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ABSTRACT

This paper discusses critical sets for latin squares. We give the cardi-
nality of the minimal critical set for a family of latin squares and for
latin squares of small order.

A lotin square L of order n is an n x n array with entries chosen from a set
of size n such that each entry occurs precisely once in each row and column. For
convenience, we will sometimes talk of the latin square L as a set of ordered triples
(7,7,k) and read this to mean that entry 7 occurs in position (j,k) of the latin
square L. If I contains an s x s subarray § and if § is 2 latin square of order s,
then we say that S is a latin subsquare of L. A latin square is said to be reduced
or in standard form if in the first row and first column the entries 1,2,...,n occur
in natural order. Let P be an n X n array with entries chosen from a set of size
n in such a way that each entry occurs at most once in each row and at most
once in each column. Then P may contain a number of empty cells and is said
to be a partial latin square of order n. Two latin squares L and M are said to be
isotopic or equivalent if there exists an ordered triple (o, 8, 7), of permutations,
such that «, B, ¥ map the rows, columuns, and entries, respectively, of L onto M.
That is, two latin squares are isotopic, if one can be transformed onto the other
by rearranging rows, rearranging columns and renaming entiries. If we represent L
and M by their quasigroups, then the equivalent definition for quasigroups is given
as follows. Let (L,0) and (M, *) be two quasigroups. An ordered triple (a, §, v)
of one-to-one mappings a, f, v of the set I onto the set M is called an isotopism
of (L,0) upon (M, x*), if (za)* (yf) = (zoy)y for all z,y in L. The quasigroups
(L,0) and (M, *) are then said to be isotopic. Two latin squares (quasigroups) are
said to be tsomorphic if the permutations «, f, -y are equal. (For more details see
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i3] pages 23 and 124.) It follows from the definition of isotopism that every latin
square is isotopic to a reduced latin square.
A critical set in a latin square L, of order n, is a set 4 = {(1,7,k) | 1,5,k €
{1,...,n}} such that:
(1) L is the only latin square of order n which has entry 4 in position (j, k)
for each (1,7,k) € 4;
(2) mno proper subset of A4 satisfies (1).
A minimal eritical set of a latin square L is a critical set of minimum cardinality.

Tor example, the latin square given below (on the left} has a minimal critical set
{(1,1,1),(2,1,2),(4,2,3),(2,3,4),(3,4,2)}.
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Two critical sets 4 and B are said to be isotopic if there exists an ordered triple
of permutations (v, &, B) which maps the entries of A onto B. That is, 7 maps
the first co-ordinate of an element of 4 onto the first co-ordinate of an element of
B, and « and § map the second and third co-ordinates, respectively. The sets A
and B are isomorphic if the permutations «, £, and -y are equal.

Critical sets have a number of applications. They arise naturally in agricultural
research and have applications in cryptography as given by Seberry [6]. They have
been studied by Colbourn, Colbourn and Stinson {1}, Curran and van Rees [2],
Nelder [4! and [5], Smetaniuk [7] and Stinson and van Rees [8]. Curran and van
Rees gave the cardinality of a minimal critical set for certain latin squares of orders
1, 2,3, 4 and 5, as well as an upper bound on the size of a minimal critical set
for a certain class of latin squares. We extend the results on critical sets for latin
squares of small order, and go on to give the cardinality of a critical set for a {family
of latin squares. In addition, we establish lower bounds for infinite classes of latin
squares.

Let L be a latin square based on the set N of order n. Let L contain a critical set
C. The set C is said to be a strong critical set if there exists a set {P1,...,Pn} of
m = n?—|C| partial latin squares, of order n, which satisfy the following properties:

(1) C=P CPC-CPnu CPnClL

(2) For any i, 2 < i < m, given P; = P;y U{(r,s,t)}, then the set F;_; U

{(+',s,t)} is not a partial latin square for any ' € N\{r}.

We have computed, by hand or by computer, strong critical sets of minimum
cardinality for all non-isomorphic reduced latin squares of order less than or equal
to 5 and for a latin square of order 8. These latin squares have been taken from
Dénes and Keedwell [3] page 129 onwards. We summarise our results in Table
1. Note that we have used the numbering system listed by Dénes and Keedwell
to distinguish the various latin squares. This numbering system is based on the
isomorphism classes of the latin squares and is explained in detail on pages 128
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and 129 of [3]. These numbers are listed as the class representation and are given
in column two of Table 1. Examples of strong critical sets of minimum cardinality
for each latin square are given in the Appendix.

