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Abstract

The principle of inclusion and exclusion has been applicd to numerous arcas of
discrete and combinatorial mathematics. One manifestation of this principle oceurs in
expressing the probability of the union of events E, E,, ..., Ey as an alternating sum of
probabilities of various intersections of these events. I the constituent cvents are them-
selves sufficiently well structured, then predictable cancellation occurs in this expansion.
We discuss the special case in which each of the underlying sets is “consecutive”: namely,
its elements are consecutive integers. For such consecutive systems the inclusion-
exclusion expansion assumes a particularly simple form, in which all reduced coefficients
in the expression equal = 1. Moreover, the appropriate sign of cach noncancelling term is
dictated by the length of a certain path in a graph derived from the incidence structure of the

given sets.

1. Iatroduction

To motivate the subsequent discussion, consider the problem of sending a message
from one specified vertex s to another specified vertex t in a communication system delined
by the directed graph G = (V, E). Edges ¢ € E arce known to fail randomly, and indepen-
dently, with probability g, = 1 — p,; that is, p, represents the edge reliability or edge

availability at a random instant. A fundamental problem in stochastic network analysis
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involves calculating the two-terminal reliability R (G) of G: namely, the probability that at
a random instant there is an available s-t path in.G.

One approach to calculating R, (G) requires first enumerating the simple s-t paths
P, Py ..., P ofG. Let Ej denote the event in which all edges in path Pj are operating.
By independence, Pr [Ej] =[l{pse € Pj} is easy to calculate. Then the two-terminal

reliability R, (G) can be expressed as
R (G) = PriE, UE, U -+ - UE]

Application of the inclusion-exclusion principle yields

R (G) = EPr{Ei] - EPY[EiEj} bt (—1)kH Pr(EE, - - - E,]. (1.1)

i<j

By indcpendence each individual term of (1.1) is easy to calculate; however there are 2k 1
terms to calculate in the expression.
For example, in the graph of Figure 1.1, there are four simple s-t paths, identified

by their edge sets:
P: 1-5, Py 2-6, Py 1-3-6, P, 2-4-5.
I p; indicates the reliability of edge i, then application of (1.1) yields

R (G) = Pr{E, U+ UE,]
= PyP5 *+ PaPe + P1P3Pe t PoPaPs — P1P2PsPs — P1P3PsPe
~ PPpP4P5 — P1P2P3Pgs — PoP4PsPg + P1P2P3PsPs T P1P2PaPsPe
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Notice that only 11 terms 0f the 15 possible terms appear in this expression. In particular,
the two terms producing —p; pop3pP4PspPg cancel the two terms producing +p paPaP4PsPe

A more dramatic illustration of this phenomenon is illustrated by the graph of Figure 1.2, in
which there are 70 simple s-t paths and thus 270 — 1 = 102! terms potentially appearing in
(1.1). However, after appropriate cancellation has been carried out, the reduced inclusion-
exclusion expression involves only 34,983 terms. Morcover, cach term appearing in this

reduced expression has a coefficientof = 1.

Figure 1.1

The phenomenon of cancellation was first studied by Satyanarayana and Prabhakar
(1978), who showed that this = 1 property holds for R, (G) in any dirccted graph G.
Furthermore, noncancelling terms of the expansion (1.1) correspond to certain acyclic
subgraphs H of G, and the reduced coefficient for H in the expansion is precisely
(-DIEEIVEI+L where | E(H)| and | V(H)] refer, respectively, to the number of edges

and vertices of subgraph H.
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Figure 1.2

The two-terminal reliability of a graph provides one example of the more general
notion of the reliability of a coherent system. Let N = {1,2,..., n} denote a set of
components, cach of which fails independently; g; = 1 — p; designates the failure prob-
ability of component i. In addition, a structure function @ is defined on subsets X C N,
with ®(X) = 1 if the system operates when all components of X operate and all compo-
nents of N — X fail, and ®@(X) = 0 otherwise. In a coherent system, the structure function
is monotone: X €Y = ®(X) = ®(Y). That is, repairing a failed component in a coherent
system cannot degrade the overall performance of the system. A coherent sysiem is
completely described by its minimal operating sets (or pathsets): namely, minimal sets
S € N such that ®(S) = 1. It is also assumed in a coherent system that each component i
appears in some pathset S; that is, component i is “relevant” to the operation of the system.
The fundamental problem for a coherent system is to caleulate its overall reliability Rg,. Let

the system have pathsets 5, S,, . . ., Sy, and let E}- denote the event in which all
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components of pathset Sj operate. Also let the event that the system as a whole operates be

denoted by Eg,. Then the overall reliability of the system is given by

R = Pr[Eg] = Pt[E, UE, U - - - UE,].

