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Abstract

A digraph T is said to satisfy the condition W (k) if dy(u) + df-(v) > k
whenever uv is an arc of T. If a bipartite tournament 7' contains no
factor, then its vertex set V(X,Y’) can be partitioned into four subsets
P, @, R and S such that P C X, R = X\ P and S =Y \ Q where
Q = N (P) and [P| > Q.

In this paper, we prove a new sufficient condition on degrees for a
bipartite tournament to be Hamiltonian; that is, if an n x n bipartite
tournament 7" satisfies the conditions: (i) W(n —2),if |Q|+|R| =n—1;
(i) W(n = 3), if |Q| + |R| # n — 1; then T is Hamiltonian, except for
three exceptional graphs. This result is shown to be best possible in a
sense.

1 Introduction

Throughout the paper we essentially use the terminology and notation of [1] and [9].

* This work is supported by Natural Science Foundations of Shanxi Provence.
T Corresponding author.



212 WANPENG LEI AND JIANZHONG WANG

Here T(X,Y, E) denotes a bipartite tournament with bipartition (X,Y’) and vertex-
set V(T) = X UY and arc-set E(T). If | X| = m and |Y| = n, such a bipartite
tournament is called an m x n bipartite tournament. For a vertex v of T and a
subdigraph S of T, we define N (v) and N (v) to be the set of vertices of .S which,
respectively, dominate and are dominated by, the vertex v. Put

Nz ()= Np(v); NE(S) = NF(v);

vES vES

dr(v) = [Nz ()] df(v) = |Nf (v)].

Let P be a subset of X and @ a subset of Y; P — @) (respectively, @ — P) denotes
pq € E(T) (respectively, gp € E(T)) for all p € P and all ¢ € Q. If P = {«} this
becomes x — ). To simplify notation, we denote also C; — Cy, Co — C3, ---, by
Cy —» Cy —» C3 — ---. Moreover, a factor of T is a spanning subdigraph H of T
such that dj(v) = df;(v) = 1 for all v € V(T). By dr(X,Y) = d(X,Y) we denote
the number of arcs from X to Y, i-e, d(X,Y) =| {2y € E(D): 2 € X,y € Y} |.
Also T is said to be strong if for any two vertices v and v, there is a path from u to
v and a path from v to u. A component of T is a maximal strong subdigraph.

By T'(r1,72,r3,74) we define the bipartite tournament with the four pairwise disjoint
independent set of vertices By, Bs, B3, By with | B; |=r;, for i=1, 2, 3, 4 such that
B, — By = B3 — By — Bj.

The class T(Tl,’f'z,’f'g,’f'4) of bipartite tournaments originates from T'(ry,72,73,74) by
reversing some arcs between By and Bs or Bs and By such that d(Bj;,b2) < 1 and
d(by, B3) < 1 for every by € B, and by € By, or by reversing all the arcs.

The class T*(r1, 72, r3,74) of bipartite tournaments originates from T'(ry, 72, r3,74) by
reversing some arcs between B, and Bz or B; and By such that d(bs, B3) < 1 and
dgs(bs) S dé‘l(bg) for every b4 S B4 and b3 € B3, dgs(bg) S d§4(b3) for every b2 S BQ
and by € Ny, (by).

Then T'(k,l,n —k,n—1) C T, T(k,l,n —k,n—1) €T

A digraph T is said to satisfy the condition O(r) if df(u) + dy(v) > r whenever uv
is not an arc of T. T is said to satisfy the condition W (r) if d.(u) + df(v) > r where
uv is an arc of T'.

Up to now, there are very few conditions that imply the existence of Hamiltonian
cycles for bipartite tournaments. An obvious necessary condition for an m X n
bipartite tournament to be Hamiltonian is m = n. Therefore, we are only interested
in researching Hamiltonian properties in n x n bipartite tournaments. We recall now
the well-known conditions for an n x n bipartite tournament to have Hamiltonian
cycles.

The following results play an important role in the investigations of this section.

Theorem 1 (Jackson [2]). If an n x n strong bipartite tournament T' satisfies O(n),
then T is Hamiltonian.
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Theorem 2 (Wang [3]). If an n x n bipartite tournament T satisfies W (n —1), then

T is Hamiltonian, unless T is isomorphic to T (%L, 2L nol 21y when n is odd or
T(n n—2 n n+2)

2 0 2 12 02
2072 12072

An analogue to the results of Theorems 1 and 3 has been described in [7].

