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Abstract

In this paper we consider the properties of the [32, 16, 8] BCH and quad-
ratic residue codes. It is shown that from the projection onto Fj per-
spective, the two codes are very similar. In particular, the kernel of
the mapping Proj from the BCH code to Fj has dimension 8 while the
dimension for the quadratic residue code is 7. Due to their simple Tan-
ner graph-trellis structure, the soft-decision maximum-likelihood decod-
ing complexity of these codes is shown to be low.

1 Introduction

The complexity of soft-decision maximum-likelihood decoding of a linear block code
depends very much on the structure of the code. One approach to decoding a linear
block code C that contains a geometrically simple subcode is to project C' onto a
larger field and perform two level decoding [2, 8, 9, 10, 12]. Using this method,
structurally equivalent decoding algorithms were proposed for the [24, 12, 8] Golay
code [2, 8, 12] by projecting it onto the quaternary [6,3,4] hexacode. In [15], a two
level decoding algorithm was given for a Type 11 [32, 16, 8] self-dual code C considered
by the authors to be the [32,16, 8] extended Quadratic Residue (QR) code g3s.



258 M. ESMAEILI AND T.A. GULLIVER

It has been shown in [4] that the decoding method used in [9, 12] can be expressed
in the language of Tanner graphs [11] and trellis diagrams [7, 14]. This presentation
of a code C is called the Tanner graph-trellis representation of C'. It consists of an
acyclic Tanner graph of a subcode C together with a trellis diagram of C/Cy.

M,
Hy be a parity check matrix for Cy. The Tanner graph of Cy is a bipartite graph
with two types of nodes called parity nodes (corresponding to the rows of Hy), and
symbol nodes (corresponding to the columns of Hp). A parity node p; is adjacent to
a symbol node z; iff the entry h;; in Hy is nonzero. When Cj has a simple acyclic
Tanner graph and the code with generator matrix Mpgs := M HI (called the parity
space), has a well-structured trellis diagram, C' can be decoded efficiently.

In the next section, we consider the [32,16,8] BCH code and show that the Type
IT [32,16, 8] self-dual code C' considered in [15] is actually this code. Section 3 is
devoted to the QR code ¢33. A low complexity Tanner graph-trellis representation
is given for this code. The two [32,16,8] codes are then compared based on their
projections onto Fy.

M, . .
Let My and [ 0 } be generator matrices for Cy and C, respectively, and let

2 A projection for the [32,16,8] BCH code

A two level decoding method was presented in [15] for the [32,16,8] QR code. In
this section we show that the code considered in [15] is actually the [32,16,8] BCH
code.

Let F3p = Fy[z]/(1 4 2* + 2°), and a be a root of 1+ 2% +z°. Since 1+2%+2° is
a primitive polynomial, « is a primitive field element in F33 and m;(z), the minimal
polynomials of o, i € {1,3,5,7}, are

my(z) =1+ 22 + 2°,

mg(z) = 1+ 2% + 2% + 2 + 2°,
mg(z) = 1+ 2+ 2% + 2t + 25,
my(z) =1+ z+ 2% + 23 + 25,

Therefore, the generator polynomial of the [31,16,7] BCH code is [13]

g(x) = my(x)mg(z)ms(x) = 1+ 2+ 2® + 2° + 2° + 2" + 2° + 2° + &0 + 2 + 2™

This was given in [15] as the generator polynomial of the [31,16, 7] binary quadratic
residue code. Adding an overall parity check to this BCH code, we obtain the
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following generator matrix for the extended [32, 16, 8] binary BCH code

11110101111100010000000000000001
(01111010111110001000000000000001
00111101011111000100000000000001
00011110101111100010000000000001
00001111010111110001000000000001
00000111101011111000100000000001
00000011110101111100010000000001
00000001111010111110001000000001
00000000111101011111000100000001
00000000011110101111100010000001
00000000001111010111110001000001
00000000000111101011111000100001
00000000000011110101111100010001
00000000000001111010111110001001
00000000000000111101011111000101
00000000000000011110101111100011

Applying the permutation

1 2
3 30
17 18
17 23

12
15
28
25

14
29
30
32

3 4 5 6 7 8 9
8§ 10 18 20 1 2 21
19 20 21 22 23 24 25
11 24 13 22 28 7 27

10 11
5 6
26 27
16 31

13
19
29
12

15 16
9 4
31 32
14 26

m =

to (1) gives the matrix M below. Putting this into trellis oriented form results in
matrix M’, as reported in [4].