In this more general setting, the question again arises of when there is signilicant
cancellation in the inclusion-exclusion expansion for Ry, As a lirst example, consider the
coherent system on N = {1, ..., 4} defined by the pathseis Sy = {1, 2, 4}, S, = {2, 3},
and Sy = {1, 3, 4}. Then application of (1.1) yiclds

R = P1PaPs + PoP3 + PiP3P4 — 2P PaP3Dy-

In this case, the reduced form for R g contains a coefficient other than = 1, so this does not
qualify in our view as significant cancellation.
On the other hand, for the system with components N = {1, ..., 6} and pathscts

S1 = {1, 2}, 82 = {2, 3, 4}, S3 = {3, 4, 5}, and 84 = {5, 6}, the reduced form of (1.1) is

Rg = piPy + PaP3Py + PaPaPs + PsPs — P1P2PaP4
= P1P2PsPg ~ P2P3P4Ps — P3PaPsPg + P P2P3PaPsPe:

This latter system has all reduced coefficients in (1.2) equal to = 1, with only 9 of the 15
possible terms appearing. Systems such as this, whose pathsets display a certain type of
consecutive structure, will be the focus of the present paper. Section 2 delines such
consecutive systems and establishes certain [undamental relations for the coeflicients of its
inclusion-exclusion expansion. In Section 3, the =1 property is shown to hold lor

consecutive systems and an interpretation is provided for the occurrence of 0, +1, -1
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coefficients in the expansion (1.1). A generalization of these results to column consecutive

systems is briefly outlined in the final section.

2. Consecutive Systems

Suppose that (N, S) is a coherent system given by components N = {1, 2, ..., n}
and pathsets § = {S, S,, . . ., S, }. The system (N, 8) is called consecutive if each set
S}» contains clements consecutively appearing in N. That is to say, each Sj canbe
represented as the interval ['lj, fj,] ={iEN: fj <i= rj}. Our main result will be to show
that the = 1 property holds for consecutive systems and to provide a graph-theoretic
interpretation of the significance of these signed coefficients.

It will suffice to study the values of particular coefficients occurring in the
expansion (1.1) for a consecutive system 8. Namely, let d(i, i + 1, . . ., n) denote the
coetlicientof pip;, - + - p, in the reduced inclusion-exclusion expansion for S. The basic
tool for calculating these coefficients derives from the theorem of total prf)babi lity (Feller
1968), applied to the two states assumed by component m — cither working (indicated by

the event m) or failed (indicated by the event m):
Pr[By] = (1 - pyy) PrEglm] + p,, Pr[Eg|m]. 2.n

Equation (2.1) will now be applied repeatedly to express the coefficient d(i, i+ 1, ..., n)
in terms of similar coefficients occurring in related systems.

Before indicating the general result, we first illustrate using the consecutive system
(N, §) defined by components N = {1, ..., 11} and pathsets S = {5+, Sg}

described as follows:
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Sg = {1, 2,3}
Ss = {3, 4,5. 6}
Sy =1{4.5,6,7)
, (2.2)
S, = {6, 7, 8}
S, ={7.8,9}
S, = {9, 10, 11}

The reason {or this numbering scheme will soon become apparent. For the system S},
the inclusion-exclusion expansion gives one term +pgpgpy; 0 that d(9, ..., 11} = +1 in

{Sy}. For the larger system {S,, S,}, Ry, is given by pypgpg + PoP gDy — P7PgPoP 0P 1
so that d(7, ..., 11) = =1 in {S|, S,}. To determine the coetlicient d(6, ..., 11) for the

system {S;, S,, S;} we apply (2.1) o the first component (6) of set Sy
Yy 1 O O3 ppiy p 3
Ry = (1-pg) Pr{E 6] + pg Pr{E, |6].