TABLE 1: STRONG CRITICAL SETS FOR LATIN SQUARES

Order Class Minimum  Number of non-isomorphic strong
representation cardinality critical sets of minimum cardinality
1 0 0
2 1.1.1 1 1
3 1.1.1 2 1
4 1.1.1 5 1
2.1.1 4 1
5 1.1.1 6 1
2.1.1 7 >3
2.1.2 7 >3
2.1.3 7 >3
2.1.4 7 >3
2.1.5 7 >3
6 111 9 1
3.1.1 >9
4.1.1 >9

Let L be a latin square in which the rows and columns are indexed by
N = {0,1,...,n — 1}, with n > 1. L is said to be a back circulant latin square,
if the entry in position (¢,7) is the integer i + j(modulo n). Curran and van Rees
[2] showed that the cardinality of a minimal critical set, for a back circulant latin

square, is less than or equal to n? /4, if n is even, and less than or equal to (n?~1)/4,
if nisodd. :

Lemma 1 (Curran and van Rees [2]).

(1)

(2)

A back circulant latin square, of even order, is the only latin square which
contains the set C = {(i +7,%,7) | j =n/2,n/2+1,...,n — 1~ and
i=0,1,...,n/2 - 1}U{(m—i+jn—ij)|j=6i+l,. ..,n/2-1
andz=1,2,...,n/2~1}, where addition of the first component is taken
modulo n. The cardinality of this set is n? /4.

A back circulant latin square, of odd order, is the only latin square which
contains the set C = {(t +7,4,7) |7 = (n+1)/2,(n +1)/2+1,...,n —
l1-iandi=0,1,...,(n-1)/2-1}U{(n -2+ 4,n—1,7)|J =1ii+
1,...,{n—1)/2 and i = 1,2,...,(n — 1)/2}, where addition of the first
component is taken modulo n. The cardinality of this set is (n? — 1)/4.
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Curran and van Rees showed that the above sets satisfy condition (1) of the
definition of minimal critical sets and in the case of n even went on to show that
condition (2) was satisfied; that is, any proper subset of this set must be con-
tained in two different latin squares. Essentially their proof points out that for
any (z,1,7) € C we have entry z in positions (¢,5) and (¢ + n/2,j7 + n/2), and
entry z +n/2 in positions (4,7 +n/2) and (i +n/2,7) of L, where addition is taken
modulo n. The set C\{(z,%,7)} is contained in L. However, it is also contained in
a latin square L' which has entry  +n/2 in positions (¢,7) and (i +n/2,j +n/2),
and entry z in positions (4,7 +n/2) and (¢ +n/2,7), where addition is take modulo
n. Hence C is a critical set. In fact what Curran and van Rees have shown is that
C is a minimal critical set, as verified in Theorem 3. We go on to show that for n
odd the set C satisfles condition (2).

Lemma 2. Let L be a latin square with a minimal critical set A. Let S = {S; |
i = 1,...,r} be a set of latin subsquares which partition L and let C; denote a
minimal critical set for §;, for eachi =1,...,7. If |C;| = ¢;, fori=1,...,r, then

tA[ 2 E::I Cie

Proof. Since § partitions I, A can be partitioned into subsets 4;, fori =1,...,7,
where the elements of A; correspond to the latin subsquares S;. For all elements
(u,v,w) € A;, fori =1,... 7, welet (u,v',w') denote the occurrence of the entry u
in position (v',w’) of the latin subsquare S;. The set of all such elements (u,v',w’)
is denoted by A'; and |4;| = |A';|. Assume|A| < 37, ¢;. Then |4;| = |4';] < |C}]
for some 7 = 1,...,r. However, C; is a minimal critical set for §;. So, by condition
(2) of the definition of critical sets, there exist two latin squares R and T, of order
|55], which have entry w in position (v',w') for each (u,v',w') € A}. Hence there
exist two latin squares L and L' which contain subsquares H and 7' respectively, and
in addition contain the set 4. This is a contradiction. Hence |[A| > 577 ¢;. O

Theorem 3. Let L be a back circulant latin square.

(1) ¥fn is even, then L contains a minimal critical set of size n?/4.
(2) Hmn is odd, then L contains a critical set of size (n? — 1)/4.

Proof. (1) If n is even, then L contains (n/2).(n/2) = n?/4 latin subsquares of
order 2. These are given by subarrays which have entry z in positions (7,7), and
(i + n/2,7 + n/2) and entry (z + n/2)(modulo n), in positions (¢,j + n/2) and
(3 +mn/2,5) of L,for 1 <1,5 < n/2. This set of latin subsquares partitions L. The
cardinality of the minimal critical set for a latin square of order two is 1 and so
by Lemma 2 a minimal critical set for L has cardinality at least n?/4. Lemma 1
establishes the existence of an appropriate set of this size, and so the result follows.

