on its elements is neighbourhood uniform; however, the
structure of possible neighbourhoods in transitive systems appears not to have been
studied.

When one asks for a specific graph to be the neighbourhood in a neighbourhood
uniform triple system, little is known. Ducrocq and Sterboul (1980) made the follow-
ing observation:

Theorem 4.12 For everyn = 0,1 (mod 3), there ezists a simple TS(n,2) in which
the neighbourhood of every element is an (n — 1)-cycle.

Proof: Ringel (1975) establishes that for every n = 0,1 (mod 3), there is a nonori-
entable surface which K, triangulates. The triples of the simple T'S(v,2) are just
the faces of this embedding. Now consider the faces incident at a vertex v of K,;
they are necessarily in a cyclic sequence about v in the embedding, and hence the
neighbourhood of v is a cycle. Since every vertex other than v is adjacent to v, the
neighbourhood i1s an (n — 1)-cycle. O

4.5 Double Neighbourhoods for Index One

The neighbourhood problem is trivial for A = 1, since for each order n (necessar-
ily even), there is only one isomorphism type of l-regular multigraph and it is the
neighbourhood of any element in any Steiner triple system of order.n + 1.

Colbourn, Colbourn and Rosa (1983) examined a nontrivial extension of the neigh-
bourhood problem in the case A = 1. A double star of triples based on a pair {z,y}
of a v-set V is a partial triple system on V so that every triple contains at least
one of {z,y}, and every element z € V \ {z,y} appears in exactly one triple with
2 and exactly one triple with y. Equivalently, we can think of a double star as a
simultaneous specification of the neighbourhoods of z and y, and hence as a “double
neighbourhood”.

Colbourn, Colbourn and Rosa (1983) established that every double star is com-
pletable to a Steiner triple systerm; we give a simpler proof using more recent results:

Theorem 4.13 Every double star on n = 1,3 (mod 6) elements can be completed to
a Steiner triple system of order n.

Proof: Let D be the triples of the double star on V U {z,y} based at {z,y}. D
contains a triple {z,y, 2} containing {z,y}. Let C = D\ {{z,y,2}}, and form the
set of pairs E = {{b,c}: {a,b,c} € D,a € {z,y}}. Then the graph ¢ = (V,E)is a
quadratic graph with n — 2 vertices and n — 3 edges; moreover, every cycle of G has
even length. Thus G is the leave of some partial triple system (V, ) of order n — 2
and index 1 by Theorem 2.12. Then (V U {z,y},BUD) is a Steiner triple system of
order n containing the double star D. O

The quadratic graph in the double star has been widely studied, primarily as an
isomorphism invariant. The isomorphism type of such a graph is determined simply
by the number of cycles of each length, and hence the double neighbourhood graph
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is typically encoded as a list of cycle lengths; this is the cycle structure of the pair
{z,y}. The fact that every double star can be completed is equivalent to the fact
that, for n = 1,3 (mod 6), every partition of n - 3 into even parts each at least four
is a cycle structure for some pair in a Steiner triple system of order n.

4.6 Uniform and Perfect Triple Systems

Rather than prescribing the double neighbourhood at a single pair, one could ask
that all pairs of vertices have isomorphic double neighbourhood graphs. We call such
a Steiner triple system uniform. If in addition each double neighbourhood consists
of a single cycle, we call the triple system perfect (in analogy with “perfect one-
factorizations”).

Two classes of uniform Steiner triple systems arise from the infinite families of
2-transitive systems: the projective systems and the affine systems. In a projective
system of order n, each double neighbourhood is a set of 252 4-cycles, since any three
noncollinear elements generate a subsystem of order seven. Inan affine system of order
n, every double neighbourhood is a set of -"-5—-3“ 6-cycles, since every three noncollinear
elements generate a subsystem of order nine. More generally, the Hall triple systems,
although not 2-homogeneous in general, have the same double neighbourhoods as the
affine triple systems; see Bénéteau (1983,1984).

A further class of uniform Steiner triple systems arises frorn the 2-homogeneous,
but not 2-transitive, systems: the Netto systems that exist for ¢ = 7 (mod 12), ¢ 2
prime power; see Delandtsheer, Doyen, Siemons and Tamburini (1986). Necessarily,
all pairs of elements have isomorphic double neighbourhoods; however, the structure
of the double neighbourhood is only partially understood. Robinson (1975) demon-
strates that the Netto triple system of order p* has a double neighbourhood containing
a 4-cycle whenever p = 7 (mod 24), and having no 4-cycle whenever p = 19 (mod
24). He also examines the distribution of numbers of 4- and 6-cycles in the double
neighbourhood.

Beyond these classes for which uniformity is forced by the structure of the auto-
morphism group, little is known. It follows from the classification of 2-homogencous
Steiner triple systems and our remarks above that the only perfect 2-homogeneous
systems are the obvious cases for orders seven and nine.

