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Abstract

In this paper, we investigate some interesting connections between trans-
versal designs and perfect hash families. We introduce a class of transver-
sal designs which can be used to obtain certain perfect hash families. We
then give a few constructions of such transversal designs, which yield new
perfect hash families.

1 Introduction and definitions

Let n,q,t, and s be positive integers and suppose (to avoid trivialities) that n > g >
t > 2. Let V be a set of cardinality n and let W be a set of cardinality q. We say that
a function f : V — W separates a subset X of V' if f is an injection when restricted
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to X. An (n, q,t)-perfect hash family of size s is a collection F = {f1, fa, ..., fs} of
functions from V' to W with property that for all sets X C V such that |X| = ¢, at
least one of the functions fi, fa, ..., fs separates X. The notation PHF(s;n,¢,t) is
used for an (n, ¢,t)-perfect hash family of size s. A perfect hash family is optimal if
s is as small as possible, given n, g, t.

Perfect hash families can be characterized as arrays satisfying certain properties.
The following elementary result is well-known.

Theorem 1.1. A PHF(s;n,q,t) is equivalent to an s by n array A of elements from
a q-set F, such that, for any t columns of A, there exists a row of A, say r, such
that the entries in the t given columns of row r of A are distinct.

Proof. Let F = {f1, fa,.-., fs} be the s functions in the PHF(s;n,q,t). Construct
an array A whose rows are indexed by the functions f1, fs, ..., f; and whose columns
are indexed by the elements of V. Then define A(f;,v) = fi(v) for all f; and for all
v € V. It is clear that A satisfies the stated properties.

Conversely, if we start with an array A satisfying the stated properties, then we
can construct a family of functions F that comprise a PHF(s;n,q,t). This is done
by reversing the previous construction. a

Given a PHF (s;n, ¢, t), say F, we define the array representation of F to be the
array A defined in the proof of Theorem 1.1.

Perfect hash families have been studied for over twenty years; see Mehlhorn [9]
for some basic results. There has been some recent interest in combinatorial con-
structions for perfect hash families. See, for example, Atici et al [1], Barwick and
Jackson [2, 3], Barwick, Jackson and Quinn [4], Blackburn [6], Blackburn and Wild
[7], Stinson, Wei and Zhu [11] and Wang and Xing [12].

In [6], Blackburn proved the following.
Theorem 1.2. A PHF(6;p% p,4) exists for all prime numbers p > 11, p # 13.

Recently, this result was generalized from primes to prime powers by Barwick,
Jackson and Quinn in [4].

Theorem 1.3. [4] A PHF(6;p?,p,4) exists for all prime powers p > 11, p # 13.
In this paper, we give some constructions for PHF(6;n% n,4) when n is not

necessarily a prime power.

2 Transversal designs and perfect hash families

A transversal design TD(k,n) is a triple (X, G, B) in which the following properties
are satisfied:

1. X is a set of kn elements called points,
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2. G is a partition of X into k n-subsets of points called groups,
3. Bis a set of n? k-subsets of points called blocks, and

4. every pair of points from different groups is contained in a unique block.

In a transversal design TD(k,n), a 4-block configuration is called a Pasch configura-
tion if

1. the four blocks intersect pairwise in six distinct points, and

2. the six points defined by the pairwise intersection of the four blocks occur in
six different groups of the transversal design.

A TD(k,n) is called anti-Pasch if no set of four blocks forms a Pasch configuration.

Remark: The anti-Pasch property has been extensively studied in the context of
Steiner triple systems (see for example, [8]). Here we are considering a similar prop-
erty for transversal designs.

We will prove an interesting connection between anti-Pasch TD(6,7n) and PHF(6;
n?,n,4). This result is stated in terms of orthogonal arrays, which we define now.
An orthogonal array OA(k,n) is a k by n? array, say A, of elements chosen from an
n-set Y, such that, for every two rows of A, say r; and rs, it holds that

{(A(r1,¢),A(ry,¢)) :1<c<n’} =Y x Y.

It is well-known that a TD(k,n) is equivalent to an OA(k,n). Every TD(k,n)
has a natural orthogonal array representation obtained as follows. Let (X, G, B) be
a TD(k,n). Let Y be an n-set, and for 1 <1 < k let ¢; : G; = Y be a bijection. Let
the blocks in B be named Bj, 1 < j < n?. Now construct a k by n? array A, where
A(i,j) = ¢;(B; N G;) for all ¢,7. It is easy to see that A is an OA(k,n); we say that
A is an orthogonal array that corresponds to the transversal design (X, G, B).

The following theorem provides a connection between transversal designs and
perfect hash families.

