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Abstract

Let d be a positive integer. We prove that there exists a constant ¢ =
2(/2+ (d+1)2 = (d + 1)%) such that if Ty,...,T, is a sequence of trees
such that |V (T})| = 4, diam(7T};) < d +2, and there exists z; € V(T;) such
that T; — z; has at least (1 — ¢)(i — 1) isolated vertices, then T3,...,T,
can be packed into K,. This verifies a special case of the Tree Packing
Conjecture. We then prove that if T is a tree of order n 4+ 1 and there
exists # € V(T) such that T — z has at least n — v/n/(4 + 2v/2) isolated
vertices, then 2n + 1 copies of T' may be packed into Ky, ;. Finally, we
show that there exists a constant ¢ = ¢/(d) such that if T is a tree of
order n+ 1, diam(T") < d+ 2, and there exists z € V(T') such that T — z
has at least (1 — ¢/)n isolated vertices, then 2n 4+ 1 copies of T may be
packed into Ky,4;. The last two results verify special cases of Ringel’s
conjecture.

1 Introduction

In 1976 Gyérfas and Lehel [7] conjectured that every sequence of trees Ty, Ty, ..., T,
such that |V(T;)| = i for all 1 < i < n, can be packed into K,. This conjecture
is usually referred to as the Tree Packing Conjecture. Since that time a variety of
partial solutions to this conjecture have been obtained. The interested reader is
referred to [4] and the references there for surveys of these results. In [4], the author
proved that if T; contains a vertex x; such that T; —x; has at least i —1—+/6(i — 1)/4
isolated vertices, then T, ..., T, can be packed into K,,. In [5], the author verified an
“approximate” version of the Tree Packing Conjecture for similar type trees. Namely,
that for ¢ < .076122, any sequence of trees T, ..., T, with |V(T;)| <4 —c(i — 1) can
be packed into K, provided that for each 1 <i < n there exists a vertex z; € V(1)
such that T; — x; has at least (1 — 2¢)(i — 1) isolated vertices. Let d be a positive
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integer. We prove that there exists a constant ¢ = £(1/2 + (d + 1)> — (d 4 1)*) such
that if 71, ..., T, is a sequence of trees such that |V(T;)| = 4, diam(T;) < d + 2, and
there exists x; € V(T;) such that T; — x; has at least (1 — ¢)(¢ — 1) isolated vertices,
then T1,...,T, can be packed into K,,. We then prove that if Ty, ..., Ty, is a sequence
of trees with each T; of order n + 1, and in each T; there exists an z; € V(7;) such
that T; — x; has at least n — \/n/(4 4+ 21/2) isolated vertices, then Ty, ..., Tb, can be
packed into Ks,.;. This proves a special case of Ringel’s Conjecture, which states
that 2n + 1 copies of a tree T of order n 4+ 1 may be packed into Ks,,1, and also
a more general conjecture of Haggvist [8, Conjecture 2.17] stating that any list of k
trees of order ¢ + 1 can be packed into any 2¢-regular graph of order k. Finally, we
show that there exists a constant ¢ = ¢/(d) such that if T, ..., Ty, is a sequence of
trees of order n + 1 such that diam(7;) < d +2 and there exists z; € V(T;) such that
T; — z; has at least (1 — ¢')n isolated vertices, then T, ..., s, can be packed into
Ko,+1. This result also verifies a special case of Ringel’s Conjecture and the more
general conjecture of Haggvist cited above.

Notation is standard. For terms not defined in this paper, see [2]. Let Gy,..., G,
and G be graphs. We say that Gy,...,Gy can be packed into G if there exists
inclusions V(G;) C V(G), 1 < i < ¢, such that if e € E(G;), then e € U;,E(G;).
The inclusions are said to be a packing P. We commonly abuse notation by saying
an edge e € P if e € E(G;) for some ¢ and say H C G if G contains a subgraph
isomorphic to H. Finally, we will often have occasion to consider a directed graph D
along with its underlying simple graph. Throughout this paper, if a directed graph
is denoted by 5, then its underlying simple graph will be denoted by D.

2 Tools
We begin with a lemma that will allow us to extend a packing of trees T1,...,T,
into K; to a packing of trees 11, ..., T,+1 into K; under appropriate circumstances.

Before stating this result, we need to develop some terminology that will be used in
its statement.

