














To obtain d(6, ... , 11) we now need only equate the coefficients of P6P7 ... Pu on both 

sides of (2.3) yielding 

d(6, ... ,11) {d(7, ... , 1116) + deS, ... , 11167) + d(9, ... ,1l1678)}, (2.4) 

where for example d(7, ... , 1116) is the coefficient of P7P8' .. PI] in {Sl' S2' S3} 

conditioned on the failure of component 6. Examination of the collection {S l' S2' S3} 

shows that when component 6 fails the pathsct S3 fails and so d(7, ... , 1116) is preciscly 

the coefficient d(7, ... , 11) for {Sl' S2}; this coefficient has already heen found to be-I. 

Similarly, when component 8 fails, the only viahle pathsct in {Sl' S2' S3} is Sl so that 

d(9, ... , 111678) is the same as d(9, ... ,11) in {SI}' previously found to he +l. 

When component 7 fails, the only viable pathset is Sl so that d(8, ... , 11167) = O. Using 

this information in (2.4) produces 

d( 6, ... , 11) == - {- 1 + 0 + I} = 0, 

meaning that P6P7 ... PIl does not appear in the reduced expansion for {St' S2' S3}' 

More generally, suppose that we are interested in the system S {Sl"'" Sj} 

where Sj l Pj , rj J and 1 :s; j :s; k. Then the coefficient d( Pj , ... , n) in the expansion of S 

can be found by repeatedly applying (2.1), yielding 

d(fj' ... , n) = - {d(fj + 1, ... , nlfj) + d(Pj + 2, ... , nlfj 

+ d(rj + 1, ... , nlfj' ... , �~�)�}�.� 

+ ... 
(2.5) 

Notice that the above relation provides a recursion over the components of However, 

as we have seen in the previous example, certain of the terms appearing on the right-hand 

side of (2.5) are automatically 0, while others are coefficients d(fi' ... , n) for certain 
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now he shnwn that the in fact he further 

SlIIlPll11C:d to smaller rather than 

components. 

To this end, it convenient hased on the structure of the 

ordered so that if i < j then It aSSlllm(~d that the 

arc PUt."."_,.,, none can contain another and so Ri ;x:' Rj for Rj . 

distinct i un.lt:~UtjWe: union corrcspl:m(jmg to each set 

Sj and has the 

union for the 

-1 o 

Of interest here are 

I' . 

certain coefficients in 

recursion 

u is consecutive 

~n) illustrate this construction, the consecutive 

shown in 

o -1 

2.3 

... , n) relative to the coefficients 

for i == 1, ... , k. and the fact that 

zero, it is "trQ'f1rhtfnrHI'.lrri to ohtain the 

virtue of 

129 



(2.6) 

2 ..... 

Notice that relation (2.6) involves a recursion over rather than over components as in 

(2.5). When applied to the examPle of 2.1 the recursion produces in turn the 

values x l' ... , x6 shown in that figure. In particular, the coefficient of PjP2' .. Pll in 

the inclusion-expansion for 8 must be -1, since -1. 

An inductive argument based on (2.6) can he used to show that all Xi {-I, 0, I}, 

giving thc promised result for the coefficients .. , n). Section 3 shows that from 

this result all noncancelling terms appearing in the reduced inclusion-exclusion expansion 

for 8 have coefficients ± 1 Rather than t1"'~('r'lhln" this inductive 

Section 3 an alternative representation for the coefficients that 

we will explore in 

demonstrates this 

result and provides additional insight into the occurrence or ± 1 coefficients. 

It should he emphasized that it is only the structure of the sets Sj captured in the 

consecutive union graph that has any bearing on the resulting inclusion-exclusion 

coefficients. That is, any two systems 8 1 and with U(Sl) = U(S2) have the same 

coefficients appearing on corresponding terms in their inclusion-exclusion expansions. A 

natural next question to ask concerns what directed graphs G can arise as the consecutive 

union graphs of consecutive systems. We now brietly discuss this characterization. 

Notice that if G (Y, E) is the consecutive union graph for a consecutive system 8, 

then 

(i, j) E E => (i, m) E E, i > m ~ j 

(i,j)EE => (m,j) E, j~m>j. 

