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Abstract

The method of switchings is a standard tool for enumerative and proba-
bilistic applications in combinatorics. In its simplest form, it analyses a
relation between two sets to estimate the ratio of their sizes. Via a se-
quence of such pairwise ratios, the relative sizes of a larger family of sets
can be estimated. However, in some situations, the available relations
might not form a simple chain in this manner. For example, a relation
might be defined by an operation that takes an object in one set and
converts it to an object that is only known to lie in some subfamily of
other sets (rather than in a single known other set). In this article, we
describe this situation in a general setting and present it as an optimisa-
tion problem. Then we prove that its optimal solution can be assumed to
have a very simple form. To illustrate this result we give two examples.
First we extend a special case of a lemma of Greenhill and McKay (2006)
that bounds the probability of large entries in certain integer matrices.
Then we strengthen a lemma of McKay, Wormald and Wysocka (2004)
that bounds the number of edges that lie in short cycles in a random
regular graph.

* Research supported by the Australian Research Council



142 VEERLE FACK AND BRENDAN D. MCKAY

1 Introduction

The simplest example of the method of switchings involves two finite sets A, B, and
a relation R C A x B. If d4 is the average number of elements of B that are related
to a uniformly chosen element of A, and dp is the average number of elements of
A that are related to a uniformly chosen element of B, then ds|A| = |R| = dp|B|.
Thus, estimates of the relative values of d4 and dp provide estimates of the relative
sizes of A and B.

This idea is easily extended to a sequence of finite sets A;, As, ..., A, and relations
R; CA;x Ay for 1 <4< n—1. Let a; be the average number of elements of A;;
related by R; to a uniformly chosen element of A; (1 < ¢ < n —1) and let b; be the
average number of elements of A; ; related by R; ; to a uniformly chosen element
of A; (2 <i < n). Then, provided the denominators are nonzero,

|An] Q102" Qp—1

|Ai]  bobse-b,

and, indeed, the relative sizes of any of Aj,..., A, can be determined.

There are many examples in the literature where classes of combinatorial objects
are approximately enumerated by this technique. A few examples are [2, 3, 5, 8, 6,
7,9, 10].

In this paper we generalise the switching method to the case where the relations
form a graph other than a simple chain. This is most easily explained in terms of
the elementary operations (called “switchings”) that are used to define the relations
in most published examples.

Suppose we have a directed graph G where each vertex v defines some finite class
C(v) of objects, such classes being disjoint. We also have a family of operations
(“switchings”) that each take an object and convert it to a possibly-distinct object.
For example, if the objects are graphs, an switching might involve altering some
small subgraph. Formally, we have that for each object x, there is a multiset S(z)
of the objects that result from applying a switching to x. The inverse of S is defined
in the obvious fashion by

S7Hy)={e|yeS)},

where §71(y) is again a multiset: the multiplicity of z in S~!(y) is the same as the
multiplicity of y in S(«). The (directed) edges of G indicate the possible trajectories
of a switching:

B(G) = { (v,w) € V(G) ‘Us (w) £0}.

zeC(v)

As defined, G has no multiple edges; this allows us to write vw for the unique edge,
if any, from v to w.
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Now suppose we have bounds on 3= c¢(,)[S(2)/[C(v)] and 3=, ¢,y [SH(@)]/IC(v)]
for each v € V(G). The problem is to infer bounds on the relative sizes of the
sets C(v).

The presence of directed cycles in G greatly complicates the analysis so we will
assume there are none except that we allow loops.

2 The task as an optimisation problem

Let G = (V, E) be a directed graph without multiple edges, acyclic except that loops
are permitted. For a vertex v € V, let G7(v) and G*(v) be the set of (directed)
edges entering and leaving v, respectively.

The input to our problem consists of G together with a pair of functions a :
V —- Ry and b:V — Ry, where R,y is the set of positive real numbers, and two
nonempty subsets X, Y C V. Note that X and Y may overlap.

A feasible solution is a pair of functions S = (s, N), where s : E — Ry and
N :V = Ry, such that

Z s(e) < b(v)N(v) for all v such that G~ (v) # 0, (1)
€G- (v)

Z s(e) > a(v)N(v) for all v such that G*(v) # 0. (2)
ecGt(v)

A proper solution is a feasible solution S = (s,N) for which N(v) > 0 for some
v € X UY. In this case, the weight of the solution is f(S) = oo if N(X) =0 and

otherwise, where N(W) = > . N(w) for any W C V. Note that any positive
scalar multiple of a proper solution is a proper solution with the same weight.

