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Abstract

For a given graph G = (V, E), a set D C V(G) is said to be an outer-
connected dominating set if D is dominating and the graph G — D is con-
nected. The outer-connected domination number of a graph G, denoted
by Y:(G), is the cardinality of a minimum outer-connected dominating set
of G. We study several properties of outer-connected dominating sets and
give some bounds on the outer-connected domination number of a graph.
We also show that the decision problem for the outer-connected domina-
tion number of a graph G is NP-complete even for bipartite graphs.

1 Introduction

Graph theory terminology not presented here can be found in [1, 5].

Let G = (V, E) be a simple graph. The neighbourhood of a vertex v, denoted by
Ng(v), is the set of all vertices adjacent to v in G. If v is a vertex of G then the
integer degg(v) = |Ng(v)| is said to be the degree of v in G. The minimum and
mazimum degree among all vertices of G are denoted by §(G) and A(G), respectively.
A vertex of degree one in a graph is called an end-vertex. A support is the unique
neighbour of an end-vertex. Let Q@ = Q(G) be the set of all end-vertices of G.

A set D C V(G) is a dominating set in G if Ng(v) N D # 0 for every vertex
v € V(G)—D. The domination number of a graph G, denoted y(G), is the cardinality
of a minimum dominating set of G.

A set D C V(G) is said to be an outer-connected dominating set of G if D is
dominating and either D = V(G) or G — D is connected. The cardinality of a mini-
mum outer-connected dominating set in G is called the outer-connected domination
number of G and is denoted by 7.(G). Observe that every graph G has an outer-
connected dominating set, since the set of all vertices of G is an outer-connected
dominating set in G.
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2 Preliminary results

Let K,, C, and P, denote the complete graph, the cycle and the path of order n,
respectively. For positive integers ni,...,n; let K, ., be the complete multipartite
graph with vertex set Sy U Sy U...US;, where |S;| = n; for 1 <i < ¢. By a star of
order n we mean the bipartite graph K,y for n > 2.

In our first observation we present the outer-connected domination number of
complete graphs, cycles, paths and complete multipartite graphs.

Observation 1
(1) Ye(Kn) =1 forn > 1;
(i1) V(Cp) =n —2 forn > 3;
n—1, n=2,3,

i) wr)={ 0Ty LTS

() If t > 2 and ny < ny < ... < ny, then

ny if t=2 and n; =1,
Ve Kpg,ome) = 1 4if t>3 and ny =1,
2 if t>2 and ny;> 1.

It follows from the next theorem and from its proof that outer-connected domina-
ting sets and outer-connected domination numbers of a disconnected graph are deter-
mined by outer-connected dominating sets and outer-connected domination numbers
of its components.

Theorem 1 If Gy,...,G, are the components of a graph G, then
(G) = |V(G)] — max{|V(G))| —F(Gi): i =1,...,r}.

Proof. Let Dy,..., D, be minimum outer-connected dominating sets of GGy, ..., G,
respectively. Then V(G) — (V(G1) — Dy),....V(G) — (V(G,) — D,) are outer-
connected dominating sets of G and therefore

5(G) < min{[V(Q) — (V(G) = D)|:i=1,...,r}
V(G)| — max{|V(Gi) = Dy : i =1,...,1}
V(G)| — max{|V(Gi)| = 5u(Gy): i =1,....,1}.

A

Now let D be a minimum outer-connected dominating set of G. Then |D| = 7.(G)
and in addition G — D is connected. Hence V(G)—D C V(G,) for some ! € {1,...,r}
and from the minimality of D it follows that DNV (G)) is a minimum outer-connected
dominating set of G;. Thus DNV(G;) = 7.(G;) and |V(G)| - %(G) = |V(G) - D| =
[V(G)—(DNV(G))| = |V(G)|—Y(G)) < max{|V(G)|—7(Gi):i=1,...,r} and
therefore 7.(G) > |V(G)| — max{|V(G;)| —¥.(G;): i = 1,...,7} which completes the
proof. [
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3 Bounds

It is obvious that if G is a graph of order n, then 1 < 4.(G) < n. In addition,
%(G) =1if and only if G = K; + H, where H is a connected graph of order n — 1,
while 7.(G) = n if and only if G = K,,. Hence 7,(G) < n — 1 if G has at least one
edge. Moreover, 7.(G) < n —2 if and only if G has at least one edge which is not an
end-edge. In general, 7.(G) < n — k if and only if there exists a proper connected
subgraph H of G such that |V(H)| = k and every vertex of H has a neighbour which
belongs to V(G) — V(H).