(2) It is easy to verify that L contains subarrays of size ((n —1)/2 + 1) x
({(n +1)/2 + 1) which have the following properties. Entry z occurs in positions
(3,7) and (i + (n—1)/2,7 + (n 4+ 1)/2), entry y occurs in positions (i + 3,5 +
(n-—-1)/2—s)for s = 0,...,(n —1)/2 and entry z occurs in positions (i + 8,7 +
(n+1)/2 —-3s)for s = 0,...,(n—1)/2, where y = z + (n — 1}/2(modulo n) and
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z =z + (n + 1)/2(modulo n). That is, L contains subarrays of the form:

A subarray of this type can be replaced by a subarray of the form: eniry z in
positions (4,7 + (n +1)/2) and (i + (n —1)/2,j), entry y in positions (¢,j) and
i+s8,7+(mn+1)/2-35)for s =1,...,(n —1)/2, and entry z in positions (i +
(n—1)/2,j+(m+1)/2) and ( + 5,7+ (n —1)/2 — s) for s = 1,...,(n — 3)/2.
That is, it can be replaced by a subarray of the form:

y . . . ... .2z X

Zy ...
XYy oo ..oz
The result will be a latin square L' which differs from L in the positions listed
above. If we take the set given by Curran and van Rees in Lemma 1, part (2), and
take any subset of size (n* — 1)/4 — 1, then there are at least two latin squares [
and L' which contain this subset. That is, if we remove element z in position (3, j),

then we can complete the subset to at least two latin squares each of which has
one of the subarrays given above. (O

Lemma 2 also allows us to establish lower bounds for the cardinality of mini-
mal critical sets for infinitely many latin squares. For example, the latin square
representing the elementary abelian 2-group of order 8

GO =3 O Ot b O BN
-3 00 T O W ¥ NI
Gy O CO =] DN - i W
Gt Oy ~3 00 = B O
B G2 B b 00 =~ O
[SLI S RN B o R e )
B = b L O O 00 =]

b Ot Oy
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can be partitioned into four latin subsquares of order 4. The cardinality of the
minimal critical set for latin squares of order 4, isomorphic to these latin subsquares,
is 5. By Lemma 2, the cardinality for the minimal critical set of this latin square
of order eight is greater than or equal to 20. We state the following more general
theorem.

Theorem 4. The size of the minimal critical set for the latin square representing
the abelian 2-group of order 2™, for n > 2, is greater than or equal to 5.227~%,

Acknowledgement. The authors wish to thank Kathryn McClaren for her assis-
tance and expertise with the computer programs.

APPENDIX.
The following are examples of strong critical sets of minimum cardinaltiy for
the latin squares listed in Table 1.

Latin square of order 2 Latin square of order 3
12 1 * 123 1 0%

21 * X 231 * X
312 *o*

Latin squares of order 4

1234 1 2 * * 123 4 12 % *
2143 *ox o4 0% 2341 2 * x x
341 2 ¥ x k9 3412 KOk kX
4321 O B 4123 R
Latin squares of order 5

123435 1 2 % * *

23451 2 * ¥ * %

3451 2 'EEEE

45123 * X ok ox03

5123 4 * Ok ¥ 3 4

12345 1 2 * % * 1.2 % % *

21453 ¥ X 4 5 * ¥ x4 5 *

3512 4 g ok ok ok ok g ok ® ok ok

4 3512 ¥ x5 ] * L T

549231 % ok ok k% ok ok k]

E - N
L I o ]
¥ T # ¥

LS ¥ DY #* ¥
E 2
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1 9 * x %
*

12345
21453
34512
45231
53124

* 4 5 *
3 LI .
* ok ok ok
* ok ok ok 4

**45*
3*5**

* ok kK
* ok ok K K

T

* ok K kK

* ¥
[l
* ¥
w0

* %

12***

123435

FYa BN I
<UD ¥ K
* ¥ ¥ M
E I
¥ oo *
HoRE I 2
R
* ¥ D ¥
* DR X
o e O M
wy O 0D e
<t ) — O
P WD O
[t BEAr TR U Te ]

* OO X X ¥
* MUY R O
I N
[ EE R
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119



12345 12 % * % 12 % * *
23451 2 0% ox ¥ * k4 5 %
35214 ***1* 3****
41532 kx5 3 X ¥ ko5 o* ok
12***
¥ ok kg ok
* % ok ok ok
41***
***23
Latin square of order 6
1234586 123 * * *
234561 2 3 * Kk ¥k
345612 gk kK Eox
456123 k ok ok ok ok Xk
561234 ¥ Ok ok % X 4
612345 ¥ ok ok ¥ 45
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