Theorem 3 (Zhang,Song,Wang [4]). Let T be an n X n bipartite tournament with
n >6. If
w € B(T) = dz(u) + df(v) > n -2,

then T is Hamiltonian, unless T is isomorphic to T(I +2,l,n — 1 — 2,n — 1) when

%Slf%, or T(n,n) € T*(1+ 1,l,n —1—1,n —1) with %52 <1 < .

2 Main results

Before proving Theorem 6, we need the following theorem.

Theorem 4 (Gutin [8] and Haggkvist, Manoussakis [5]). A bipartite tournament T
1s Hamiltonian if and only if T is strong and contains a factor.

Lemma 5 If a bipartite tournament T contains no factor, then its vertex set V(X,Y)
can be partitioned into four subset P, @, R and S such that P C X, R = X\ P
where Q@ = N (P) and | P |>| Q |.

Proof: Let T contains no cycle factor. Then we conclude from Proposition 3.11.6
(b) [see [9], p. 144] that there exists a subset P C X such that | P |>| N} (P) | holds.

Theorem 6 Let T be an n x n bipartite tournament with n > 12. In addition, T
satisfies

() Wn=2),if|Q+|R|=n-1;

(i) Wn —3), if | Q| + | R [ n—1;

then T is Hamiltonian, unless T'(n,n) 2 T(1+3,l,n—1—3,n—1) when "T’5 <
S

or T(n,n) € T*(1+2,I,n — 1 —2,n — ) when %~ <1 < ™ or T(n,n)

IN

n
9

!
(1 +

—

“
Liln—1-1n—1) with 25> <1 < =2

Proof of Theorem 6. Suppose that T is an n x n bipartite tournament satisfying
the hypotheses of the theorem. We first establish two claims.

Claim 1. If n > 12, then T is strong.

Assume that T is not strong and has components C;, Cy, ---, Cp, with m >2 such
that X(C;) — Y(C;) and Y(C;) — X(C;) whenever ¢ < j. Since C; is strong,
we must have |V(Cy)| >4, Otherwise |V(C1)|=1. We may assume C; = {z} C X;
then{z} — Y, for any y €Y we have 2y € E. In addition, in view of the hypotheses
of the theorem and dr.(x)=0, we deduce that

dz(z) +dy(y) = dy(y) > n —3. (1)

Set X; = Nf(Y), X, = X \ Xy; it follows from (1) that | X; |[> n — 3. Moreover,
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x € X, implies that 1 <| X, |< 3. In addition,

n® =3 di(y)+ X di(z)

yey TeX ,
=2 di(y)+ X di(e) + X di(a)

yeYy z€X1 z€X2
>nn—=3)+n|Xe |+ X di(zy),

z€X1
we have
3 df(e) < n(3-| Xz ). (2)
z€X1

Let df(x) = min{d;(21) | 2 € X, }, the (2) and | X; |>n —3,1 <| X, |< 3 yield

(n—3)df(x0) < 3 df(m) <,

zeX1

then
n

n—3
The inequality (1) implies d7(y) < 3. Let yzg € E; in view of the hypotheses of the
theorem and (1), (3), we deduce that

dh(w) < [——] =1 (n > 12). (3)

4> dp(y) +dp(zo) 2 n -3,
then n < 7; this is impossible. So, | C; |> 4. Similarly, | Cy, |> 4.

_ ]2 .
Now, we can deduce Y drn(v) < % Hence, assume that there exists a vertex,
veCy

say u € X(C), such that dj(u) < E—ll. If there is a vertex v in Y(C,,) such that
dt(v) < @, then we have

C Cn
azw) +di(w) < OOl 1 @)
In particular, uv € E(T) implies
dy(u) +dp(v) > n 3. (5)

Combining this with (4) and (5), we can easily see n < 6 contradicting n > 12.
Therefore we have dj.(v) > @ for every v € Y(C,,). Thus we can easily deduce
that there is a vertex w € X(C,,) such that d}(w) < |C4—7"‘. Otherwise, suppose we
have d;.(w) > @ for every w € X(C,). Put | X(Cp) |= p1, | Y(C) |= po; then
| Cr |= p1 + p2, hence
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which implies (p; — p2)*> < 0. This is impossible. Thus we have

(1], 1Ol

dz(u) + df(w) < = ;

<5 (6)
Furthermore, it follows from | Cy |> 4 and | C,, |> 4 that there is a vertex v € Y/(C,,)
such that uv, vw € E, we have d(u) + df(v) > n — 3 and d;(v) + df(w) > n — 3,
then we obtain

o3

dy(u) + dh(w) > n — 6. (7)
It follows from (6) and (7) that n < 12 contradicting n > 12.