A characterization of graphs G of order n for which ¥.(G) = n — 1 is given in the
following observation.

Observation 2 If G is a connected graph on n > 2 vertices, then 7.(G) =n — 1 if
and only if G is a star.

Sampathkumar and Walikar [7] have proved that A(é )+1 <7(G) < 2m(G)—n(G)
for a connected graph G. Now we present similar 1nequajltles for the outer-connected
domination number.

Let A be the family of graphs defined as follows: a graph G belongs to A
if and only if there exists an outer-connected dominating set A of G such that
|PNg[v, A]] = A(G) + 1 for every vertex v belonging to A, Where PNgv, A] is the
private neighbourhood of v with respect to A, i.e. PNg[v, A} Nglv]— Ng[A—{v}].

Theorem 2 If G is a connected graph with n(G) > 2, then

m < %(G) < 2m(G) = n(G) + 1.

In addition, 7.(G) = W if and only if G belongs to the family A, while 7.(G) =
2m(G) — n(G) + 1 if and only if G is a star.

Proof. Since A(()J)rl < (@) (see [8]) and v(G) < 4.(G), we certainly have % <
7e(G). Moreover, since G is connected and has at least two vertices, we have m(G) >
n(G) — 1 and %(G) < n(G) — 1. Consequently, 7:(G) < 2m(G) — n(G) + 1.

If G belongs to the family A, then there exists an outer-connected dominating set
A of G for which 7.(G) < |4] = ”(Gil < %:(G). Now assume that 7.(G) = A?gil
sl
and this forces each vertex of D to dominate exactly A(G)+ 1 vertices and moreover
|PNg[v, D]| = A(G) 4+ 1. Consequently G € A.

If G is a star, then 7.(G) = n(G) — 1 =2m(G) — n(G) + 1. If 7(G) =2m(G) —
n(G)+1, then, since G has at least one edge, 2m(G) —n(G)+1 = 7.(G) < n(G)—1.
Thus m(G) < n(G)—1 and by the connectivity of G, m(G) = n(G)—1. Consequently,
7(G) = n(G) — 1 and, according to Observation 2, G is a star. O

and let D be a minimum outer-connected dominating set in G. Then |D| =

Before stating the next theorem, we describe a family 8§ of graphs, which are the
extremal graphs of the theorem.
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Let & be the family of graphs, where a graph G belongs to § if and only if there
exists an independent set I in G such that G — I is a tree and every vertex of G — I
is adjacent to exactly one vertex of I.

Theorem 3 If G is a graph, then

70) 2 n(c) - ML )

In addition, .(G) = n(G) — @ if and only if G belongs to the family S.

Proof. Let D be a minimum outer-connected dominating set in G and let mg(D)
denote the number of edges joining D and V(G) — D in G. Then

m(G — D) 2 n(G) = 7(G) - 1, (2)
and
mg(D) 2 n(G) = 7(G). (3)
Hence
m(@) > m(G - D)+ ma(D) > 2n(G) - 27.(G) - 1 (4)

and thus 7,(G) > n(G) — ™ML,
We now prove that 7.(G) = n(G)— m(G)+1 if and only if G belongs to the family 8.
Assume first that G belongs to S. Then there exists an independent set I in G such
that G—1 is a tree and every vertex of G—1 is adjacent to exactly one vertex of I. The
set I is an outer-connected dominating set in G. Thus Y.(G) < |I| = n(G)—n(G—-1)
and because n(G — I) =mg(I) =m(G) —m(G—I) =m(G) —n(G—1)+1 (and
therefore n(G —I) = G)Jrl)7

Te(G) <n(G) = n(G = 1) =n(G) -

Consequently, by (1), %(G) =n(G) — W
Assume now that 7.(G) = n(G) — % Let D be a minimum outer-connected
dominating set of G. Then by (4) we have

m(G) m(G — D)+ mg(D)
2n(G) — 29.(G) -1 (5)

2n(G) = 2 (n(G) = MGH) —1 = m(G).