Problem (G, a,b, X,Y) is to determine the maximum of f(.S) over proper solutions
S, if proper solutions exist. In that case, a proper solution achieving the maximum
1

is called an optimal solution. In the example shown in Figure 1, f(S) = =2

To see how this problem fits into the description in the Introduction, interpret
N(v) as |C(v)| and s(vw) as 3 cc(,)[S(X) N C(w)|, where the intersection inher-
its the multiplicities of the multiset S(X). In this interpretation, »_ g+, s(€) =
erc(v)|S(I)| and ZEEG—(v) s(e) = X:IEc(v)|S’l(x)|7 so a(v) and b(v) correspond to
bounds on those quantities relative to |C(v)].

Our analysis allows s and IV to take non-integral values, potentially leading to an
upper bound higher than necessary, but it will turn out that the optimum occurs for
some rational solution. Since a scalar multiple of a feasible solution is also a feasible
solution, the optimum occurs for an integral solution.

If every feasible solution (s, N) has N(Y') = 0, then either there are no proper
solutions or every proper solution achieves the maximum weight of 0. Otherwise, if



144 VEERLE FACK AND BRENDAN D. MCKAY

Zz oo
non
U1 w
1l
N\ 0

N
ol
Zz oo
o
RN

1

[N

w

n

1l

N
Zz oo
I
BoNw

Figure 1: Example of a problem (G, a,b, X,Y") and a feasible solution (s, N)

we were to add the constraint N(Y') = 1, we would have a linear program of which
the objective is to minimise N(X). We know from the theory of linear programming
that a finite optimum is achieved by some point on the boundary of the feasible
region, so in this case we know that the minimum of N(X) is achieved by some
proper solution.

Thus, in all cases where there are proper solutions, the optimum is achieved. We
could proceed with our investigation using the theory of linear programming, but
our purpose is rather to show that the special structure of the problem implies a
special structure for its solutions. In practical applications, this usually allows the
solution to be obtained without recourse to the more general techniques of linear
programming.

3 Path solutions

We next define five simple types of feasible solution that we call path solutions. Let
P = vy,vy,...,v; be a path in G from v; to v,. Here, and throughout the paper,
“path” means “simple directed path”.

o A type-0 path solution has k = 1 and requires v; to have a loop with a(v;) <
b(v1). It has

and s(e) = N(v) = 0 otherwise. This solution satisfies (1)—(2) with equality
except possibly for (1) at v;.

o A type-1 path solution requires vy, to be a sink in G. Any k£ > 1 is acceptable.
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It has
N(w) =1,
M) = bt (2<i<h),
s(vivir1) = a(vi) N (v;) (1<i<k-1),

and s(e) = N(v) = 0 otherwise. This solution satisfies (1)-(2) with equality
except possibly for (1) at v;.

o A type-2 path solution requires v; to have a loop with a(v,) > b(vy), and vy, to
be a sink in G (so k > 2). It has

N(U]_) = ].,
M) = (alon) = b)) S @<i<h),
s(vivy) = b(vy),
s(v1v) = a(vy) — b(vy),
s(vviy1) = av;)N(v;) 2<i<k-1),

and s(e) = N(v) = 0 otherwise. This solution satisfies (1)—(2) with equality.

e A type-3 path solution requires k > 2 and vy, to have a loop with a(vy,) < b(vy).
It has

N(v) =1,
N a(vy) - a(vi—y) i<k
N(vi) = b(vs) -+ b(v;) @sisk-1),
_ a(ve—1) N (vg-1)
N = i —a(on)
s(vivip1) = a(v;)N(v;) (1<i<k-1),
s(ugoy) = alvg)N(vg),

and s(e) = N(v) = 0 otherwise. This solution satisfies (1)-(2) with equality
except possibly for (1) at v;.

o A type-4 path solution requires v; to have a loop with a(v,) > b(vy), and vy, to
have a loop with a(vg) < b(vg) (so k > 2). It has

N(U]_) = ].,
M) = (ao) = b)) ) igh-),
a(vg—1)N(vg—1)

M =) —alon)
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and s(e) = N(v) = 0 otherwise. This solution satisfies (1)—(2) with equality.