01111101010000100001100001000100
10001101010000101110100001000100
01001101010000100111001001001000
10000100111000100111100001001000
11011000100000100111000101001000
11010100100010001011100001001000
11011000100000101000111001001000
01011100101000001010101001010000
00011110001000101000101101001000
00001100101010101010001101100000
00010100001010110010011101001000
00000000101010101010010101011010
00010010100010000010011111011000
00010010101110001000010001111000
00010010100000011000011101110001
00010010001011011000001001110010

11111111000000000000000000000000
00001111111100000000000000000000
00000000111111110000000000000000
00000000000011111111000000000000
00000000000000001111111100000000
00000000000000000000111111110000
00000000000000000000000011111111
10001000100010001000100010001000

01010000011010101100000000000000
00110000010100110110000000000000
00000101111110011010110000000000
00000011000010101100011000000000
00000000011000001100011011000000
00000000001100001010001110100000
00000000000001011100000000111010
00000000000000110110000010011100

This is a doubly even [32,16, 8] code and so does not contain a weight 14 codeword
as claimed in [6], page 599.
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Consider the following odd and even interpretations of the elements of F, =
{0,1,w,w = w?}:

0lor 10 10 10 010 o1 o1 o01
1|01 10 01 01 1|01 10 01 01
w |01 01 10 01 w |01 01 10 01
@ |01 01 01 10 @ |01 01 01 10
[0 1 w @ [0 1 w @

Even Interpretations Odd Interpretations
Using these interpretations we define a mapping Proj from Fy to Fy by
Proj(z1@az3®s) =< 21, 22,23, 24 >< 0,1 ,w, @0 >= 210 + 21 + 23w + 240.

This mapping can be used to project F4™ onto FJ*. Using the mapping Proj, the
extended code given by M’ is projected onto the [8,4,4] quaternary code given by
the generator matrix Gy

1000 @ w 0 1
G,_|01000@ 1 w
=10 010 w1 w0

0001 @ 0 @ 1

The first eight rows of M’ form the kernel of this projection.

In summary, the code given by [[15], Definition 1] is neither the QR code g2, as
claimed in [15], nor one of the three type I [32, 16, 8] codes, as claimed in [6]. It is in
fact the extended [32, 16, 8] BCH code. Thus all references to the [32,16, 8] QR code
in [3, 4] should be replaced by the extended [32,16,8] BCH code. Finally, it is worth
mentioning that since the [32,16,8] BCH code is equivalent to the [32,16, 8] Reed-
Muller code, it has efficient soft [4, 9] and hard [5] maximum-likelihood decoding
algorithms.

3 The [32,16,8] quadratic residue code

In this section, we provide a Tanner graph-trellis representation [4] for the [32, 16, 8]
QR code ¢3». Both the Tanner graph of the base code and the trellis structure of the
associated parity space are well structured and hence the given presentation is well
suited for the purpose of maximum-likelihood soft-decoding. We refer the interested
reader to [4] for more details on efficient soft-decoding using a Tanner graph-trellis
representation.
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The QR code g3, has the following generator matrix [1].

Applying the permutation 7', this matrix is changed to the matrix M,

q32

1
2

2
3

3
4

11111111000000000000000000000000
11100010111100000000000000000000
10111000110011000000000000000000
10100110010010110000000000000000
00000000000000000000000011111111
00000000000000000000111101010101
00000000000000000011001101110010
00000000000000001101011100000110
00011110111000100101000001000001
(01100110010000000000010001000010
00100010011000100001000001000100
10001000100010000001010001001000
00111100010000100000000001010000
11100010011010100100010001100000
01100000011000000101010100000000
00110000100010000101011000000000

4 5 6 7 8 9 10 11 12 13 14
8 6 7 1 5 9 11 10 12 13 15

given below.