IV IV

Hence, and by (2) and (3), it follows that
m(G = D) =n(G) = 7(G) -1 (6)

and
mg(D) =n(G) — 7(G). (7)
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Since G — D is connected (by the choice of D) and has n(G — D) — 1 edges, G — D
is a tree. Moreover, since m(G) = m(G — D) + mg(D) + m(G[D]) and m(G) =
m(G — D)+ mg(D) by (5), m(G[D]) = 0 and D is an independent set. Now, since D
is dominating, it follows from (7) that each vertex of G— D has exactly one neighbour
in D. This completes the proof of the fact that G belongs to the family S. O

Probably, the statement of the next lemma is well-known, but since we have not
seen such a result anywhere, we state it here with a short proof.

Lemma 4 In a graph G with 6(G) > 2 there is a cycle of length at least §(G) + 1.

Proof. Let (vg, v1,. .., v;) be alongest path in G. Then Ng(vg) C {v1,vs,...,v;} and
therefore v, € Ng(vg) N{v1,va, ..., v} for some k > degg(vo) > §(G). Consequently
(vo,v1, ..., 0k, vg) is a required cycle. O

Theorem 5 If G is a connected graph of order n, then
Ye(G) < —46(G).

Proof. The result is obvious if §(G) < 2. Now assume that §(G) > 3. By Lemma 4
there exists a cycle of length at least 6(G) +1in G. Let C' = (vg,v; ..., v;,0) be a
shortest cycle in G of length at least 6(G). We claim that the set D = V(G)-V/(C) is
an outer-connected dominating set of G. Certainly G — D = G[V(C)] is connected.
Suppose D is not dominating. Then Ng(v) N D = @ for some vertex v € V(C).
We may assume, without loss of generality, that v = vy and degg(vg) = r. Then
Ng(vg) = {v1,0i1,0ipy -, 0o, 0} Where 1 < §; < 4y < ... < 4,9 < l. Now
(Vo, Uiy, Vig41, - - -, U1, p) 1s a cycle of length at least §(G) which is shorter than C, a
contradiction. O

In the next observation we describe the main properties of minimum outer-
connected dominating sets of a graph.

Observation 3 Let G be a connected graph on at least 3 vertices. If D is a minimum
outer-connected dominating set in G and ) is the set of end-vertices of G, then

(1) Q C D if G is not a star;

(i)

(i) 7(G) = 9
) e

(iv

D=Qor|QND|=|Q|-1ifG is a star;

(G) = || if and only if every vertex of G is either a support or an end-vertex.

Proof. Since (ii) is obvious and (iii) easily follows from (i) and Observation 2, we
only prove (i) and (iv).

(1) Assume G is not a star and suppose to the contrary that Q — D # (). Then, since
G — D is connected, 7.(G) = |V(G)| — 1 and therefore, by Observation 2, G is a star,
a contradiction.

(iv) The statement is trivial for stars. Thus assume G is not a star and 7.(G) = |Q].
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Then, by (i), 2 is a minimum outer-connected dominating set of G' and this implies
that every vertex belonging to V(G) — Q is a support. Conversely, if every vertex of
the graph G is a support or an end-vertex, then € is an outer-connected dominating
set of G and, by (i), it is a minimum outer-connected dominating set of G and
therefore 7.(G) = |Q]. O

A subdivision of an edge uv is obtained by inserting a new vertex w and replacing
the edge uv with the edges uw and wv. A spider is the tree obtained from a star by
subdividing all of its edges. A wounded spider is a tree obtained from a spider by
removing at least one end-vertex. Certainly, a star is also a wounded spider.

The next theorem provides a lower bound for the outer-connected domination
number of a tree.

Theorem 6 If T is a tree of order n > 3, then
5UT) > A(T).
Furthermore, 4.(T") = A(T) if and only if T is a wounded spider.

Proof. The result is obvious if T is a star. Now let T be a tree of order n > 3
and assume T is not a star. Since T has at least A(T') end-vertices and since all
end-vertices belong to every outer-connected dominating set of 7 we certainly have
7T) > A(T),

Clearly, if T' is a wounded spider, then 7.(T") = A(T'). Now assume T is a tree for
which 4.(T) = A(T). Then since A(T) < |UT)| < 4(T) we have A(T) = |QT)]
(and 42(T') = |UT)|). From the equality A(T") = |Q(T)], it follows that there exists
a unique vertex, say u, of maximum degree, and (7') is a minimum outer-connected
dominating set of T'. In addition, every inner vertex of a path joining u to an end-
vertex of T' (if any) is of degree 2. This and the fact that Q(T') is dominating implies
that every such a path is of length at most two and at least one of them is of length
one. This proves that 7" is a wounded spider. U

Let R, R, R” be families of trees on at least 3 vertices defined as follows: a tree
T belongs to R if T is the corona of another tree, while a tree T belongs to R’ or R”,
respectively, if T is obtained from a tree .S belonging to R by adding a new vertex
and joining it to an end-vertex of S or to an inner vertex of .S, respectively.