Claim 2. Either T contains a factor, or else T is isomorphic to T(I+3,,n—1—3,n—1),
or T(n,n) € T*(1+2,l,n—1—-2,n—1),or T(n,n) € T*(I+1,L,n—1-1,n—1).
Suppose that T contains no factor. It follows from Lemma 5 that there exists a subset
P C X such that | P |>| N} (P) |. Put Nf(P) = Q, R = X\P, and S = Y\Q.
Then S # () and S — P. Consider the vertices p in P and s in S. We now see that
N7 (s) € R and Nf(p) C @ and hence

d7(s)+di(p) <R+ Q1 (8)

|RI+[QI<[R[+]P]=n. (9)

Combining these with the fact that sp € E, implying d.(s) + df.(p) > n — 3, we get
|Q|+|R|=n—-3orn—2o0orn—1.Put |Q|=1]|S|=n—-1L

Case 1. | Q|+ | R|=n — 3. This implies | R |=n —1—3, | P |= [+ 3; it follows
from (8) that P — @, R — S. Consider the vertices ¢ € Q and r € R. If r¢ € E, it
follows from Theorem 6 that n — 3 < d(r) + dj(q) <| Q| -1+ | R| -1 =n — 5,
a contradiction. Therefore we must have @) — R, that is, T'(n,n) = T'(l + 3,1,n —
I —3,n —1). Considering the arcs pg and rs, we have 2n — 2l —3 > n — 3 and
21+32n—3,so"T’5§l§§.

Case2. |Q |+ | R|=n-2. i-e,| R|=n—1-2,| P |=1+42. Considering sp € E, we
have d.(s)+dy(p) > n—3. Furthermore, d(s)+d}(p) =| R | =dj(s)+ | Q | —dg(p),
then

do(p) + dg(s) < 1. (10)

If there is a vertex s € S such that d}(s) = 1, then it follows from (10) that for any
p € P, we have dg(p) = 0 with p — Q. Otherwise R — S, since symmetry, we can
assume P — @ and for any s € .S, then

di(s) < 1. (11)

Put R, :{TE R|d§(7‘) >0},R2:R\R1.

Subcase 2.1. R, =0, 7-e, R — S, we have Q — R. So one can easily deduce
that T(n,n) =T+ 2,l,n—-1—-2,n—-1) € T*(l+2,l,n — 1 —2,n—1). Considering
the arc pg € E,rs € E, we have 2n — 2] —2 > n — 3 and 2/ + 2 > n — 3, and then
b | < ntl

7 Sty
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Subcase 2.2. R; # 0, Ry # (). We can conclude ) — R,, for otherwise there are
vertices 7y € Ry, q¢ € Q such that roq € F,and then n — 3 < d(r2) + df(q) <| R |
—14 | Q@ | =1 = n — 4, which is impossible. In addition, if dg(rl) > 0, there is a
vertex ¢ € ) such that r;q € FE, and then

n—3 < dp(r) +dr(q) =1 Q| —=dj(r1) +dg(r)+ | R | —dg(q).

We get d§(r1) + dz(¢) < dg(r1) + 1. Combining this with the facts that dj(r1) > 1
and dy(q) > 1, we know

dg(r) < dg(r1), dglq) < dg(r). (12)
If there is a vertex r; € R such that dj(r;) = 0, then df(r1) < dg(r1). It follows
from (11) and (12) that T'(n,n) € T*(l +2,l,n — — 2,n — [). Considering the arcs
pq and rys, we have 2n — 2/ —2 > n—3 and 21 +2 > n — 3, and then™;® <[ < 2HL
Subcase 2.3. Ry = (. It follows from | R |=| S | =2 and (11), that we can conclude
dg(r) =1 for every r € R except for at most two vertices in R. Using Claim 1 and
the hypothesis of the theorem, we obtain | R |> 3. So it is easy to see that there

is a vertex 79 € R such that dg(ro) = 1. That is to say, we have so € S such that
soro € E. Similarly, as in Subcase (2.2), we can prove

dy(r) < dg(r), dglq) <dg(r), r€R,qeQ. (13)
Considering the arc soro, by the hypothesis of the theorem and (13), we have
n—3 < dp(so)+df(ro) < |R|=1+|S|=14d}(ro) < |R|+|S|-2+dg(ro) = 2n—21-2,

sol < "T“ In addition, in view of the arc rys;, we have

n—3<dp(rg) +dfi(s1) <|P|+]Q|+2=20+4,

sol > "7’7 We can easily see that T'(n,n) € T*(I+2,l,n — 1 —2,n — ).