15 16
14 16

17
18

18
20

1111 1111 0000 0000 0000 0000
0000 1111 1111 0000 0000 0000
0000 0000 1111 1111 1111 1111
0000 0000 0000 0000 0000 1111
0000 0000 0000 0000 0000 0000

19 20 21 22 23 24 25 26 27 28 29 30
17 19 21 23 22 24 30 26 31 28 32 25

0000
0000
0000
1111
1111

31 32
29 27

0000 ]
0000
0000
0000
1111

0111 0111 0111 0111 0000 0000
0000 0000 0000 0000 0111 0111

0000
0111

0000
0111

1010 1010 1010 1010 0000 0000
0000 0000 0000 0000 1010 1010
0110 1001 0000 1111 0011 0110
0000 0110 0101 0110 0101 1100
0000 0011 1010 1100 0101 0000
0000 0000 1001 1001 0101 O0101
0000 0000 0011 1101 0100 1010
0000 0000 0011 0011 1001 1100
0000 0000 0000 0101 1001 1010

0000
1010
0000
1100
0000
0000
0000
0110
0110

0000
1010
0000
0000
0000
0000
0000
0011
0000

By the mapping Proj, this presentation of g3, is projected onto an additive (8,2, 3)
quaternary code, and this mapping has a 7-dimensional kernel with basis consisting

of the first seven rows of matrix M,
of the BCH code.

The subcode C5 introduced by Ms,

matrix Hsy

q32°

the first 5 rows of M,

q327

This is only one dimension less than the kernel

has parity check

Hy = Iy ®[4,3,2] + I, ® ([1111] ® [1000]) + [00011000] & [1000],
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where ® denotes the Kronecker product. The associated parity space has generator
matrix Mpg := M.HT. A Tanner graph of Hy together with a 3-section minimal
trellis diagram of Mpg (a Tanner graph-trellis representation), is shown in Figure 1.
The nodes p;, p» and ps are called the root parities. The set of four parity nodes
located on the ith (left to right) branch of the Tanner graph are denoted by pe;.

[ p1paps | Pe1 Pe2 Pb3s Pss Pes Pes  Per  Pbs
000 100 100 100 100 000 000 000 000
010 111 111 111 111 000 000 000 000
000 000 000 000 000 100 100 100 100
010 000 000 000 000 111 111 111 111
010 000 000 101 101 111 111 000 000
111 000 000 010 011 110 111 000 000
000 000 101 111 101 111 010 010 000
000 001 001 001 001 101 010 000 000
000 000 010 010 111 000 111 000 000
000 000 000 111 111 110 001 o001 110
000 000 000 010 101 100 001 100 110

Mps =

A: Tanner Graph of C 5 B: 3-section MTD of the Parity Space

Figure 1: A Tanner graph-trellis representation of the quadratic residue code ¢z».
A: The cycle-free Tanner graph of Cy; B: A minimal 3-section trellis representing the
parity space Mpg.

Any edge in the second section of the trellis represents four parallel paths. These
four parallel paths correspond to the 2-dimensional space introduced by the 5th and
6th rows of the parity matrix Mpg. In fact, the four parallel paths are distinguished
by the four distinct root parities 000, 010, 101 and 111. This together with the sym-
metry and the low complexity structure of the 4-dimensional subspace of the parity
space introduced by the first four rows of Mpg results in low decoding complexity
for gss. The structure of this trellis allows one to apply the efficient computational
techniques used for decoding the Golay code Gag [12] and Reed-Muller codes [9] to g3a.
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4 Conclusions

The [32,16,8] BCH and QR codes were examined. It was shown that these two
codes have a relatively similar structure, and that from the projection onto F§ and
maximum-likelihood decoding perspectives, the two codes behave similarly. As future
work, it would be useful to apply the given Tanner graph-trellis representation to
the design of a maximum-likelihood decoder for gss.
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