We can now apply (2.1) to the final quantity Pr{E|6] above, relative to the sccond

component (7) of S5
Pr{Eg|6] = (1 - py) Pr{Ey,[67] + py Pr{Eg,[67].

Finally, the application of (2.1) to Pr[E,[67] relative to component 8 of Sy yiclds
Pr[Eq|67] = (1 - pg) Pr{Eq,|678] + pg Pr| Eg,[678).

Combining the above three equations and using Pr{E,[678] = 1 yiclds

Ry = (1=pg) Pr[Eqg|6] + pg(l — py) Pr|Eg |67

+ pepy(1 = pg) Pr{Eq, |678] + pepopg-
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To obtain d(6, . . ., 11) we now need only equaie the coetficients of pgps - - - p;; on both

sides of (2.3) yielding

A6, ... A1) =~ {d(7, ..., 11[8) + d(8, ..., 11|67) + d(, ..., 11]|678)},  (2.4)

where for example d(7, . . ., 11]6) is the coetficient of P7Pg - - Pyy in {S;, S, S3}
conditioned on the failure of component 6. Examination of the collection {S,, S,, S5}
shows that when component 6 fails the pathset Sq fails and so d(7, . . ., 11 |6) is precisely
the coetlicient d(7, . . ., 11) for {S;. S,}; this coeflicient has already been [ound to be ~1.
Similarly, when component 8 fails, the only viable pathset in {S, S5, S5} is 5, so that
d(9, ..., 11|678) is the same as d(9, . . ., 11) in {5} previously found io be +1.

When component 7 fails, the only viable pathset is S; so that d(8, . . ., 11]67) = 0. Using

this information in (2.4) produces

A6, ..., 1)y =={-1+0+1} =0,

meaning that pgp4 - - - py; docs not appear in the reduced expansion for {S;, §,, S3}.
More generally, suppose that we are interested in the system S = {S, . . ., Sj}

where Sj = [[j’ T Jand 1 <j=<k. Then the coefficientd(#;, . . ., n) in the expansion of S

can be found by repeatedly applying (2.1), yielding

dce

i,...,n)=-{a(fj+1,...,nl?j)m(ej+2,...,;~1|szjT1)+...

. (2.5)
+d(r; + 1,...,n[£’j, ce ri)}.

Notice that the above relation provides a recursion over the components of Si' However,
as we have seen in the previous example, certain of the terms appearing on the right-hand
side of (2.5) are automatically 0, while others are coeflicients d(4,, . . ., n) for certain
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subsystems & © 8. It will now be shown that the refation (2.5) can in fact be further
simplified to a recursion over a smaller number of objects: namely, over sets rather than
components.

To this end, it is convenient to define a directed graph based on the structure of the
given sets Si’ e Sk‘ It is assumed that the sets Sj are ordered so that if i < j then Zi >
Zj' (Notice that since the sets S}- arc pathsets, none can contain another and so Z; » ZJ- tor
distinct i and j.) The consecutive union graph U(S) has a vertex j corresponding to cach set
SJ and has the directed edge (i, j), i > J, it 5; U Sj is a consecutive set: e, 1+ 1 = Zj. The
outdegree of vertex i in U(S) is denoted 0:' To illustrate this construction, the consecutive

union graph for the system (2.2) is shown in Figure 2.1.

P

Figure 2.1

Of interest here are the specific coefficients x; = d(£,, . . . | n) relative to the
subsystem {S;. ..., 5} &€&, fori=1,..., k By virtue of (2.5) and the [act that
certain coefficients in (2.5) are automatically zero, it is straightforward to obtain the

recursion
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i (2.6)

Notice that relation (2.6) involves a recursion over sets, rather than over components as in
(2.5). When applied to the example of Figure 2.1, the recursion produces in turn the
values x, . . . , Xgshown in that figure. In particular, the coefficient of pyp, - -+ pyq in
the inclusion-expansion for S must be -1, since x, = —1.