In each case, we also regard nonzero scalar multiples of path solutions to be path
solutions.
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Figure 2: A type-2 path solution for the problem of Figure 1

4 Path solutions are enough

By a nonzero vertex we mean a vertex v with N(v) > 0, and by a nonzero edge we
mean an edge e with s(e) > 0. A nonzero path means either a single nonzero vertex,
or a path of one or more nonzero edges and their incident vertices (nonzero or not).
In all cases we will write S-nonzero if it might not be clear that we are referring to
solution S. By a mazimal nonzero path we mean one that cannot be extended at
the final vertex (extendibility backwards from the starting vertex is not important).

A path P =vy,..., v will be called well-terminated (for G) if either vy is a sink,
or £ =1 and v, has a loop with a(v) < b(vg), or & > 1 and vy, has a loop with
a(vi) < b(vy).

Lemma 1. Let S = (s,N) be a feasible solution that is not everywhere zero. If
P is a mazimal nonzero path starting at a vertex v with N(v) > 0, then P is well-
terminated. Conversely, if there is a well-terminated path starting at a vertex v, then
there is a feasible solution (s, N) with N(v) > 0.
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Proof. If P consists only of v, we cannot satisfy (1)—(2) unless v is a sink or has a
loop with a(v) < b(v). Suppose instead that P ends at w # v, and that w is not
a sink. Then we cannot satisfy (1)-(2) at w unless w has a loop. The fact that
ZEeG,(w) s(e) > s(ww) > 0 implies by (1) that N(w) > 0, which implies by (2) that
s(ww) > 0 or else P would not be maximal. Constraints (1)—(2) now imply that
a(w) < b(w).

For the converse, a path solution of type 0, 1 or 3 based on the well-terminated
path provides the solution required. a

Lemma 1 provides the tools to classify problems according to whether their op-
tima are zero, finite, or infinite.

Theorem 1. Consider problem (G,a,b, X,Y).

1. If there is no well-terminated path starting in X UY, then there is no proper
solution.

2. If there is a well-terminated path starting in X, but not one starting in'Y', then
an optimal solution S* has f(S*) = 0.

3. If there is a well-terminated path starting in Y \ X and avoiding X, then an
optimal solution S* has f(S*) = oco.

4. In all other cases, an optimal solution S* has 0 < f(S*) < oo.

Proof. The first three of these claims follow immediately from Lemma 1. To see that
the fourth also follows, suppose there are well-terminated paths starting in both X
and Y, or a well-terminated path that intersects with both X and Y. The lemma
tells us that there are proper solutions (si, Ny) and (sg, Na) with Ni(X) > 0 and
No(Y) > 0. Then S = (s1 + s2, Ny + N3) is a proper solution with 0 < f(S) < oo.
This leaves the possibility that there is a sequence of proper solutions with arbitrarily
large weights. This cannot happen unless the optimum is oo, since, as we noted
before, the optimum is always achieved. Therefore we have a feasible solution (s, N)
with N(X) =0 and N(Y") > 0. A path solution based on a nonzero maximal path
beginning at some v € Y\ X with N(v) > 0 shows that this possibility belongs in
case 3. d

Theorem 2. Suppose problem (G,a,b,X,Y) has a finite nonzero optimum. Then
there is an optimal solution of path type with the first vertex in'Y .

Proof. Let S* = (s*, N*) be an optimal solution with the least number of nonzero
vertices and edges. If N*(z) = 0 for any vertex z, then all edges e outgoing from
z, including loops, have s*(e) = 0, since they can otherwise be set to 0 without
changing f(S*) or violating (1)—(2).

If there is only one S*-nonzero vertex, it is easy to check that S* is a scalar
multiple of a path solution meeting the requirement of the theorem. So assume there
are at least two S*-nonzero vertices.
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Since G is acyclic apart from loops, there is a vertex v such that N*(v) > 0 and
v has no incoming S*-nonzero non-loop edges. We can assume that v € Y, since
otherwise we could set N*(v) = 0 and s*(e) = 0 for all edges e outgoing from v to
obtain a feasible solution which violates our choice of S*.

Let P = (v,...,w) be a maximal S*-nonzero path starting at v.
(i) By Lemma 1, P is well-terminated.