Let T1,T5,..., Ty, The1, - - -, Ther be a sequence of trees that can be packed into
K3, and fix such a packing P. Furthermore, assume that if © > n + 1, then T} is a
star. Let 2; € V(T;), 1 < i <n+r, and F; C {x;j : 23§ € Tj,degp(j) = 1}. Let
v € V(Tpy1) such that T,,1 — v has no edges. Define a digraph D by V(D) = H =
V(Toy1) — {v} and

E(ﬁ) ={ay:x,y € H and ©j € F; for some i, 1 <i<n+r, withv ¢ V(T;)}.

Thus E(ﬁ) consists of those directed edges, each of whose endpoints is in V(ﬁ),
that are contained in some F;, where v € V(T;). Thus no edge of F,4; is contained
in B(D).
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Lemma 1 Let Ty, Ty, ..., Ty, Tot1,- -, Inyr be a sequence of trees that can be packed
into Ky, and fiz such a packing P. Assume that if i > n + 1, then T; is a star. Let
T!., be a tree such that [V(T..))| = |V(Tui1)|. Let T, be the directed tree rooted
at v such that every edge of CI:T’LH 1s indirected toward the root v. If D contains a

subdigraph isomorphic to the digraph obtained from TT’LH —wv by removing all isolated
vertices, then there is a packing P' of Tv, ..., Tn, T} 1, Tosa, - -, Tpgr into K.

n

PRroOOF. Note that if T, , is a star, then the packing P satisfies the conclusion of
this lemma. We thus assume that the subdigraph of TT’L+1 — v obtained by removing
all isolated vertices is not empty. Let T C D be such that T is isomorphic to the
subdigraph of T, ,, — v obtained by removing all isolated vertices. For each edge

-

e =z € E(T), let 1 <4, < n+r such that e € F;,. Then z. = z;,. We now
modify our packing P of T1, ..., T4, in the following fashion. For each z.y. € E(f),
remove edge z.y. from tree T; and replace it with z.v, and denote the resulting
graph by T} (so that T} = (T3, — xeye) U{zev}). As 2.y, € E(T},), by the definition
of D, we have that v ¢ V(T;,), so that each graph Tj is a tree isomorphic to Tj, .
For1<i<n+r letU;=T;ifi #n+1 or i, for any e € E(’.l:)7 Ui, = T for
every e € E(T), and Upy; = Thyy — {vz, : e € E(T)}. We then have a packing P, of
Ui,...,Ups, into K; and none of the edges x.y. are used in this packing. Note that
Unyy is a star of order [Ty, | — |E(T)|, and, of course, if i # n + 1, then U; = T,
Now remove the edges of each U;, 1 <i < n+r,i# n+1, from K;, and then remove
any isolated vertices of the resulting graph. We then have a graph G with

|E(T)| + |E(Unsa)| = |E(Tur1)),

edges, and will be a tree isomorphic to 7T, ; provided that v is only adjacent in G to
the vertex of a component of T that is adjacent in T,  towv. Let C be a component
of T. Then there exists € V(C) such that zv € E(T",,), and every edge of C is
indirected towards x. For each edge e = z.y. € E(C), z.v € E(T]) = E(U;,) and
ie #n+ 1. Furthermore, x # w, for any e € E(f) Thus the only vertex of C' which
is adjacent in G to v is . Whence G is a tree isomorphic to 7}, and we have a
packing of Th,..., Ty, Ty 1, Tny2, - - -, Togr into K. O

Remark 1 Note that for each edge of T}, | —2n41, there are two edges of the packing
P that are changed. One such edge is used for an edge of T, | — p41, and the other,
in some sense, has its “direction reversed”. That is, in P, this edge was of the form
vxe in tree Ty (with z, = 2;,) but in the packing P’, it is z.v in tree T;,. Thus if we
are viewing the edges of the trees T; being indirected toward the root z;, the direction
of the edge vz, is reversed. Finally, observe that if the packing P identifies x; with
v;, then the packing P’ identifies x; with v; as well, and V(P (Tnt1)) = V(P (T, ,)).