An inductive argument based on (2.6) can be used to show thatall x; € {~1, 0, 1},
giving the promised result for the coetficients d(4,, . . ., n). Section 3 shows that from
this result all noncancelling terms appearing in the reduced inclusion-exclusion expansion
for & have coefficients = 1. Rather than describing this inductive proof, we will explore in
Section 3 an alternative representation for the coetlicients that quickly demonstrates this
result and provides additional insight into the occurrence of =1 coefficients.

It should be emphasized that it is only the structure of the sets Sj captured in the
consecutive union graph that has any bearing on the resulling inclusion-exclusion
coefficients. That is, any two systems 8, and S, with U(S;) = U(S,) have the same
coefficients appearing on corresponding terms in their inclusion-exclusion expansions. A
natural next question to ask concerns what directed graphs G can arise as the consecutive
union graphs of conscculive systems. We now briefly discuss this characterization.

Notice that if G = (V, E) is the consecutive union graph for a consecutive system S,

then

GLHYEE = ((,mEE, i>mz]
GLHDEE = (M PEE, izm>|.

(2.7)

This lollows since the sets are ordered by their left-hand endpoints, and so they are also

ordered by their right-hand endpoints. (Recall that the sets of a coherent system must be
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incomparable with respect to set inclusion.) Consequently, if (i, ) €E and i > m = j, then
r+ 1= ZJ- = £ .50 (i, m) €EE. Also,ifizm>jthenr +1zr +1 2£’j, so (m, j) €E.
In other words, the vertices adjacent from (or adjacent to) a given vertex in G must
be consecutive. Moreover, the relevance of components ensures that (i, i— 1) €G for cach
i>1andsoveriex i > | is adjacent to verticesi—-1,...,i— 6;' Thus, it suffices to
prescribe the outdegrees 6;, i> 1, to completely specify G; of course, 6? = 0 always

holds. It follows from (2.7) that the outdegrees bf satisty, for i > I:

1= 6:5 i-1
(2.8)

+ L
O, =0/ + 1

In fact, these conditions completely characterize the consecutive union graphs. Therelore,

the set of consecutive union graphs G on k vertices is determined by those outdegree

sequences é;, 6;, N 6; satisfying (2.8). A straightforward but tedious calculation

shows that the number of such graphs G on k vertices is the (k — 1)st Catalan number:

namely,

For example, the possible outdegree sequences for k = 4 are shown in Table 2.1, and there

L¢6
are (;) = 5 such sequences.
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+

63 1 1 2 2 2

+

oyl 1 2 1 2 3
Table 2.1

3. Linear Algebraic Viewpoint

The recursion (2.6) provides a rapid method for calculating the coefficient x; =
d(¢,, ..., n)inthe system {S,, ..., S;}. Inorder to gain an increased understanding of

the occurrence of -1, 0, +1 coefficients, the equations (2.6) will be rewritten as

Equivalently this can be viewed as the linear system Ax = ¢, in which A’:: (aij) isakxk
unit lower triangular matrix with 3 = lifi— 6?53' <1 (aij = 0 otherwise) and ¢; = (1, 0,
.., 0T Thus A = I+ M, where M is the standard adjacency matrix for U(S). Notice
that the cocfficient matrix A has a very special form: it has consecutive 1’s in each row and
in each cotumn. Consequently, the matrix A is totally unimodular (Nemhauser and Wolsey
1989), from which it directly follows that the solution x = (xy, . . ., xk)T has components
satisfying x; € {~1, 0, +1}.

Moreover, when viewed in the context of linear systems, the coefficients x; can be
regarded as weights applied to the columns of A so that the resulting linear combination
produces the unit vector e,. Because each nonzero weight x; is =1, we are secking a

“positive” set of columns of A whose sum yields
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et=(,1...,,0....07

and a “negative” set of columns of A whose negated sum yields

e =(0,-1,...,-1,0,...,0L
1

T

The index r < k indicates the last position containing a nonzero element for both et and ¢

Because the columns of A have the consecutive 17s property, the only way of
achieving a positive combination of columns to produce et is for each column in the
combination to have its consecutive 1 entries begin where the consecutive 1 entries of its
predecessor column leave off, A similar remark applies to the negative combination of
columns that yields e™.