This follows since the sets are ordered their left-hand endpoints, and so they are also 

that the sets of a coherent system must be ordered by their endpoints. 
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inc:onlp<:lralble with respect to inclusion.) if (i, j) and i m j, lhen 

so E. Also, if m j then r m + 1 2! r i + (m, j) E E. 

In other words, the vertices aUI"'<V'vH' from (or «'"11°"'0'" vertex in G must 

be consecutive. Moreover, the relevance of components ensures that (i, i I) E G for each 

i > 1 and so vertex > 1 to vertices i ., i . Thus, it suffices to 

prescribe the outde{!fe(~s 0 t > 1, completely G; of course, b ~ 0 always 

holds. It follows from (2.7) that the for i > I: 

1 :5 i- 1 
(2.R) 

+1. 

In fact. these conditions completely characterizc the consecutive union graphs. Therefore, 

the C010S(:cultiv'c union graphs G on k vertices determined those ou1lde~QTC:C 

sequences 

shows that the number of such 

namely, 

A but tedious calculation 

G on k vertices the (k - 1 )st Catalan number: 

l (2k 2) 
k:lk-l . 

For example, the oUlldeQH:e sequences for k = 4 arc shown in Table 2.1, and there 

are 1- (~) = 5 such sequences. 
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1 1 1 1 1 

] 2 2 

1 2 1 2 3 

Table 2.1 

3. Linear Viewpoint 

The recursion (2.6) provides rapid method for calculating the coefficient xi = 

d(l\, ... , n) in the system {Sl' ... , Sj}. In order to gain an increased understanding of 

the occurrence of -1,0, + 1 coefficients, the equations (2.6) will be rewritten as 

Xl == 1 

0+ 
1 

2: xi-r 0, i = 2, ... , k. 
r=O 

Equivalently this can be vicwed as the linear system Ax == el' in which A (aij) is a k x k 

unit lower matrix with aij == 1 if i - () t s j ::5 i (aij ° otherwise) and e1 == (1, 0, 

. Thus A = I + M, where M is the standard adjacency matrix for U(S). Notice 

that the coefficient matrix A has a very special form: it has consecutive 1 's in each row and 

in each column. Conscquently, the matrix A is totally unimodular (Nemhauscr and Wolsey 

1989), from which it directly follows that the solution x == (x l' ... , xk) T has components 

Xi E 0, +1}. 

Moreover, when viewed in the context of linear systems, the coefficients Xi can be 

applicd to the columns of A so that the resulting linear combination 

the unit vector e 1, Because each nonzero weight Xi is ± 1, we are seeking a 

set of columns of A whose sum yields 
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and 

(1, 1, . , 1, 0, ", of 

"n,p'{",ti,!P" set of columns of A 

c-- (0, -1, 

sum 

, -1, 0, ... , 0) T 

i 

The index k ind.icatcs the last position cuntalmng nonzero clement for both e+ and 

columns of A have the co!ns(;;culti\IC the 

comhination of columns to column in the 

combination to consecutive of 

off. ne'J:l11Vt~ combination 01 

columns that 

To capture the way the it is first 

convenient new row column to with 

] . thcn define the undirected 

column of this au~~m(;nt(x! matrix. An edge (i, j) whenever column j 

could follow column in the <>n,""rnnrt'.ltp combination: 

whenever j 1, where o~ is the Addition of the new 

row and column to ensures that each vertex i k + 1 has unique succc.,;'sor 

vertex L Thus is an undirected + 1. Moreover. as 

the lollo\vm~Y indicates, it the character of vl:rtcx 1 and 

vertex 2 that dekrmines the coefficient xk ... , n) in the 

system with components N {,.. ,n}. 
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THEOREM 3.1. Let P be 

the k + 1) if and only ifxk ¢ O. 

in 

IV"''''" 1L',cr in this 

Then path P contains 

xk (_l)IPI+l where IPI 

denotes the (number of edges) of path P. 

The proof is contradiction. 2)upp()se then that xk = 0 in the solution 

x to and let r he the position of the nonzero element occurring in hoth e+ and 

;on·CSfJOndmIJ.!: to e+ is a path P+ in T(A) connecting all the positive columns, corres-

ponding to columns with xi + 1 Likewise, P- dcnotes the connecting all the 

negative columns in the linear combination. There two possihilities for r. If r :0; k - 1 

then the last vertex on p+ and the last vertex on P- are connected to vertex r + 1 :0; k, so that 

vertex k + 1 not on the unique path P joining] and 2. If r k then the last vertex of P+ 

and the last of P- are connected to vertex k + 1. Since 0, neither P+ nor P-

contains vertex k, so that the path P joining and 2 docs not include vertex k. In either 

case, P cannot contain the edge (k, k + 1). 