Theorem 2.1. Suppose (X,G,A) is a TD(6,n) and let A be the corresponding
OA(6,n). Then A is the array representation of a PHF(6;n% n,4) if and only if
(X,G,A) is an anti-Pasch TD(6,n).

Proof. Suppose that (X, G, A) is not anti-Pasch, and let By, By, B3, By € B be four
blocks that form a Pasch configuration. Consider the four corresponding columns
in A. In each of the six rows of A, there is a repeated element within these four
columns (from property 2 of a Pasch configuration). Therefore A is not the array
representation of a PHF(6;n2, n,4).

Conversely, suppose that A is not the array representation of a PHF(6;n% n,4).
Let 4,7, k,¢ be four columns of A for which the perfect hash property is violated.
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Therefore, for every row r of A, there is a repeated element in row r within the
four given columns. For any 2-subset of the four columns i, j, k, ¢, there can be at
most one row containing a repeated element in the two given columns, because A is
an OA(6,n). Therefore the four blocks in (X, G,.A) correponding to the four rows
i,j,k, ¢ form a Pasch configuration, and (X, G, .A) is not anti-Pasch. a

It can be checked that the constructions for all the PHF(6;n%,n,4) in Theorems
1.2 and 1.3 in fact produce orthogonal arrays OA(6, n). Hence, by Theorem 2.1, they
also yield anti-Pasch TD(6,n). So, we have the following:

Theorem 2.2. For all prime powers p > 11, p # 13, there is an anti-Pasch TD(6, p).

In the remainder of this paper, we present constructions for anti-Pasch TD(6,n)
when n is not a prime power.

3 Constructions

We begin with a direct product construction. In this construction and elsewhere, we
denote I, = {1,...,m} for a positive integer m.

Theorem 3.1. If there exists an anti-Pasch TD(6,n) and an anti-Pasch TD(6,m),
then there exists an anti-Pasch TD(6, mn).

Proof. Let (I, x I, {I,, x {i} : i € Is},B) be an anti-Pasch TD(6,m) and let
(I x I, {I, x {i} : i € I4},C) be an anti-Pasch TD(6,n). We construct an anti-
Pasch TD(6,mn), namely, (X = I, X I,, X Ig, {1, X I, x {i} : i € I}, D), where the
blocks are formed as follows. For B € B,C € C define

Dyc=1{(bci): (bi) € B,(c,i) € C}.

Then define
D= {DB,CZB EB,CEC}

This is just the standard direct product construction for transversal designs.

Now, suppose there exists a Pasch configuration in this TD(6,mn), consisting of
blocks DBl,C17 DBz,C27 DBa,Csa DB4,C4'

Suppose that two of the B;’s are identical, say B; = By. The block Dp, ¢, must
intersect both of Dp, ¢, and Dp, ¢,, which can happen only if B3 = B;. Similarly,
we also have B, = By, so all four B;’s are identical. But then C4, Cy, (3, Cy forms a
Pasch configuration in the TD(6,n), which is a contradiction.

In a similar fashion, if two of the C}’s are identical, then By, By, B3, By forms a
Pasch configuration in the TD(6,m), which is again a contradiction.

Finally, if all the B;’s are different and all the C;’s are different, then B, By, Bs, By
and C, Cy, C3, Cy are both Pasch configurations in the respective transversal designs.
U]
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Our next construction is a simplified Wilson-type construction. For use in this
construction, we now obtain some anti-Pasch TD(7,p), where p is prime. Suppose
p is a prime, and let aj,as,...,ar be distinct elements in Z,, p > 7. Construct a
TD(7,p) on point set Z, x I, with groups Z, x {i} for i € I; and blocks

{(m 4+ nay, 1), (m + nas, 2),...,(m+naz,7)},

for all m,n € Z,,. It is easy to check that this is indeed a TD(7, p) under the stated
hypotheses.

We next investigate conditons on the a;’s which guarantee that the resulting
TD(7,p) will be anti-Pasch. Suppose there is a Pasch configuration in which the six
points of intersection occur in the first six groups.

Each block is uniquely defined by an ordered pair (m,n). Suppose that the four
blocks in the Pasch configutration are defined by the pairs (mq, n1), (ma, na), (ms, n3)
and (a4, n4). By permuting the a;’s, we can assume that

mp + ainy = mg + aing
my + asny = mg + asng
my + agny = mq + azng
My + aqNy = M3 + aqny
Mg + asNg = My + asny
mg + agNg = My + ANy

Simple computation yields

a; — Qa4 Q4 — Q2 0 Ng — Ny 0
a; — as 0 as — as g — N1 = 0 (1)
0 Ay — ag g — A3 g — Ny 0

Let M denote the 3 x 3 matrix in Equation (1) above. Suppose that det M #
0 mod p. Then the only solution to Equation (1) has ny = ny = ng = ny. It then
follows that m; = ms = m3 = my, which means that we do not have four different
blocks. Hence, the assumed Pasch configuration cannot occur in the transversal
design.