Perfect Steiner triple systems are known to exist for only four orders: 7, 9, 25,
and 33. The known perfect Steiner triple system of order 25 is a transitive de-
sign acted on by the group Zs x Zs; orbit representatives are: {(0,0),(0,1),(1,0)},
{(0,0),(0,2), (2, D}, {(0,0),(1,1),(2,3)}, and {(0,0),(1,3),(3, 3)}. The perfect Steiner
triple system of order 33 is also transitive; in fact, it is cyclic with starter blocks:
{0,1,7}, {0,2,21}, {0,3,20}, {0,4,28}, {0,8,18} and {0,11,22}. No other transitive
Steiner triple system of order at most 27 is perfect.

At the present time, no infinite family of perfect Steiner triple systems is known;
nor is any recursive construction known that preserves perfection.
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4.7 Quadrilateral-free Steiner triple systems

A 4-cycle in a double neighbourhood of a Steiner triple system is called a guadrilateral.
An equivalent configuration is the set of four triples:

{{a7w) E}Y {afyﬂ z}’ {b7wﬁy}7 {blz’ Z}};

this is a Pasch configuration, fragment or arrow. When no double neighbourhood of
a Steiner triple system contains a quadrilateral, the system is quadrilateral-free (or
anti-Pasch), and is denoted QF ST S(v).

Erdés (1976) conjectured that for every r there is an integer vo(r) so that for
every v > vo(r), v = 1,3 (mod 6), there is a Steiner triple system on v elements with
the property that for 2 < j < r, no j + 2 points carry j triples. For r = 4, Erdos’s
conjecture states that for all v > vg(4) with v = 1,3 (mod 6), a QF ST S(v) exists.

The unique ST'S(7) and both nonisomorphic STS(13)’s contain quadrilaterals,
but Brouwer (1977) conjectures:

Conjecture 4.14 Forv =1,3 (mod 6), « QF ST 5(v) ezists except whenv € {7,13}.

Brouwer’s conjecture remains far from settled, although substantial partial results
are available which we outline here. FErdos’s more general conjecture apparently
remains completely open for r > 6, while for r = 5 Brouwer (1977) gives one infinite
family of QFSTS in which no seven points carry five triples.

For quadrilateral-free ST'S, from the affine triple systems and Robinson’s charac-
terization of quadrilaterals in Netto triple systems, we have:

Lemma 4.15 A4 QFSTS(p*) ezists for p = 3 or p a prime with p = 19 (mod 24),
and o a nonnegative integer. O

A more general construction for prime powers was obtained by Brouwer (1977).
For prime power order g, a TS(q,1) S¢ can be formed as follows. Let z be a primitive
element of GF(q), t = %% and y = 2% so that y* + y + 1 = 0. Let C be a subset of
G F(g) of size t with 0 ¢ C and if 2%,2% € C then o # B (mod t). The system S¢
contains the triples {c{1,y,¥*} +4i:c€ C,1 € GF(q)}.

Brouwer (1977) proves that S¢ contains a quadrilateral whenever, for some triple
T, S¢ contains the triple 27, and in addition |3T| = 3. Using this observation, he
proved:

Theorem 4.16 Let ¢ =1 (mod 6), ¢ = p® and p prime. Let C be as above. Then
1. +f p € {7,13}, Sc contains a quadrilateral.

2. if p ¢ {1,13}, S¢ contains a quadrilateral if and only if for some S € S¢,
25 € 8¢, where § #25.

Corollary 4.17 For ¢ = 1 (mod 6), ¢ = p*, p & {7,138} a prime, there is a
QFSTS(q) whenever p=1,3 (mod 8) or a =0 (mod 2).
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Proof sketch: The conditions on p and « are equivalent to the statement that —2 is
not a square in GF(q). Choose a set C so that S¢ is invariant under multiplication
by —2. 0O

Brouwer (1977) and Doyen (1981) obtained the first results on QFSTS for orders
other than prime powers. First, we recall the Bose construction for Steiner triple
systems (Bose (1939,1960)). Let I' be a commutative idempotent quasigroup of order
g = 2s -+ 1 with binary operation ©. Let V =T X Z3, and write (z,) as z;. Let B
contain the following triples:

1. for z € T, include the triple {zo,z1, z2};

2. for z,y € T, = # y, include the triples {z;,v:,(z © y)is1} for ¢ € Z; (reducing
subscripts modulo 3 as necessary.

(V, B) is then a Steiner triple system.
Brouwer (1977) and Doyen (1981) established that:

Theorem 4.18 There ezists a QF ST S(3g) whenever g is odd and g # 0 (mod 7).