A transitive tournament is a directed graph on n vertices with out degree sequence
(0,1,...,n —1). At times it will be convenient to have a canonical labeling for a
transitive tournament of order n. Let 7 be the transitive tournament such that let
V(r)={0,1,...,n — 1} = Z, and deg/ (i) = 4. Thus deg; (i) =n —i — 1.
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Lemma 2 Let D be a subdigraph of the transitive tournament T of order n such
that D (the underlying simple graph of ﬁ) has minimal degree at least 6(n — 1)

0 <6 <1 Lete>0 andd a positive integer such that d(l —0)4+c¢< 4. Let F
be a directed forest of order cn with r components Ti,...,T., where each edge ofT
1s indirected towards some root v;. Let T; be the underlymg simple graph of 1 T;. If
d > max{disty, (v;, ;) : 2, € V(T,)} for all 1 < i <r, then F is contained in D.

PROOF. As D is a subdigraph of 7 and (D) > d(n — 1), D has some component
of order at least 6(n — 1) + 1. As an induced subdigraph of a transitive tournament
is a transitive tournament (of possibly smaller order) we assume without loss of
generality that D is connected and has order at least §(n — 1) + 1. For convenience,
we will also assume that {0,...,0(n — 1) + 1} C V(D). Let F be the underlying
simple graph of F. Let Np(i) = {z; € V(T}) : distr(vj,z;) = 4,1 < j < r}, and
Thus m; = X on; and myg = cn. We will show by induction on 0 < i < d that
F[Mp(i)] is contained in D[{0,1,...,|i(1 = &)(n — 1) + m; — 1]}]. If i = 0, then
V(f[MF(O)}) ={v; : 1 < j < r} and we identify v; with j — 1, 1 < j < r. Thus
F[Mp(0)] is trivially contained in D[{0, ..., mo—1}]. We thus assume that 7 > 0 and
F[My(i)] is contained in D[{0,1,..., [i(1—8)(n — 1) +m; —1]|}]. We remark that it
suffices to show that each vertex of D identified with a vertex of Np(7) is inadjacent to
at least n;., vertices of D contained in {0,1,..., (i +1)(1 = 0)(n — 1) +msy — 1]}
Let wy,...,u,, be the n; vertices of D that have been identified with the vertices
in Np(i). Then u; < [i(1 —0)(n — 1) +m; — 1] for every 1 < j < n;, and so
deg; (uj) >n—1—[i(1 —6)(n — 1) +m; — 1]. Furthermore, as §(D) > §(n — 1),
cach vertex of D has at most (n —1—d(n — 1)) = (n —1)(1 — §) fewer edges incident
with it than in 7. Thus

degs(u) 2 n—1—[i(1 = 8)(n—1)+m; — 1] = (n - 1)(1 - 0)

for every 1 < j < mnj;. As deglg(uj) is an integer, we have that

degh(u;) 2 n —1— (i +1)(1 = 6)(n —1) +m; — 1]
for every 1 < j < n;. Note that in 7, the edge zu; € E(7) if and only if z > u;.
Hence at most [ (i+1)(1—6)(n—1)+m;—1] integers u; # x € Z, satisty «1; ¢ E(D).
By the pigeon-hole principal, u; is thus inadjacent to at least n;y; vertices in the set
{0,1,.., |G+ 1)1 =8)(n—=1)+m; — 1| +ni1} =
{0,1,..., [+ 1)1 =6)(n—1) +mq — 1]},

provided that [(i+1)(1—6)(n—1)+m;1—1] < §(n—1)+1 (as {0,...,6(n—1)+1} C
V(D)). Note that [(i + 1)(1 = 8)(n — 1) + muy — 1] < d(1 — 5)(n —1) +cn. As
d(1 —0)+c <9, we have that d(1 —d)(n — 1) + ¢(n — 1) < §(n — 1) so that

dl-08)n—-1)+cnm<dn—-1)+1< |V(ﬁ)|,
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Thus F[Mp(i + 1)] is contained in D[{0,1,...,[(i +1)(1 = &)(n — 1) + msy — 1]}],
and the result follows by induction. O

We will have occasion to find complete subgraphs of a graph, and will use the
following weak form of Turan’s Theorem [3], stated here for completeness. For a
graph G, let G denote the complement of G.

Lemma 3 If G is a graph of order m > t* and |E(G)| < m?/2t, then K, C G.

We will also need to find a subgraph of a graph with large minimal degree. For
this we will use the following result (see [1], page xvii).

Lemma 4 Let { be a positive integer. Suppose that H is a graph of ordern > {4+ 1.

If ,
BEH) 2 (€~ 1)(n - 3) +1,

then H contains a subgraph F such that 6(F) > (.