To capture the way the positive (or negative) columns fit together, it is first
convenient to append a new row and column to A with the only nonzero entry being
841 k1 = 1. We then define the undirected graph T(A) by associating a vertex with cach
column of this augmented matrix. An edge (i, j) is placed in this graph whenever column j
could follow column i in the appropriate positive (or negative) linear combination: namely,
whenever j =i+ 8+ 1, where &, is the indegree of vertex i in U(S). Addition of the new
row and column to A ensures that each vertex i € T(A), i = k + 1, has a unique successor
vertex j =i+ 0+ 1. Thus T(A) is an undirected tree, rooted at vertex k + 1. Morcover., as
the following result indicates, it is the character of the (unique) path joining vertex 1 and
vertex 2 in T(A) that determines the coefficient x, = d(#y, ..., n) = d(l, ..., n) in the

system S = {S, ..., §;} with components N = {1, ..., n}.
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THEOREM 3.1: Let P be the path joining | and 2 in T(A). Then path P contains
the edge (k, k + 1) if and only if x, = 0. Moreover, in this case x, = (—~1)|P|Jrl where |P|

denotes the length (number of edges) of path P.

Proof: (=) The proof is by contradiction. Suppose then that x, = 0 in the solution
x 10 Ax = ¢, and let r be the position of the last nonzero clement occurring in both ™ and
e, Corresponding to e is a path P* in T(A) connecting all the positive columns, corres-
ponding to columns i with x; = +1.  Likewise, P~ denotes the path connecting all the
negative columns in the linear combination. There are two possibilities forr. r=k -1
then the last vertex on P* and the last vertex on P~ are connected to vertex r + 1 <k, so that
vertex k + 1 is not on the unique path P joining 1 and 2. If r = k then the last vertex of P*
and the last vertex of P~ are connected to vertex k + 1. Since x, = 0, neither P* nor P~
contains vertex k. so that the path P joining 1 and 2 does not include vertex k. In either
case, P cannot contain the edge (k, k + 1).

(<) If % = 0 then k must be the last vertex on P* or P". Suppose it is the last
vertex on P*, so that x; = +1. Let j be the last vertex on P™. Then both j and k are joined
10 k + 1, whence the unique path P between 1 and 2 contains edge (k, k + 1). Moreover,
because the + and —signs alternate in the linear combination x = (x, - . ., xp), [P*[ =[P~
+1. Asaresult, [P|=[P*]+|P7|+2=2|P7| + 3, and s0 (~DIPHL = 41, as required. For
the case when k is the last vertex on P~, we have x; = —1. If j denotes the last vertex on
P*, then both j and k connect to k + 1, whence P contains (k, k + 1). Moreover |P*| =[P~
and |P| = 2|P~| + 2, so that (~DIP#! = 1 as required.

While the tree T(A) has been defined relative to the consecutive union graph U(S),
it should be clear that T(A) can be directly constructed from S = {Sq, . . ., S}, using the
prescription that (i, i + 0.+ 1) is an edge of T(A) foreach i = 1,. .., k. Notice that 0,
simply counts the number of sets Sj,j > i, for which r; + 124,
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To illustrate the construction of T(A) = T(S) and the application of Theorem 3.1,

consider the consecutive system on components {1, ..., 6} with pathsets
S, ={1,2}
Sy =42, 3,4}
3.1
S, = {3, 4,5}
S, = {5, 6}.

The graph T(A) has k + 1 = 5 vertices and is shown in Figure 3.1. Since the path joining
vertices 1 and 2 in T(A) does contain the edge (4, 5) and has length 3, Theorem 3.1 assures
us that x4 = +1 and so the term p;p, - - - ps appears with coeflicient +1 in the reduced

inclusion-exclusion expansion of {Sy, . . ., S4}.

(O—®)
O—CE—0)

Figure 3.1

As a matter of fact, it is easy to derive other coefficients from the structure of T(A).
Namely, the path joining j and j + 1 in T(A) determines the cocfficient d(4,, . . ., rj) in the
inclusion-exclusion expansion of {S, . . ., §;} and hence {S, . .., S;}. We record this
fact as the following generalization of Theorem 3.1; it is proved in the same manner,

concentrating instead on the linear system Ax = €
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THEOREM 3.2: Let P be the path joining j and j + 1 in T(A). Then path P
contains the edge (k, k + 1) ifand only if d(¢,, . . ., rj) = 0. Moreover, in this case

At o1 = (~DIPRL

To illustrate this theorem, consider again the system § in (3.1). Since the 2-3 path
in T(A) does not contain edge (4, 5), then the term pyp, - * - ps does not appear in the
expansion of 8. However, the 3-4 and 4-5 paths in T(A) do contain the required edge,
yielding the terms —p;p,pspy and +pyp, in the inclusion-exclusion expansion.