Proof sketch: Form a triple system (V, B) using the Bose construction just described,
based on the commutative idempotent quasigroup on Z, with Gy = %ﬂ. A quadri-
lateral arises in the Bose construction whenever the quasigroup contains a subquasi-
group of order two; since g is odd, none of this type are present. The second type
of quadrilaterals requires that z © (z © (z © y))) = y for distinct symbols z,y. By
construction, this requires 2z + 3y = y, or 7(z —y) = 0; but g # 0 (mod 7), and
hence no quadrilaterals of this second type are present. U

Brouwer (1977) and Griggs, Murphy and Phelan (19917) extended this result:

Theorem 4.19 There ezists a QFSTS(v) for all v = 3 (mod 6) having a parallel
class of triples.

Proof: If v # 0 (mod 7), the Bose construction yields the desired QFSTS with
triples of the form {zo, 1,22} giving a parallel class. There is a QF ST S(21) that
has a parallel class of triples; one such is given by the starter blocks

{{0,1,3},{0,4,12},{0,6,11},{0, 7,14} }.

The parallel class is the “short orbit” {0, 7,14} mod 21.

Now suppose that v = 3 (mod 6), and that v = Tu. Then proceeding inductively
there is a QFSTS(u) B having a parallel class P on a u-set U. Let V = Z; x U.
For each T = {a,b,¢} € S\ P, 4,j € Zy, include the triple {(z,a),(4,b), (s + 5, ¢)}
(arithmetic mod 7). For each T' € P, take the triples of the Q@ F'ST'S(21) with parallel
class on Z; x T. It is easy to check that the result is a QF ST S(v) with a parallel
class. O

Subsequently, Grannell, Griggs and Phelan (1988) established that the Schreiber-
Wilson construction also yields @FSTS under certain restrictions. First we recall a
restricted form of the construction from Schreiber (1973) and Wilson (1974a) for the
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case when for every prime divisor p of n = v — 2 the order of —2 mod p is singly even.
To form an ST S(v), write n = v — 2 and choose an abelian group I' of order n with
binary operation @ and identity 0. Sincen = 1,5 (mod 6), I' has no elements of order
two or three. Now consider all triples of group elements {a,b,c} witha @ b® c = 0.
Let D be the set of such triples in which all three group elements are distinct, and let
T be those in which there are two distinct elements. Finally, let S be those containing
a single element; note that in I', a ® a & a = 0 has the unique solution a = 0, since I’
has no elements of order three. Thus S contains the single triple {0,0,0}.
Now to form a triple system (I' U {«, }}, B),

1. include all triples of D in B;

2. first replace every unordered pair {a, b} by the ordered pair (a,b) if aBa® b= 0,
and by (b, a) otherwise. Partition the pairs of 7 into orbits under the mapping
¢z 2 where 2@ 2/ @ 2" = 0 (if (a,b) € T, a = ¢(}b)). Now consider an orbit
of pairs of 7 under ¢. Under the stated restriction that for every prime divisor
p of n, the order of —2 mod p is singly even, each orbit of elements from 7 is
of even length. Suppose that the orbit has length 2k, and that the pair (a, b) is
in the orbit, add to B the triples {{a, ¢*(a), $***(a)}, {B, 6" (a), $**+?*(a)}}
for0 <z < k.

3. include the triple {a, 3,0} in B.

It is a somewhat tedious case analysis to verify that this system has no quadrilat-
erals, to obtain the theorem of Grannell, Griggs and Phelan (1988):

Theorem 4.20 Let py,...,p, be primes so that for 1 < i < s, —2 has singly even
order mod p;. Then there exists o QFSTS(2+[1i; p). O

Griggs, Murphy and Phelan (19917) and Stinson and Wei (19917) observe that
the direct product construction for triple systems does not introduce guadrilaterals:

Theorem 4.21 If there ezists a QF ST S(u) and a QFSTS(v), then there exists a
QF ST S(uv).

Stinson and Wei (19917) establish a second recursive construction:

Theorem 4.22 If there is a QFSTS(u), v =1 (mod 4), and u has an odd divisor
exceeding 8, then there exists a QF ST S(3u — 2).

Chee and Lim (1989) give cyclic QF ST S(v) for v € {31,37}.
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4.8 Work Points

1. Complete the proof of Conjecture 4.3; for n > 8, it remains to handle multi-
graphs with at least one repeated edge on n = 1 (mod 3) vertices.

2. Which graphs are neighbourhoods in simple T'S(v,A)’s? This is open for all
A>2

3. Find an infinite family of perfect Steiner triple systems, or prove that there are
only finitely many.

4. Characterize the quadratic multigraphs for which some triple system of index
two exists with every neighbourhood isomorphic to the specified one.

5. Determine the possible double neighbourhoods in a triple system of index two.

6. Determine the spectrum for quadrilateral-free Steiner triple systems. For v <
300, the following orders remain unresolved: 55, 79, 85, 103, 115, 127, 151, 157,
175, 187, 199, 223, 229, 247, 253, 259, 271, 295.

7. Prove Erdds’s conjecture: for every r, there exists an integer vo(r) such that if
v > vo(r) and v = 1,3 (mod 6), there is an STS(v) in which no set of j + 2
points carries j triples for 2 < j <.
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