3 The Tree Packing Conjecture

Theorem 5 Let d be a non-negative integer, and ¢ = 3(\/2+ (d+ 1) — (d + 1))
Let T, ..., T, be a sequence of trees such that |V (T;)| = i, there exists z; € V(T;)
such that T; — x; has at least (1 — ¢)(i — 1) isolated vertices, and distr, (v;,v) < d+1
for every v € V(T;). ThenTh, ..., T, can be packed into K,.

Proor. If Ty,...,T, are all stars the result is straightforward. Indeed, assume
that Ti,...,T, are stars with tree T; of order i and have been packed into K.
Add a vertex v to K,, and an edge from every vertex of K, to v. The resulting
graph is isomorphic to K1, and the graph G defined by V(G) = V(K,) U {v} and
E(G) ={vz :z € V(K,)} is a star of order n+ 1. Note that by the same argument,
it 7h,...,T, is any sequence of trees with |V(7};)| = i that can be packed into K,,
then there is a packing of Ty,...,T,, T, into K,y where T, is a star of order
n + 1. We may thus assume d > 1 and ¢(n — 1) > 1.

For what follows we assume that V(K,) = [n] = {1,...,n}. We will show by
induction on n that we may apply Lemma 1 in such a way that 71,...,7T, can be
packed into K, so that z; =i for all 1 <7 < n. If n = 1, then the result is trivial.
Let n > 1 and inductively assume 71, ...,T, as above have been packed into K, so
that x; = . By arguments above, there then exists a packing P of T1,..., T, T},
into K11 (in the above argument we identify v with n + 1), where T}, is a star of
order n+1. Let T;,11 be a tree such that there exists z,+1 € V(Tht1), Tnt1 —Zny1 has
at least (1 —c)n isolated vertices and disty, ,, (Tn41,u) < d+1for every u € V(Tppq).
Note that H = V(Tp+1 — Tnt1) = V(K,) = [n], and as every tree T;, 1 < i < n
is packed into K,, we have that n +1 ¢ V(T;), 1 < i < n. For 1 < i < n, let
Fy={ij :ij € E(T;),degy(j) = 1,and j < i}. Define a directed graph D by
V(D) = H and E(D) = U, E(F;). In order to apply Lemma 1, we must show that
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T C D, where T is the directed forest obtained by first indirecting every edge of
Th+1 towards 2,41, then removing x,4,, and then removing any isolated vertices.
Note that there are at least i — 1 — ¢(i — 1) isolated vertices of T; — z;, and if z is
such an isolated vertex, then iz € F; unless 2 > i. By the remark following Lemma
1, the only way this can occur is if the “direction” of iz is “reversed”, and there are
as many of these edges in the packing P as there are edges in U™, (T; — ;). Thus

n n

D i—1—c(i=1)=> c(i—1)

(i —2¢)n(n — 1)' )
2

\Y

|E(D)|

Let 6 = 1 — v/2¢. We first show that D (the underlying simple graph of 5) contains
a subgraph of minimal degree at least dn.

Asc(n—1) > 1 (so that n > 2) and 1/(n — 1) > 1/2n?, we have that ¢ > 1/2n?.
It then follows that n > én + 1. As |E(D)| = |E(D)| > (1 — 2¢)n(n — 1)/2, by
Lemma 4 it suffices to show that the following inequality holds:

(1 -2¢)n(n —1)

5 2((571—1)(71—(%”)—&—1.

As § = 1 — +/2¢, the preceding inequality is equivalent to

20n+\/%n—220,

which clearly holds as 2cn > 2¢(n — 1) > 2. Thus D contains a subgraph of minimal
degree at least dn, so that D contains a subdigraph D' such that D' has minimal
degree at least dn. Let U,,...,U, be the components of T, and u; € V(U;) such
that w;zpi1 € E(Tp11). Then Y. |V(U;)] < cn and disty, (u;, u) < d for every
uw € V(U;). Let |V(D')| =t, ¢ = dn/t, and ¢ = en/t (so that 't = cn). If
d(1 —0") + ¢ < &, then by Lemma 2 D' (and so D) contains T provided that
D' has minimal degree §'t = én and |V(T)| = 't = cn. Thus D' contain T if
d(1—9¢")+ ¢ < §'. The result will then follow by Lemma 1. It thus suffices to show
that d(1 —¢") +¢ < 4.