The above result allows us to deduce certain coefficients relative to the union of all
components in sets {Sj, .+ oy S} Inorder to deduce the coetficients relative to (say)

S.,....S, .} anew T(A) must be constructed for the system {S, ..., 5.} B
k-1 y 1 k-1 y

i
virtue of the structure (2.7) of U(S), the new T(A) can be constructed directly from the
current T(A) by simply coalescing the two vertices k and k + 1 into the new vertex k. For
example, the systern {S;, S5, Sy} in (3.1) has the rooted tree shown in Figure 3.2(a),
obtained by coalescing vertices 4 and 5 in Figure 3.1, Consequently, the application of
Theorem 3.2 produces the terms —p,p3paps and +p,psp,. By coalescing vertices 3 and 4
in Figure 3.2(z), we obtain the tree of Figure 3.2(b), appropriate for the system {8, S,}.
Likewise, coalescing vertices 2 and 3 in Figure 3.2(b) produces Figure 3.2(c), appropriate
for {S;}. The terms arising from these latter two trees are —pspypspg and +pspyps, and
+PsPg, Tespectively. Allogether the current analysis has accounted for 8 of the 9 terms in
the reduced inclusion-exclusion expansion of {Sy, . .., S;} given in (1.2). To complete
the analysis, an additional result is needed.

Thus far, the construction of T(A) has enabled the determination of coefficients
d(s,u+ 1,....v)of terms involving consecutive components. Any other term can be
decomposed into (maximal) sets A;, each of which involves consecutive components. For

example, the coefficient d(1 2 3 5 6 8 9) involves maximal consecutive sets Ay = {1, 2, 3},
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= {5, 6}, and A, = {8, 9}. The following theorem shows that any such coefficient can
3 g y

be determined from the coefficients for its sets A; in a multiplicative fashion.

(D—) O—0

(a) (0) (©

Figure 3.2

THEOREM 3.3: d(A,A, - - - A) = (1) 1d(ADd(A,) - - - d(A).

Proof: Tt suffices to consider sets A and A, and show d(A | Ay) = — d(A|)d(A,).
This will be done by induction on the size (number of components) of set A;. We can
assume that Aq = {1, ..., k, ..., j} where the first set of the system § is given by
{1, ..., k}. Since the base casc is easy to establish, we assume that d(BC) = - d(B)d(C)
holds for sets B of size less than k. By (2.5),

k
dAA) == 3 dm+ 1. Al12- - m= 1 ).

m=1
Each subsystem on the right (defined by failed component m) is also a consecutive system,

to which the inductive hypothesis can be applied, yiclding

k

d(AAy) =~ 2 —d(m+ 1,..., DdA)

ms=1
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k
==l = S dm+ L) [dAy)

m=]1

=~ d(A (A,

where we have again invoked (2.5).

Since we have already established that d(A)) € {~1, 0, 1}, for A, a consecutive set,
Theorem 3.3 shows that every cocfficient d(AA, - - - A) € {~1, 0, 1} as well. To
complete the analysis of the example system (3.1), recall that we have earlier determined,
via Theorem 3.2, the coelficients

d(l 2) = +1, d1234)=-1, d(123456)=+1,
d(23 4) = +1, d2345)=-1,
d(3 45 =+1, d3456)=-1,
d(5 6) = +1.
The only nonconsecutive set having a nonzero coefficient is {1, 2, 5, 6} so that

d(1256)=—d(1 2)d(5 6) = ~1.

Therefore, the reduced inclusion-exclusion expansion is precisely as given in (1.2).