Case 3. |Q|+|R|=n—-1,i-e,|R|=n—-1—-1,| P |=1+1. It follows
from sp € E and the hypothesis of Theorem 6 that we have d;(s) + df:(p) > n — 2.
Moreover, dz.(s) + df(p) =| R | =d%(s)+ | Q | —dz(p), so then

da(p) +dy(s) < 1. (14)

Put Ry = {r € R|d5(r) >0}, and Ry = R\ R;.

Subcase 3.1. Ry =0, i e, R — S; we have Q — R, then T(n,n) = T(l +1,l,n —
I—1,n—-10)eT*(l+1,l,n—1-1,n—1). Considering pg € E and rs € E, we have
2n —2l—1>n—2and 2l +1>n — 2, andthen”T_?’SlgnTH.

Subcase 3.2. R, # 0, Ry # (0. We can conclude that ) — R,. Otherwise there are
vertices ry € Ry, ¢ € Q such that ryq € E, and then n — 2 < d(r2) + df(q) <| R |
—14+ | Q | =1 = n — 3, which is impossible. In addition, if dg(rl) > 0, there is a
vertex ¢ € Q such that r;q € FE, and then

n =2 <dp(rn)+dj(q) =[ Q| —dg(r1) +ds(r)+ | R | —dg(q),
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so we get dg(r1) + dg(q) < dg(r1) 4 1. Similarly, as in Subcase (2.2), we know
dg(r1) < ds(r), dgla) < dg(r)- (15)

If there is a vertex 7, € R such that d(r1) = 0, then df(r1) < dg(r1). Hence we have
T(n,n) € T*(I+1,l,n—1—1,n—1). Considering pq and rys, we have 22 < < 2L

Subcase 3.3. R, = 0. From |R| = |S| — 1 and d%(s) < 1, we can conclude that
dg(r) = 1 for every r € R except for at most one vertex in R. Similarly, as in
Subcase (2.3), we can prove

db(r) < dg(r), dy(q) <ds(r), r€R, q€Q. (16)

We can easily see that T(n,n) € T*(I+1,l,n — — 1,n —1); here %52 <[ <

w3

This proves Claim 2.
The proof of the theorem is now complete.

Remark 1. Observe that a bipartite tournament T satisfies W (r) for each arc uv
if and only if T satisfies O(r) for each non-arc uv with u and v being in different
partite sets. Thus, W(r) is weaker than O(r).

Obviously, Theorem 6 improves Theorem 3. Now, we prove another condition, en-
suring an n X n bipartite tournament is Hamiltonian, except for three described
cases.

Corollary 7. Let T be an n X n bipartite tournament with n > 12. In addition, if
T satisfies

(i) O(n —2), if Q| + |R[ =n - 1;

(i1) O(n —3), i Q1 + 1Rl £ n — 1, )
then T is Hamiltonian, unless T(n,n) = T(%, 252 TS, 73), or T(n,n) € T(l +
2,l,n—1—2,n—1); here 25> <1< 2L or T(n,n) € T(I+ n—1—1,n—1); here
sicicy

Proof. The condition O(n — 3) includes the condition W(n — 3). Moreover, by
Theorem 6 we can get T(I+3,l,n — 1 —3,n—1), where %55 <[ < % T*(Z+2 l,n—

= 9
l—2,n—l),where"7_7§l§"TH,T*(l—i—l,l,n—l—ln—l) here 3> SZS”H

Then we can exclude the above which does not satisty O(n — 3).

Case 1. Clearly, we observe that [ = Tv "’4, "22, "; ,and  do not satisfy O(n—3).

Therefore we only have T'(2£2, 252, 22 283) which satisfy O(n —3) in T(1+3,1,n —
I —3,n—1); here 232 <1 < 2.