(ii) Suppose v # w and there is a loop at v with a(v) < b(v). For any ¢ > 0, define
Sy = (84, N,) which is the same as S* except that N,(v) = ¢ and s,(vv) = a(v)qg.
Then S, is feasible. Recall that v € Y. If v ¢ X then f(5,) can be made larger than
f(S*) by choosing large ¢, contrary to our assumption that S* is optimal, so v € X.
Therefore, v € X NY and

N\ D) 4
)= Fxen v

which is either strictly monotonic in ¢, or independent of ¢. In the first case, S* is
not optimal. In the second case Sy is optimal but has fewer nonzero vertices and
edges than S*. Both possibilities violate our conditions on S*, so we must have
a(v) > b(v).

In all cases, we see that P satisfies enough requirements that there is a path
solution Sp = (sp, Np) whose nonzero edges are those of P together with any S*-
nonzero loops at v and w. If Sp is a scalar multiple of S* then Sp satisfies the
requirements of the theorem, so suppose this is not the case.

For any ¢ (positive or negative), let S. = S*+eSp. If ¢ > 0, it is immediate that
S, is feasible. If € < 0 but ¢ is small enough to ensure that S. has no negative values,
we claim that S is still feasible. S. satisfies (2) for all v because Sp satisfies (2) with
equality (by construction). For the same reason, S. satisfies (1) except possibly at
v; in the cases where Sp has no nonzero loop at v; (i.e., types 0, 1 and 3). However,
in those cases, (1) is satisfied at v, because Y- ;- () (s*(¢) +esp(e€)) = 0.

Now consider
N*(Y)+eNp(Y)

N*(X) +eNp(X)’

f(Ss) =

which implies that

0f(Ne) _ N*(X)Np(Y) = N*(Y)Np(X) (3)
s (N*(X) + eNp(X))®

If the numerator is not zero, then by taking tiny e (either positive or negative) we find
feasible S, with f(S.) > f(S*). If the numerator of (3) is zero, f(S.) is independent
of €. In that case, choose ¢ to be the negative value closest to 0 such that S. has

fewer nonzero vertices and edges than S*. Both possibilities contradict our choice
of S*. |

In many cases, the same nontrivial path in G can be the basis of either a type-1
or a type-2 path solution. Up to scaling, these solutions are the same except that
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N(vy) is larger for the type-2 solution. If v; € Y\ X or Y C X, a type-2 path
solution is preferred in that case. Similarly, a type-4 path solution is preferred over
a type-3 path solution if both are available for the same path and v; € Y\ X or
Y CX.

5 Example: Large entries in integer matrices

The first use of Theorem 2 was in a recent study of Greenhill and McKay [4] that
determined the asymptotic number of matrices of nonnegative integers that have a
specified sequence of row sums and column sums. A key step in the proof was to
show that entries greater than 3 were improbable under the conditions that were
imposed. Here we give a simple special case to illustrate the application.

Let k = k(n) be a non-negative integer function satisfying 1 < k < (n/6)'/2. Let
M = M(n, k) be the set of all n x n matrices of nonnegative integers with all row
sums and column sums equal to k. Write [k]; for k(k —1)---(k —t+1).

Theorem 3. Let A = A(n) be an integer with A > 3. Then at most a fraction
2n2 2 A4(k]a of matrices in M have any entries equal to or greater than A.

Proof. For d,m > 0, let My(m) be the set of matrices in M which have exactly m
entries equal to d and no entries greater than d. Note that [J,,5o Ma(m) = Mg41(0)
and Mj,.,1(0) = M. The fraction that the theorem requires us to bound is

k
Z |Md(>0)| (4)
= M
where My(>0) = U,,»; Ma(m).
Choose d with 3 < d < k. Define the graph G with vertices V = {M4(0), My(1),

. boLet X =Vand Y =V \ {My4(0)}. The edges will be defined by means of the
following operation that preserves row and column sums.