Theorem 7 If T is a tree of order n > 3, then
- n
1) > |3
with equality 4.(T) = [§] if and only if T belongs to RUR U R".

Proof. Let T = (V, E) be a tree and let D be a minimum outer-connected domina-
ting set of T. Suppose, on the contrary, that ¥.(T') < [§]. Then %(T) < % and by
the pigeon hole principle | Nz (v) N (V — D)| > 2 for some v € D. But then any path
joining two vertices of Ny(v) N (V — D) in the connected graph T'— D together with

v form a cycle in T, which is impossible.
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Now we prove that 7.(T') = [§] if and only if 7' belongs to RUR' U R".

If T € R, then T is a corona and €(7T') is a minimum outer-connected dominating
set of T and 7o(T') = |[QUT)| = % = [5].

Assume T' € R'UR". Then there exists an end-vertex v such that T'—wv is a corona.
If T € R and w is a neighbour of v, then Q(T) U {u} is a minimum outer-connected
dominating set of T and 7,(T') = |A(T)|+1 = %52 +1 = [%]. Finally, if T € R”, then
QT) is a minimum outer-connected dominating set of 7" and 7.(T') = |Q(T')| = [§].

Let T be a tree of order at least 3 such that 7.(7) = [§]. If n = 3, then certainly
T =P; € RUR UR". Thus assume T has at least 4 vertices. Then [§] <n —1
which implies that 4.(T") < n—1, so T is not a star. Consequently, by Observation 3,
UT) C D. If D=QT), then [QT)| = [§] and therefore every vertex belonging
to V' — Q(T) is adjacent to exactly one vertex in Q(T') or one of them is adjacent to
two end-vertices and each of the other vertices is adjacent to exactly one end-vertex.
This implies T belongs to R or R".

Finally assume §2(7") C D. Then there exists a vertex v € D such that deg,(v) > 2.
We shall prove that deg,(v) = 2 and v is the only such vertex. From the connectivity
of T — D it follows that |[Np(v) N (V — D)| < 1. We claim that |Np(v) N D| < 1.
Suppose, to the contrary, that two vertices « and y belong to Nr(v) N D. Since T is
a tree we have [Nyp({z,y,v})N(V — D)| < 1. This, and the fact that no two vertices
in V' — D share common neighbour in D, imply that |V — D| = |N¢({z,y,v})N(V —
D)|+ |N¢(D —{z,y,v})N(V—-D)| <1+4|D| -3 =|D|—-2. Hence,n—|D| < |D| -2
and |[D| > % 41 > [§]. Thus v has exactly one neighbour in D and exactly one
neighbour in V' — D. Suppose now that |D — Q(T)| > 2. Then there exist u,v € D
such that degy(u) = degy(v) = 2. Denote by u; and v; the neighbour of w and
v in D, respectively. Then |V — D| = |Ny({u,uy,v,v1}) N (V — D)| + |Ny(D —
{v,u1,v,v})N(V = D)| <2+ |D| -4 = |D| — 2. Hence, n — |D| < |D| — 2 and
[5] = |D| > § +1> [%], a contradiction. We obtain that v is the unique vertex
of degree two in D and the vertex € Ny(v) N D is an end-vertex of T. Thus, we
conclude that T belongs to the family R'. O

As an immediate consequence of this theorem and of Ore’s theorem [6] we have
the following corollary.

Corollary 1 For a tree T # K, we have 5.(T) = v(T) if and only if T is a corona.

4 Edge subdivision and vertex removing

Now we examine the effects on 7.(G) when G is modified by an edge subdivision.
We start with some notation. If uv is an edge of G then by G & w,, we denote the
graph obtained from G by the subdivision of uv.

Theorem 8 For every integer k there exist a graph G and an edge uv of G such
that %(G @& wyy) —7(G) = k.
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Proof. We consider three cases.