In order to show that the TD(7,p) is anti-Pasch, we need to compute 6! deter-
minants for each of the (Z) 6-subsets of {ai,...,ar}. If all 7! of these determinants
are non-zero modulo p, then we have an anti-Pasch TD(7,p). We record some com-
putational results in Table 1. The entries in the first column are values of ay, ..., ar.
The entries in the second column are all the primes p such that p > 50 and at least
one of the relevant determinants is zero modulo p.

From this table, it is clear that, for any prime p > 50, there exists at least one
7-set of a;’s such that the 720 determinants are non-zero modulo p. Hence, the
TD(7,p) constructed by using the corresponding a;’s is anti-Pasch. We record this
result in the following theorem.
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1,02, ..., Q7 primes p > 50 except
1,2,3,4,8,13,15 | 53,59,61,67,71,97,103,127,131,139, 163,223, 191,467,
593,397, 167,811

1,2,3,4,8 11,13 53,59,71,79,97,107, 109, 113, 151, 227

1,2,3,4,8,13,19 | 53,59,61,71,79, 83,89, 103, 113, 131, 631, 349, 661, 197,
239,263,191

1,3,5,7,9,13,19 61,73,79

Table 1: Possible exceptions for anti-Pasch TD(7,p), p prime

Theorem 3.2. Ifp is a prime and p > 50, then there exists an anti-Pasch TD(7,p).

We next explore a Wilson-type construction.

Theorem 3.3. Suppose there exists an anti-Pasch TD(7,n), an anti-Pasch TD(6,m)
and an anti-Pasch TD(6,m + 1). Then there exists an anti-Pasch TD(6,mn + 1).

Proof. Assume the groups of the TD(7,n) are I,, x {i} for i € I7, the groups of the
TD(6,m) are I,,,x{i} for i € Is and the groups of the TD(6, m+1) are (I,,U{oco})x {7}
for i € Is. We further assume that, in the TD(6,m + 1), there is a block of the form
{(00,1),(00,2),...,(00,6)}. We will construct a TD(6, mn + 1) that has groups
((I, x I,) U {oo}) x {i} for i € Is. The blocks of the TD(6, mn + 1) are defined as
follows:

type 1 blocks
For every block in the TD(7,n) that does not contain the point (1,7) (say the
block is {(a1,1),(as,2),...,(az,7)} with a; # 1) construct m? blocks of the
form

{(a17b1,1),((12,b2,2),...,(ae,be,G)},
where {(b1, 1), (b2,2),...,(bs,6)} is a block in the TD(6,m).
type 2 blocks

For every block in the TD(7,n) that contains the point (1,7) (say the block is
{(a,1),(az,2), ..., (1,7)}), construct (m -+ 1)2 — 1 blocks of the form

{(a’17 bla 1)7 (a27b272)7 ) (a67b676)}7

where {(b1,1),(b2,2),...,(bs,6)} is a block in the TD(6,m + 1) other than
{(00,1),(00,2),..., (c0,6)}.

type 3 blocks
Finally, include the block {(o0,1),(00,2),..., (00,6)} in the TD(6, mn + 1).

It is easy to see that this is just the standard Wilson construction for transveral
designs (see [13]), where we give a weight of one to one point in the last group (and
a weight of zero to all other points in this group). Observe that every block in the
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TD(7,n) gives rise to a sub-TD(6,m) (from type 1 blocks) or a sub-TD(6,m + 1)
(from blocks of types 2 and 3) in the TD(6, mn + 1). These sub-TDs are isomorphic
to the TD(6,m) or TD(6,m + 1) (respectively) which are hypothesized to exist in
the statement of the theorem.

We now prove that the TD(6,mn+1) is anti-Pasch. Suppose there exists a Pasch
configuration in the TD(6, mn+1). First, assume that one of the blocks in the Pasch
configuration is {(o0, 1), (00, 2),...,(00,6)}. Then the other three blocks come from
blocks in the TD(7,n) that contain the point (0, 7). These three blocks have no other
point of intersection, and it follows that we cannot have a Pasch configuration in this
case. Therefore, we can assume that all blocks in the Pasch configuration are of type
1 or type 2.

Next, if two of the four blocks in the Pasch configuration come from the same sub-
TD, then all four blocks must come from the same sub-TD. This means that there is a
Pasch configuration in the TD(6,m) or in the TD(6, m+ 1), which is a contradiction.
Therefore, we can assume that the four blocks in the Pasch configuration are in four
different sub-TDs. We split the argument into cases.