d 0 0 --- 0 0 1 1 1
0 I 1 xl—l
0 ) — 1 x2_1 5 (5)
0 Lq 1 xd—l
where x1,xs,...,2q > 1 and these submatrices may occur in any position, not nec-

essarily contiguous or in the order shown. Matrix entries not shown can have any
values and are unchanged by the operation. The edges of G are those M(j)M4(7)
such that some A; € My(j) is taken by this operation into some A; € My(i).
Clearly j—d -1 < i < j—1, so GG is acyclic and has no loops. We can inter-
pret N(My(j)) as [Mq(j)], and s(Mqa(j)Mq(i)) as the number of pairs (A;, A;) for
Aj e My(j), Ai € My(i) related by operation (5).
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Now consider A; € My(j) for j > 1. We bound the number of submatrices
(taken as ordered (d+1)-tuples of rows and columns) with the form of the left side
of (5). We can choose one entry equal to d in j ways (call this “the d”), then choose
the entries x, x9, ..., x4 one at a time avoiding choices that violate the pattern. The
choice of entry x4 is the most restricted, so we bound that. Since the maximum
entry in A; is d, the number of nonzero entries is at least nk/d. Of those we must
exclude the d (1 case), entries in the same column as a nonzero entry in the same
row as the d other than the column of the d (at most (k — d)k cases), entries in the
same row as a nonzero entry in the same column as the d other than the row of the d
(at most (k — d)k cases) and entries in the same row or column as one of the entries
we chose for ©1, @, ..., x4-1 (at most (d — 1)(2k — 1) choices). Overall, therefore, we
can choose the entry z4 (and thus each of the less-restricted entries z;, xs,. .., Zq-1)
in at least nk/d — 1 — 2(k — d)k — (d — 1)(2k — 1) > nk/d — 2k* ways. Therefore,
define a(My(j)) = j(nk/d — 2k*)% for j > 1. Arbitrarily define a(M,4(0)) = 1.

Next consider A; € Mg4(i) for i > 0. We want to bound the number of submatrices
of A; matching the right side of (5). We can choose an ordered sequence of d ones
in a column in at most n[k]; ways and similarly for d ones in a row. Some of
these choices are not allowed, but we just need an upper bound. Therefore, define
b(M(i)) = n?([k]4)” for all i.

Now we can apply Theorem 2. Since there are no loops, the only path solutions are
of type 1. The general case is described by a path (vq,vs, ..., v,) where v; = Mg4(¢;)
forall ¢ and t; > t3 > -+ > t; = 0 with 1 < ¢; —t;41 < d+ 1 for all 7. Let
S = (s, N) be the type 1 path solution for this path, scaled so that N(v,) = 1. Then
N(vi—1) = b(v;)N(v;)/a(v;—y) for 1 < i < g. Therefore,

N(Y) _ N(vg-1) + N(vg-2) +--- + N(v)
N(X)  N(vg) + N(vg-1) + -+ + N(v1)
¢ N (vi-1)
< max;_, N(vr)
2 (111 )2
ot — )
tl_l(nk/d — 2k2)d
n?([k]a)”
(nk/d — 2k?)4
< n* k], (6)
The last step can be proved by replacing one of the [k]; factors by its AM/GM
bound (k — (d — 1)/2)* and applying our assumptions that n > 6k* and d > 3.
Bound (6) is independent of the path and so, by Theorem 2, (6) is a bound on

|My(>0)|/|Ma+1(0)| and hence on |My(>0)|/|M|. Recalling (4), the theorem now
follows if we note that

nZ—d—l(d+ 1)d+l[k]d+1
nT=idd[k],
for3<d<k—1. 0

IN

< <

ek?
—_— <
n

(<20 e
N |
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6 Example: Many short cycles in regular graphs

In the paper [9], McKay, Wormald and Wysocka studied the distribution of the
numbers of short cycles in random regular graphs. At one point they needed to show
that graphs with a very large number of short cycles were very rare, and applied a
switching argument to that purpose.

Theorem 4 ([9]). Let k = k(n) > 3 and d = d(n) > 3 satisfy k(d — 1)*=1 = o(n).
Let M = M(n) = 20Ak(d — 1)* with A = A(n) > ¢ for some constant ¢ > 1. Then
the probability that a random d-regular graph of order n has exactly M edges which
lie on cycles of length at most k is less than

(es(A—l)A—sA)(d—l)’“ _ e—s(d—l)k(e/A)MMk
for sufficiently large n. [

Now we will show that a wider and stronger result can be obtained from the same
switching operation if it is analysed using Theorem 2.

We will use the factorial notation for arbitrary real arguments, with its usual
meaning 2! = I'(z + 1). The following can be proved by case analysis for tiny « and
Stirling’s approximation for larger z.