Case 2. We easily find that [ = 257,258 2 and 2! do not satisfy O(n — 3) in
T*(l+2,l,n —1—2,n—1). Assume T(n,n) € T*(l + 2,l,n —1—2,n—1) and that

it satisfies O(n — 3). If there exists a vertex, say by € Bs, with the property that
dp,(b2) > 2, we deduce that dp, (by) = 1. So we have

|W|

M|

di(bs) +dp(by) <| Bs| =2+ | By | -1=2n—-21—-4—-3=2n-20—-7. (a)
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In addition, the arc byby ¢ E, so we obtain
@ (bs) + dz (be) > n — 3. (b)

Combining (a) with (b) implies that [ < 2%, Now considering the vertices b; € By,
by € Bs, it follows from b1bs ¢ E that

a5 (b1) + dz(bs) = n - 3. (¢)
Moreover, it is easy to see that
df (1) +dy(bs) < 2| By | +di,(bs) =1 — 4+ i (Bs). (d)

It follows from (c) and (d) that dg,(bs) > 1. According to the arbitrariness of
bs, and since d};g(m) < 1 for all by € By, we conclude that there exist at most
two vertices by, by € By which satisfy dg, (b)) > 2 and dj, (bs) > 2. Furthermore,
we get dpg, (bs) = 1 except for by, by (here by € Bs). In addition, in view of the
hypotheses dp (b2) > 2, there exists a vertex, say by € Np,(b2), with the property
that dy, (bs) = 1, for every by € By, we have

df(by) +dp(bs) <| By |+ | Bo | =1 +1<n—4.

It follows from bybs ¢ E that d(by) + dy(bs) > n — 3. This is impossible. Thus we
have dy (b2) < 1, that is, T'(n,n) € T'(I+2,l,n — [ —2,n — ), where iS5 <t

Case 3. In this case, we easily find when | = 252 n=4 apd 2kl

5 5 5, that [ does not satisfy
On—=2)inT*(I+1,l,n—1—1,n—1). Assume T'(n,n) € T*(I+1,l,n—1—-1,n—1)
and that it satisfies O(n — 2), If there exists a vertex, say by € By, with the property

that dp,(b2) > 2, then we deduce that djp,(bs) = 1. So we have

d;(bZ)"l‘d%(sz) S |B3|—2+|B3|—1:2’n—2l—5 (6)
In addition, bybs ¢ E, and we can obtain
dr(by) + dz(bs) 2 n = 2. (f)

Combining (e) with (f), we know [ < 252, Now in view of the vertices b; € B; and
by € Bs, it follows from b1bs ¢ E that

a5 (b)) + dz(bs) = n — 2. (m)
Moreover, it is easy to see that
df(by) + dy(bs) < 2|By|+dy,(bs) =n — 3+ dy,(bs). (n)

It follows from (m) and (n) that dj,(bs) > 1. According to the arbitrariness of bs
and df, (by) < 1 for all by € By, we conclude that there exists at most one vertex
by satisfying dy,(b;) > 2; moreover, we obtain dj,(b;) = 1 for all by except for
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b;,. In addition, in view of the hypotheses dgs(bz) > 2, there exists a vertex, say
by € N, (b2), with the property d§4(53) =1, for every b; € By, we have

df(by) +dp(bs) <| By |+ | B2 | =1 +1<n—3.
It follows from by by ¢ E that
A5 (by) + dg (bs) > n — 2.

This is impossible. Thus we have dg, (bs) < 1, that is, T(n,n) € T(I+ 1,I,n — 1 —

1,n —1), here ”T_?’ <1<

Corollary 8. If an n x n bipartite tournament T satisfies O(n — 2) and n > 12,
then T is Hamiltonian, unless T(n,n) = T(%2, 222 222 242) or T'(n,n) € T(1 +
1,,n—1-1,n—1); here "T""* <I<Lg.

Proof. The condition O(n — 3) includes the condition O(n — 2), so using Corollary
7 we can easily get that T(2f2 222 28 mi3) T(1 4+ 2 0n — 1 —2,n — 1), where
15 <1<t and T(n,n) € T(l—}—l,l,n—l—1,71—[)7 where 22 <] < ™ Then
we can exclude the above case which does not satisty O(n — 2).

Case 1. Clearly, we observe that T'(%3, 223 23 243} do not satisfy O(n — 2).

Case 2. V\;e only have T'(%42, 22 222 242 which satisfy O(n —2) in T(1+2,1,n —
l-2,n-1

Case 3. Clearly, using Corollary 8, this is true.
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