Case 1: Suppose that the Pasch configuration does not contain any point of the
form (o0,1). Since all four blocks are from different sub-TDs, we a can restrict
them to the set I, x I by ignoring their second coordinates. The result is a
Pasch configuration in the TD(6,n), which is a contradication.

Case 2: Suppose that the Pasch configuration contains exactly one point of the
form (0o,4). Then the two blocks in the Pasch configuration that intersect at
the point (0o,4) must originate from two distinct blocks in the TD(7,n) con-
taining the point (1,7). The remaining two blocks must correspond to another
two blocks in the TD(7,n). These four blocks form a Pasch configuration in
the TD(7,n) that includes the point (1,7), contradicting the assumption that
the TD(7,n) is anti-Pasch.

Case 3: Suppose the Pasch configuration contains exactly two points of the form
(00,1), say (00,4) and (oo, j). The two blocks in the Pasch configuration that
intersect at (oo,4) must come from two different blocks in the TD(7,n) that
contain the point (1,7). Similarly, two blocks in the Pasch configuration that
intersect at (co,j) must come from two other blocks in the TD(7,n) that
contain the point (1,7). These four blocks in the TD(7,n) have no other point
of intersection, and it follows that we cannot have a Pasch configuration in this
case.

Case 4: If the Pasch configuration contains more than two points of the form (oo, %)
then it must contain the block {(c0, 1), (00,2),..., (o0, 6)}. We already showed

that this is impossible. -
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mn+1| n |m
849 53 | 16
945 59 | 16
1137 71 | 16
1169 73 | 16
1265 79 | 16
1329 83 | 16
1617 | 101 | 16
1644 53 | 31
1713 | 107 | 16
1745 | 109 | 16
1830 59 | 31
1892 61 |31
1937 | 121 | 16

Table 2: New examples of anti-Pasch TD(6, mn + 1) constructed using Theorem 3.3

We construct anti-Pasch TD(6,mn + 1) for several orders using Theorem 3.3,
where the required anti-Pasch TD(7,n) come from Lemma 3.2 and anti-Pasch TD(6,
m) and anti-Pasch TD(6,m + 1) come from Theorem 2.2. These constructions are
summarized in Table 2. Note that in each of these cases mn+1 is not a prime power,
and hence these orders were all previously unknown.

4 A construction using anti-Pasch pairwise balanced designs

Let K be a subset of positive integers. A pairwise balanced design PBD(v, K) is a
pair (X, B) where X is a finite set of v points and B is a family of subsets of X (called
blocks) such that |B| € K for every B € B, and every pair of distinct points occurs
in exactly one block in B. A PBD(v, K) is anti-Pasch if no set of four blocks in the
design pairwise intersect in six distinct points.

An anti-Pasch TD(6,n) is idempotent if the anti-Pasch TD(6,n) contains a set of
n pairwise disjoint blocks. It is easy to observe that every anti-Pasch TD(6, n) that
we have used and constructed in this paper is idempotent. The next construction uses
anti-Pasch PBD(v, K) and idempotent, anti-Pasch TD(6, k) to construct idempotent
anti-Pasch TD(6,v).

Theorem 4.1. If there exists an anti-Pasch PBD(v, K), and, for every k € K,
there exists an idempotent, anti-Pasch TD(6,k), then there exists an idempotent
anti-Pasch TD(6,v).

Proof. We apply the standard Bose-Shrikhande-Parker PBD construction for idem-
potent transversal designs. Suppose Aj, As, Az, A4 are four blocks in a Pasch config-
uration in the constructed anti-Pasch TD(6, v). If two of the four blocks are from the
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same transversal design TD(6, k), then all four blocks come from the same transversal
design, and hence the TD(6,v) contains a Pasch configuration. However, if all four
blocks come from different transversal designs, then there is a Pasch configuration
in the PBD(v, K). O

One way to obtain anti-Pasch PBD(v, K)is by deleting points from an anti-Pasch
BIBD. Anti-Pasch BIBDs can be constructed from finite geometries. The following
result in [10] is obtained from the unital in PG(2, ¢*) whenever ¢ is a prime power.

Theorem 4.2. [10] There exists a anti-Pasch BIBD(¢* + 1,q + 1,1) whenever q is
a prime power.

If we delete a block from an anti-Pasch BIBD(¢® + 1,¢ + 1,1), then we get an
anti-Pasch PBD(¢® — ¢, {g, ¢+ 1}). Applying Theorems 4.2, 4.1 and 2.2, we have the
following result.

Theorem 4.3. Suppose q and q + 1 are both prime powers, where ¢ > 16. Then
there is an anti-Pasch TD(6,¢> — q).

As an example, if we let ¢ = 16, then we get an anti-Pasch TD(6,15 x 16 x 17).
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