Lemma 2. For any real x > 13—0,

T Z/
[l s .
(z + [z1/2])0 ~ 287

Theorem 5. Let k = k(n) > 3 and d = d(n) > 3 satisfy (d — 1)*=1 = o(n). Let
M = M(n) > 6D, where D = (d—1)*. Then the probability that a random d-regular
graph of order n has exactly M edges which lie on cycles of length at most k is less
than M — 5D\ /5D \M/4k

7 eXp( 1 )(ﬁ)

for sufficiently large n.

Proof. Let H(m) be the set of d-regular graphs of order n such that exactly m edges
are on cycles of length & or less. In [9], a particular switching operation on d-regular
graphs is defined. Here we will use the notation of our Introduction: for graph
H, S(H) is the multiset of graphs that result from applying a switching to H. A
property of this switching is that S(H) C H(m —4k)U---UH(m) when H € H(m).
The precise definition of the switching also implies that S(H) = 0 if H € H(0). As
shown in (9], |S(H)| > tmnd for H € H(m), and |S~'(H)| < ndD for any H.

We can present the problem in the form required by Theorem 2 using a graph
with vertices V' = {#(0),H(1),... } and edges H(j)H (i) for j — 4k < i < j with i >
0,7 > 0. Thus, every vertex except #(0) has a loop. Define X =V, Y = {H(M)}.
For each m, take a(H(m)) = tmnd and b(H(m)) = ndD. The value a(H(0)) = 0
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violates the rules, but since the value of a() at a sink plays no part in the problem,
we will keep it.

Bearing in mind the comment after the proof of Theorem 2, there is an optimal
solution which is either a type-2 path solution starting at (M) and finishing at
H(0), or a type-4 path solution starting at H(M) and finishing at some #(m) with
m < 5D. The last condition comes from the need to have a(H(m)) < b(H(m)).

Let M =ty > t; > -+ >ty be asequence with 0 < t;,1—t; <4kand 0 < t, <5D.
This defines a path solution S = (s, N) for the path (vg,v1,...,v,), where v; = H(¢;)
for all 7. Scale the path solution so that N(vy) = a(vg)/(a(ve) — b(vg)). Then

LMnd M
N(Y) = 3 = < 6. 7
¥) %Mnd—ndD M —5D — (™)
Moreover, for 0 <1 < g,
toty -+ -ti1
N(vi) 2 N'(v;) = D)
whether or not we have a type-2 or type-4 path solution. If ¢;,¢;_,...,t, are de-

creased by 1, for any j > 0, then > _\ N'(v;) is decreased, and similarly this
sum is decreased if v, is removed from the sequence. Therefore, the least value of
> v.ex NV'(vi) occurs when t; = M — 4ik for 0 < i < ¢ and ¢, is the first number in
this sequence less than 5D. In this case, we have

M(M — 4k)--- (M — 4(i—1)k)

(N
()" (e (Y g

where j = M/4k — i is not necessarily an integer. Define R = [\/5D/4k]. We
will bound 7 .y N'(v;) from below by including only the R terms with 5D <
t; < 5D + 4kR. These correspond to 5D/4k < j < 5D/4k + R. The value of (8) is
decreasing with respect to j in that range, so we can apply Lemma 2 with x = 5D /4k

to obtain ROPTANYESY. 5D
¥ 2 5(55) (@) e (Tr):

Combining this with (7), we obtain
19 530 - 2) C2)"/ ()

Noting that M/k > 6D/k > 16, the required result now follows from Stirling’s
formula. .

A related result for fixed d is obtained by different means in [1].
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7 Generalizations

A number of generalizations of the problem can be considered. One of them re-
sults from replacing the functions a,b : V' — Ry by functions o, : E — Ryg.
Inequalities (1)—(2) are then replaced by

Z B(uv)s(uv) < N(v) for all v such that G~ (v) # 0,

ww€G~(v)

Z a(vw)s(vw) > N(v) for all v such that G*(v) # 0.
vweGT (v)

The analysis of this generalization is almost the same, with essentially the same
result. a(vw)™' and S(uv)™! play the roles of a(v) and b(v), respectively. The
optimal solution can again be assumed to be a path solution, defined in the obvious
manner. This seems very natural, but we don’t have any practical examples.

Other generalizations involve allowing extra constraints. One possibility is to
admit constraints of the form s(vw) < As(vw') for constant A. This can arise when
one can prove that at most some fraction of switchings applied to C'(v) take us to C(w)
rather than to C(w'). Examples of where such a situation is analysed include [8, 11].
However, the optimal solution can now have a form more complicated than a path.
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