If xk ¢ 0 then k must be the last vertex on P+ or P--. Suppose it is the last 

vertex on P+, so that xk = + 1. Let j be the last vertex on P . Then both j and k are joined 

to k + 1, whence the unique path P between 1 and 2 contains (k, k + 1). Moreover, 

because the + and - signs alternate in the linear combination = (x l' ... , X k), I P+ I == I P-I 

+ 1. A" a result, IPI IP+I + IP-I + 2 == 21P-1 + and so (_l)IPI+l = +1, as required. For 

the case when k is the last vertex on P-, we have xk -1. If j denotes the last vertex on 

P+, then both j and k connect to k + 1, whence P contains (k, k + 1). Moreover IP+I IP-I 

and IPI = + 2, so that (_l)IP!+l = -1, as required. 

While the tree T(A) has he en defined relative to the consecutive union graph U(S), 

it should be clear that T(A) can be constructed from S = {Sl' ... , Sk}' using the 

that (i, i + 1) is an edge of T(A) for each iI, ... ,k. Notice that b ~ 

counts the number of sets j > i, for which rj + 1 ?-: Pi' 
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Tb illustrate the construction ofT(A) T(8) and the application of Theorem 3.1, 

consider the consecutive system on components {l, .. ,6} with pathsets 

S4 {1,2} 

= {2, 3, 4} 

{3, 4, 5} 
(3.1) 

Sl 6}. 

The graph T(A) has k + 1 5 vertices and is shown in Figure 3.1. Since the path joining 

vertices 1 and 2 in T(A) does contain the edge 5) and has length 3, Theorem 3. J assures 

us that + 1 and so the term Pl P2' .. P6 appears with coefficient + 1 in the reduced 

inclusion-exclusion expansion of {Sl" ., S4}' 

Figure 3.1 

As a matter of fact, it is easy to derive other coefficients from the structure of T(A). 

Namely, the path joining j andj + 1 in T(A) determines the coefficient d(.t\, ... , rj) in the 

inclusion-exclusion of {Sj' ... , Sk} and hence {St' ... ,Sk}' We record this 

fact as the following generalization of Theorem 3.1; it is proved in the same manner, 

concentrating instead on the linear system Ax ej' 
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THEOREM Let P in Then path P 

contains the only O. Moreover, in this 

1ll illustrate this theorem, consider the system 8 in 1). the 

in does not contain then the term P1P2 ... Ps not appear in 

eXf;lanS,lOn of 8. in do contain the 

the in the inclusion-exclusion ex 1PaI1SI()n. 

The ahove result allows us deduce certain coefficients relative to the union of all 

components in In order to deduce the cocrncients relative to 

must he constructed for the system 

virtue of the structure the can constructed from the 

current ,-"'J'"''_d~'U.''' the two vertices and k + 1 into the new vertex k. For 

rooted tree shown in 

obtained 

Theorem 

in Figure 

in 

co;alesclng vertices 4 and in the aprlllc:atlcm of 

the terms -P2P)P4PS and +P2P3P4' 

obtain the tree of 

cOaleSCllng vertices and in 

from these latter two trees are for {Sl}' The terms 

+PSP6' resI)ecl.1velv Ut()getn(~r the current has accounted for 8 of the 9 

the reduced inclusion-exclusion eX1JanlSlClI1 of {Sl' .. , S4} in 

the analysis, an additional result is needed. 

and 4 

in 

Thus the construction has enabled the determination of coefficients 

u + 1, ... , v) of terms In.,nl'\I''"''' consecutive components. Any other term can be 

dc,:;ornpOSt~d into (maximal) sets each of which involves consecutive components. For 

example, the coefficient 5689) involves maximal consecutive sets Al = {1, 2, 

136 



6}, and 9}. The lOllUWlIlll theorem shows that any such coefficient can 

be determined from the coefficients for it'; sets in a mU!HllplI(~atllve fashion. 