Case 1. If £ < —2 then we construct graphs G and G @ w,, as follows. We begin
with four spiders S; with [V (S;)| = 2|k| — 1 and denote its centers by a;, ¢ = 1,2, 3, 4.
Next we add four end-vertices y; and four edges x;y;. Finally, to obtain the graph
G, we add vertices u, v and edges uv, uxy, us, Vs, vq, T123 (see Fig. 1). It is easy
to observe that D = Ng[z2] U Q(G) is a minimum outer-connected dominating set
of G and thus 7.(G) = 5|k| + 1.

o1 Yse
Z I3
U v

p L2 Tuq

02 Ys@

Figure 1: Graph G for k = —5

Let G @ wy, be a graph which results if the edge e = wv is subdivided (see Fig.
1). Notice that D = {w} U Q(G) is the minimum outer-connected dominating set of
G ®wy, of cardinality 4|k|+1. Thus 7, (G ®wy,) = 4]k[+1 and (G S ww,) —7e(G) =
—|k| = k.

Case 2. Define A = {u,v,x1,%a, T3, T4, Y1,Y2, Y3, Ya}. Then for k = —1,0,1 let
H be the subgraph of G induced by A, A — {ys}, A — {ys,va}, respectively. The
difference 7.(H & wy,) — J.(H) = k is easy to verify.

Case 3. If £ > 2, then let G be the join Pj, + K, where zq,xs,...,x3, are
consecutive vertices of Py, and z is the universal vertex of G. Then obviously {z}
is a minimum outer-connected dominating set of G, so 7.(G) = 1. It is also easy
to see that D = {z,z1,...,2;} is a minimum outer-connected dominating set of
G © Weyay,,- Hence Yo(G @ Wyyq,,,) = k + 1 and the proof is complete. O

Now we investigate how removing a vertex influences an outer-connected domi-
nation number. We have the following two propositions.

Proposition 9 For every connected graph G and a vertez v € V(G) such that G —v
s connected we have

F(G) < F(G —v) + 1.
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Proof. If D is a minimum outer-connected dominating set of G — v, then clearly
D U {v} is a minimum outer-connected dominating set in G and therefore 7.(G) <
(G —-v)+1. 0

Proposition 10 For every integer k > —1, there exists a graph G such that
Ve(G = v) = %(G) = k.

Proof. If k£ > 1, then let G be the graph which results if we add to a path Py,3
a vertex v and edges joining v to all vertices from the path. The vertex v is a
universal non-cut vertex of G and thus we have 4.(G) = 1. Next we remove v with
all edges incident to v. Notice that G — v is a path on at least four vertices, so by
Observation 1, 7.(G — v) = k + 3 — 2. Thus 7.(G — v) — 3.(G) = k. For k = 0 and
k= —1let G be a path P, and P, respectively, and let v be an end-vertex of G. It
is easy to verify that 7.(G —v) —7.(G) = k. O

5 Comparing 7. to other types of domination numbers

In this section we investigate relations between the outer-connected domination num-
ber and other types of domination numbers. We begin with some definitions.

A set D C V(G) is a connected dominating set of G if it is dominating and
the induced subgraph G[D] is connected. The cardinality of a minimum connected
dominating set of G is the connected domination number and is denoted by 7.(G).

We say that a set D C V(G) is a doubly connected dominating set of G if it is
dominating and the induced subgraphs G[D] and G[V(G) — D] are connected. The
cardinality of a minimum doubly connected dominating set in G is a doubly connected
domination number and is denoted by 7..(G). Properties of the doubly connected
domination number of a graph are studied in [2].

A set D C V(G) is a restrained dominating set if every vertex in V(G) — D is
adjacent to a vertex in D and to another vertex in V(G) — D. By 7,(G) we denote
the size of a smallest restrained dominating set of G. This type of domination was
studied for example in [3].

Since for an arbitrary graph G every connected dominating set is a dominating
set and every doubly connected dominating set is a connected dominating set, we
have the following inequality chain

NG) < 7(G) < el @)

However, each of the differences 7.(G) — 7(G) and 7..(G) — 7.(G) may be arbitrarily
large.

Proposition 11 For any non-negative integers r and t, there exists a graph G such

that 3.(G) = 1(G) = r and 1..(G) — 7(G) = ¢.

Proof. Let G be the graph obtained from the star K, ;11 by subdividing ¢ of its
edges. It easy to verify that v(G) = 1+t¢, 7.(G) = r+t+1and v.(G) = |V(G)|-1 =
r+2t4+1. 0
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In the next proposition we prove that the numbers 7.(G) and ~.(G) are incom-
parable.