4. Discussion

The objective of this paper has been to study the cancellation propertics that occur
upon applying the inclusion-exclusion principle to the pathsets of a coherent system. One
motivation for this study is the groundbreaking work of Satyanarayana and Prabhakar
(1978), who established a = 1 property for the two-terminal reliability of directed graphs G,
when expressed in terms of the s-t paths. The same cancellation phenomenon also occurs

for K-ierminal reliability in directed graphs. For example, Boesch et al. (1990) establish

138



the corresponding K-terminal result, which again involves certain acyclic subgraphs of the
original graph G.

The present work considers the more general context of coherent systems and
establishes a complementary =1 property for consecutive systems S. This result in turn
generalizes the work of Kossow and Preuss (1989) which examines the case of
“consecutive k-out-of-n” systems, special types of consccutive systems in which every
pathset Sj has the same cardinality. A key ingredient in analyzing the consecutive system &
is the directed graph U(S), which captures the essential incidence structure of the given sets
Sj € 8. Interestingly enough, we have seen that methods for calculating the coellicients of
the inclusion-exclusion expansion can be based on cither the outdegrees of vertices in U(S)
or on their indegrees.

The consecutive systems considered here should more preciscly be called row
consecutive systems. That is, the components of such a system can be ordered so that cach
sel consists of consecutively numbered components. Alternatively, one could consider the
notion of a columin consecutive system, in which the sets can be ordered so that cach
component occurs in consecutively numbered sets. It can be seen that every row
consecutive system is a column consecutive system; in fact the ordering of sets Sj = {Zj, g |
by their left-hand endpoints !E’j places the sets in the required order. To verily this. suppose
thatu €5, and u & Sj, but u & Sy, fori>m>j. Then < é’j = uand 80 1y < u; also £ <
£ andr <u=rt. Thisimplies S C S, contradicting the coherence of . The
following system is a column consecutive system but is not a row consecutive system, -

showing that the former concept is indeed more general than the latter.

Ss=11.2,4}
Sy=1{2.3.4,5}

Sy = {4, 5, 6} (4.1
S, = {6, 7,9}
Sy =17,8,9}
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We now briefly indicate how the results obtained for row consccutive systems can
be extended with slight modification to column consecutive systems. For a column
consecutive system &, let I = [a,, b |, with a = b, denote the interval of indices j such
that Sj contains component u. It is convenient to order the componentsu €N = {1, ...,
n} by the endpoints a: namely, u < v => a, = a,. Under this ordering of components,
cach set Sj consists of a union of certain subintervals of N; let the first such subinterval
(containing the smallest numbered consecutive components) be denoted [Ey rj]. Then the
consecutive union graph U(S) for the column consecutive system S is defined as before,
but relative to this “first” subinterval: i.e., (i, ) is an edge of U(S) if i > jandr; + 1 = fj.
Once the graph U(S) has been so defined, the development of the previous sections is
directly applicable. In particular, the = 1 property still holds and Theorems 3.1-3.3 can be
cmployed to deduce the signs of the appropriate coefficients.

To illustraie the case of a column consecutive system, consider the system defined
by (4.1). Notice that the sets Sj have been ordered so that sets containing a given

component v oceur consecutively. The corresponding intervals [, = [a, b ] are thus

L =15, 5], L =[45], I = [4, 4],
Iy = [3, 5], Is = [3, 4], Ig = [2, 3],
I»]:: !L 2;’ IS:: [1, ]], _Ig..‘:[l’ 2],

The components u have been numbered so that the sequence {a } is nonincreasing. The
graph U(&) associated with this system is shown in Figure 4.1, together with the
coefficients X;- Since, for example, x5 = ~1 then the term ~p p,y « + + pg occurs in the
simplified inclusion-exclusion expansion of (4.1).

Figure 4.2 shows the tree T(S) derived from this system. Since the 1-2 path in the
iree contains edge (5, 6), we conclude that x5 = 0; moreover, this path has length 4 and
Theorem 3.1 gives x5 = -1, as expected. Since the 3-4, 4-5, and 5-6 paths in T(S) contain

4o



edge (5, 6), application of Theorem 3.2 produces the additional terms +p;pspspP4PsPg;

~PyP2P3P4Pss and +ppypys respectively.

Figure 4.1

O—O—G
O—O—O
Figure 4.2
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