(a) (b) (c) 

THEOREM 

Proof: It to consider 

This will be done induction on the of set We can 

assume that ... , k, .. , j} where the first set of the system S is given 

{I, ... , k}. Since the base is easy to estahlish, we assume that d(BC) ::: - d(8)d(C) 

holds for sets B of size less than k. By 

k 

d(AJA:c.) = - 2: d(m + 1, ... , j; A211 2 ... m - 1 m). 
m:::: 

Each sut)Sv:"telm on the by failed component m) is also a consecutive system, 

to which the inductive hypothesis can be applied, yielding 

k 

2: - d(m + 1, ... ,j)d(Az) 
m =1 
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-[ -± d(m + 1, ... ,j) l d(Az) 
m=l J 

where we have invoked (2.5). 

Since we have already established that d(Aj) E {-l, 0, I}, for Ai a consecutive set, 

Theorem 33 shows that every coefficient d(AIAz ... 1\) E {-l, 0, ]} as well. To 

complete the analysis of the example system (3.1), recall that we have earlier determined, 

via Theorem 3.2, the coefficients 

d(l 2) = + 1, 

d(23 4) =: + 1, 

4 5) +1, 

d(5 6) = +1. 

d(l 234) =-1, 

d(2345) -1, 

d(3 45 6) = -1, 

d(l 2 3 4 5 6) = + 1 , 

The only nonconsecutive set having a nonzero coefficient is {I, 2, so that 

del 256) = -d(12)d(5 6) =-1. 

Therefore, the reduced inclusion-exclusion expansion is precisely as given in (1.2). 

Discussion 

The of this paper has been to study the cancellation properties that occur 

upon the inclusion-exclusion principle to the palhsets of a coherent system. One 

motivalion this study is the groundbreaking work of Satyanarayana and Prabhakar 

( 1 who established a ± 1 property for the two-terminal reliability of directed graphs G, 

terms of the s-t The same cancellation phenomenon also occurs 

directed For example, Boesch et al. (1990) establish 
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the cOlTe~;pondlmg K-terminal which involves the 

G. 

The present work considers the more context of coherent and 

establishes property for consecutive turn 

and of 

"c(Jn~~cc:utllve k-out-of-n" types of consecutive systems in which 

In~lTe(jlel~tin'ln"hl·nn(Jthe~UII~uLullv~ 

is the directed which captures the L.~~'''lllHll mC:ldl:nc:e 

s. or 

the mclusa0I1-excluSllon eX1JaniSICIO can 

or 

should 

so each 

notion a that 

component that every row 

consecutive 

their ,vi'.-fHHIU cnclpo]mts lh this. suppose 

that u < f· u and so r m < also fi < 
J 

the coherence or S. The 

a row consecutive system, 

('h,.,,,nlnfT that the the 



We now briefly indicate how the results obtained for row consecutive systems 

be extended with modification to column consecutive systems. For a column 

consecutive system 8, let Iu bul, with au bu' denote the interval of such 

that Sj contains component u. It is convenient to order the components u E N {1, ... , 

n} the en(tpomts u v au;;:: avo Under this ordering of components, 

each set Sj consists of union of certain subintervals of N; let the first such subinterval 

cmltaininlg the smallest numbered consecutive components) be denoted l fj' rj ). Then the 

U(S) for the column consecutive system S is defined as before, 

hut relative this "first" subinterval: i.e., (i, j) is an ofU(8) ifi j and ri + 1 f j . 

defined, the cle'veloplment of the previous sections is 

the 1 property still holds and Theorems can be 

of the appropriate coefficients. 

of a column consecutive consider the system defined 

S·have 
J 

ordered so that sets CO]ntamlng 

r'nlmnnn,I'nt U occur COII1Sc:cutJv,elv The corresponding intervals Iu ::: [au' bu] are thus 

5], 

5J, 

12 [4, 

Is [3, 4], 

13 [4, 4], 

16 [2, 3], 

1], 19 ::;: [1, 

so that the sequence is nOlnincrc:aslllg. 

aSSOC]lm(~u with this system is shown in Figure 4.1, with the 

then the 

tree derived from system. 

COflCilldc that Xs 0; moreover, this 

Since the 3-4, 4-5, and 

The 



prrlc!uces the additional apr>licatirm of Theorem 

-PIP2P3P4PS' and +P1P2P4' n~snIY:lIvelv 

·-1 o -1 

4.1 

Figure 4.2 
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