Proposition 12 For every positive integer r there exist graphs Gy and Go such that

Ye(G1) = 1e(G1) = 1 and 7.(G2) — Ve(G2) = 7.

Proof. Let GG; be a star of order r + 2 and let G, be a graph pictured in Figure 2.
It is straightforward to verify that 7.(G1) = r + 1, 7.(G1) = 1 and (G2) = r + 2,
7e(G2) = 2r + 2. Therefore, 7.(G1) — 71.(G1) = r and 7.(G2) — V(G2) = r. O

£ T2 Lr42

Figure 2: Graph G,

Theorem 13 For any connected graph G with n(G) > 1,
() 1(G) £ 7%(G) + 1;
(i) 1(G) = %(G) + 1 if and only if G is a star;
(i) For any non-negative integer k there exists a graph G such that .(G)—,(G) =
k.
Proof.

(i) If %(G) < n(G) — 2, then every outer-connected dominating set of G is a
restrained dominating set of G and therefore 7,.(G) < 7.(G) < %(G) + 1.
Otherwise 7.(G) = n(G) — 1 and, by Observation 2, G is a star, so 7,.(G) =
n(G) =7(G) + L.

(ii) The result follows immediately from (i).

(iii) Let G = (k+1)Ky+ K. It is an easy exercise to verify that 7.(G) —7,.(G) = k.
]

6 Complexity issues for 7.

In this section we consider the decision problem of the OUTER-CONNECTED
DOMINATING SET as follows

OUTER-CONNECTED DOMINATING SET (OCDS)

INSTANCE: A graph G = (V, E) and a positive integer k < |V].

QUESTION: Does G have an outer-connected dominating set of cardinality at
most k?
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The decision problem of OCDS stays N P—complete even when restricted to con-
nected bipartite graphs.

To prove that the decision problem for arbitrary graphs is NP-complete, we need
to use a well-known NP-completeness result, called Exact Three Cover (X3C), which
is defined as follows.

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X| = 3¢ and a collection € of 3-element subsets
of X.

QUESTION: Does € contain an exact cover for X, that is, a subcollection ¢’ C €
such that every element of X occurs in exactly one member of C'?

Garey and Johnson in [4] proved that X3C is N P—complete.
Theorem 14 OCDS for bipartite graphs is N P—complete.

Proof. We know that the OCDS problem for bipartite graphs is in the NP class of
decision problems as it is easy to verify in polynomial time whether a given subset of
vertices of G is an outer-connected dominating set of G. To show that OCDS is an
NP-complete problem, we will establish a polynomial transformation from X3C. Let
X ={z1,29,..., 23} and €= {C},Cs,...,C},} be an arbitrary instance of X3C.

We will construct a bipartite graph G and a positive integer k& such that this
instance of X3C will have an exact three cover if and only if G has an outer-connected
dominating set of cardinality at most k.

Figure 3: Reduction from X3C to OCDS

Now we describe the construction of G and £ as follows:

V(G) = {z1,20,. .23 U{y1,¥2, -, ysg} U{er, 2, o e} U {2, y},
{zw: i€ {L,2,...,3q}}

U{zicj c o € G, i€ {1,2,...,3q¢}, j€{1,2,...,m}}
U{azcj,yej - j € {1,2,...,m}}

k= q+1.

&
Q
I
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The graph G so obtained is connected and bipartite.

Assume first that € has an exact 3-cover, say €. Then {¢;: C; € €'} U {z} is an
outer-connected dominating set of cardinality g + 1.

Now assume that D is an outer-connected dominating set of cardinality at most
¢+ 1. If x and y do not belong to D, then since D is dominating, at least 3¢ vertices
of G belong to D to dominate y;, i = 1,2,...,3¢, so |D| > 3¢, a contradiction.
Hence, at least one of z and y, say z, belongs to D. Notice that N[z] N X = 0.
Moreover, for each vertex u belonging to {z1,...,Zs3.,y1,---,¥sq}, |No(u) N X| =1
and for every vertex v belonging to {c1,...,¢n}, |[Ng(v)NX| = 3. Hencey ¢ D and

exactly g vertices of {ci,...,cn}, say vertices ¢;,,...,¢;,, must belong to D in such
a way that the corresponding set {Cj,,...,C},} is an exact cover of X. O
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