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Abstract

In this note we give a short and geometric proof of a famous result on
finite planar spaces which states that the number of planes is greater than
or equal to the number of points, and that equality holds if, and only if,
the planar space is either a finite 3—dimensional projective space, or there
are two disjoint lines containing all the points of the planar space, or all
the points but one belong to a finite projective plane.

1 Introduction

Let S = (P, L) be a linear space. A subset X of points is a subspace if any line
connecting two points of X is wholly contained in X. Then @) and S are subspaces.
Also, the intersection of any set of subspaces is again a subspace, and so the notion
of spanning subspace makes sense.

A plane is a subspace spanned by three non—collinear points, that is, the inter-
section of all subspaces of S containing the three given points.

A planar space is a linear space with a family of planes such that given any three
non—collinear points there is exactly one plane containing them, there are at least
two planes and each plane contains at least three non—collinear points.

Examples of planar spaces are the affine and projective spaces of dimension at
least 3 with respect to their lines and their planes.
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Let H denote the family of planes of a planar space.

Assume that S is a finite planar space; that is, |P| < oo, and put v = |P|, b = |L],
¢ = |H|. For any point p, let m, denote the number of planes passing through p, and
if 7 is a plane let v, and b, be the numbers of its points and lines.

Finding (a) the number of subspaces determined by a subset of v points, (b)
a bound for this number, and (c) a characterization of the extremal cases are in-
teresting problems in finite geometry. It has been also the starting point for some
characterization results for finite geometries with a prescribed arithmetic conditions
on their parameters. In the fifties, starting from a famous result of de Bruijn and
Erdés [2] which states that in a finite linear space there are as many lines as points,
and that equality holds if the linear space is a projective one, a number of papers
devoted to the corresponding question for finite planar spaces appeared; see, for
example, [1, 3, 4].

In [3] Hanani gave a new proof of the de Bruijn and Erdés theorem for finite
linear spaces, and he also showed that, for a finite planar space on v points with ¢
planes, ¢ > v, and that the equality holds if the linear space is a finite 3-dimensional
projective space, or the union of two disjoint and non-coplanar skew lines, or all
points but one belong to a finite projective plane.

In this note we give a new and short proof of this result. Our proof uses the same
technique used in a recent proof [5] of the de Bruijn—Erdos theorem on finite linear
spaces.

The following property is easy to show.
If m 1s a plane and p is a point outside of 7, then by < mp,.

Also, we recall that a finite projective space is a finite linear space whose planes
are all projective.

As usual, we denote a planar space as a triple (P, L, H).

Theorem 1.1 Let (P,L,H) be a finite planar space with v points and c planes.
Then

(i) ¢ >w;

(i) equality holds if, and only if, (P,L,H) is either a 3—dimensional finite projec-
tive space, or there are two skew lines ¢ and ' such that P = €U ', or all the
points of (P,L,H) but one form a finite projective plane.

Proof. Assume that ¢ < v; then we prove that ¢ = v and the planar space is one of
those described in the statement.

Double counting gives the following:

pr: ZUW. (1.1)

peEP TEH
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Let

m=minm,, k=maxuv,;
pEP TEH

then (1.1) implies that
vm < ck.

From ¢ < v it follows that k& > m.

If £ = m, then ¢ = v, the planes have the same size m, through any point there
pass m planes, and any two planes have non—empty intersection.

Let m be a plane, and p a point outside 7. Each line of 7 gives rise to a plane
through p; so m = m, > b, and, since b, > v, = m, it follows that b, = v, = m.
Also, any two planes meet in a line, since the number of lines in a plane is equal to
the number of planes through a point.

If every plane is a projective plane, the linear space is a projective space, and
since any two planes meet in a line it is PG(3,q).

If there is a plane 7 which is a near—pencil L U {p}, each plane through L is a
near—pencil. Let ¢ be a point not in 7. Through ¢ pass all near—pencils, one for each
line of 7; so the planar space is the union of L and the line pq.

Next, consider the case that k > m.

Let 7 be a plane of size k; then b, > k > m. So each point with 7, = m is in 7.
Let p be a point of degree m; then p € 7. Each plane a not containing p has size at
most m, since v, < b, < m, = m. Each point  outside = has 7, > k. Hence (1.1)
and ¢ < v imply the following:

Em+ (v—Fk)k < Zﬂp: ZUW <mk+(c—m)m <mk+ (v—m)m. (1.2)
peEP TEH

It follows that
v<k+m.

In 7 there are at least two lines on exactly two planes; otherwise
c>2+(k—-1)2=2k,

and so from ¢ < k + m it follows that k& < m, a contradiction.

If on every line of 7 there are exactly two planes, then there is a single point «
outside of m, so v = k+ 1. Thus ¢ < k+ 1. But ¢ > k+ 1, since 7 has at least k
lines, and there are at least two planes. Hence, v = c =k + 1.

Since 7, = k it follows that b, = k, and so 7 is either a near—pencil or a projective
plane.

In the former case, the planar space is the union of two skew lines, one of length
2 and the other with at least three points. In the latter case, the planar space is the
union of a projective plane and a point.
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Finally, we may assume that there is at least a line of 7 on at least three planes.
Thus v > ¢ >k +2.

Let ¢, and {5 be two lines of 7 on exactly two planes, and let 7; denote the plane
containing ¢;, i = 1,2, different from 7.

If /,N¢y = 0, since v > k+2 the planes m; and 7, meet in a line ¢ disjoint from .
So v = k+ |t|. Each line meeting both ¢; and ¢, is on |t| + 1 planes; so ¢ > k+t = v.
This means that there is a single line of 7 meeting both ¢; and ¢5, a contradiction.

Therefore ¢; N ¢y # 0. In this case, m; and m» meet in a line ¢ outside 7 and
intersecting 7 in ¢; N {5, and all the points of the planar space not in 7 are those of ¢.
If |t| = 2 any line of 7 is on exactly two planes, a contradiction to our assumptions.
Thus |¢| > 3 and v =k + |¢| — 1.

Any line connecting a point of ¢; and ¢, is on |¢| planes; so ¢ > k + |t| — 1. Since
¢ < v it follows that ¢ = v = k4 |t| — 1. Hence there is a single line L in 7 on at least
three planes, since each line give rise to at least one plane different from 7, and so ¢;
and ¢, have length 2, as well as each line of = through ¢; N¢5. So 7 is a near—pencil,
and also each plane through ¢ is a near—pencil. Hence S is the union of two skew
lines, t and L.

Thus the theorem is completely proved. |
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