Substituting the values for &', ¢/, and 6 = 1 — v/2¢, into d(1 — &) +¢ < ¢, it
suffices to show that

L < (1—2yc)n+ (1 =+/2c)nd — cn
- d .
As t < n, it thus suffices to show that

< (1=2yc)n+ (1 = +v2c)nd — cn
< ¥ :
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The preceeding inequality is equivalent to

0<1—v2c—dv2c—ec.

In /c, the right-hand side of the preceeding inequality is a quadratic whose graph
opens downward and is 1 at \/c = 0. Thus the inequality will be true if \/c is the
largest root of the right-hand side of the preceeding inequality. This inequality then
holds provided that

Ve=—=(V3+2d+d—1-d).

1
V2
Squaring both sides of the preceeding equality, the result follows with

e 2T @FI) = (d+ 1)

2

Clearly we have the following result as well.

Corollary 6 Let d be a non-negative integer, and ¢ = 3(1/2 + (d +1)? — (d + 1))*.
Let T, ..., T, be a sequence of trees such that |V (T;)| = i, there exists z; € V(T;)
such that T; — x; has at least (1 — ¢)(i — 1) isolated vertices, and diam(T;) < d + 2.
Then Ty, ..., T, can be packed into K,.

4 Ringel’s Conjecture

In contrast to the Tree Packing Conjecture, where there is a unique packing of the
stars 11, ..., T, into K, |V(T;)| = i, there are many packings of 2n + 1 stars of order
n+ 1 into Ky,+1. We begin by specifying a canonical packing of 2n + 1 stars of order
n 4+ 1 into Ky, that will be used throughout this section.

Let So be the star with V(Sp) = {0,1,...,n} and E(Sy) = {0i : 1 < ¢ < n}.
With this labeling, So is graceful. That is, if e € E(Sp), e = 0i, then the differences
i — 0 are all distinct. The interested reader is referred to [6] for a more general
definition of a graceful graph and a survey of known results on graceful graphs. It
was shown by Rosa [10] that if G is graceful, then there exists a cyclic decomposition
of Ky, 1 into subgraphs isomorphic to G. Here a cyclic decomposition of Ks,; into
subgraphs isomorphic to G is just a packing of 2n + 1 copies of G into Ks,+; such
that the function f : Zap11 — Zayps1 by f(i) =i+ 1 (mod 2n + 1) leaves the packing
invariant. Thus we have a packing of 2n+1 copies of the star, say S, ..., So,, with n
edges given by V(S;) = fi{(V(S)) and E(S;) = {f(0)fi(j) : 1 < j < n}. Moreover,
this packing has the following useful property.

Lemma 7 Define a digraph D by V(ﬁ) = Zyps1 and E(ﬁ) = {ij : ij € Sy and
degg,(j) = 1}. Then D[V (S;) — {t}] is a transitive tournament.
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PROOF. As the packing of Sy, ...,Ss, into Ky, is invariant under f, it suffices to
show that the result holds for ¢ = 0 (as f will then cyclically permute the digraphs
D[V (S;) —{¢}]). If i = 0, then V(S;y) — {0} = {1,2,...,n}. It is straightforward to
verify t'hi’:tt degf)[v(sg)f{o}](j) =j—1for every 1 < j <mn. Whence D[(S) — {0}] is
a transitive tournament. 0O

Theorem 8 Let Ty,...,Ts, be a sequence of trees of order n + 1 such that there
exists x; € V(T;) for which either:

NG
4422

1. T; — x; has at least n — 1solated vertices for all 0 < i < 2n, or

2. if d is a non-negative integer, and ¢ = (/1 + (4 + 4d)2 — (4+4d))?, then T; — x;
has at least n—cn isolated vertices and disty, (x;,v) < d+1 for every v € V(T;),
for all 0 < i < 2n.

Then Ty, ..., Ta, can be packed into Kopyy.

PROOF. We will refer to the case where condition 1 holds as Case 1 and to the case
where condition 2 holds as Case 2. In Case 1, let ¢ = 1/(y/n(4 + 2v/2)). In either
case, if cn < 1, then the only possible choice for each T; is a star of order n + 1. We
may thus use the canonical packing of 2n + 1 stars into Ky,1. We may thus assume
without loss of generality that ¢n > 1 (so that in Case 1 we have that n > 47). We
will show that if there exists ; € V(T;) such that T; — z; has at least n — cn isolated
vertices, then Tp,...,Ts, can be packed into Ks,,1. We begin with the canonical
packing So, ..., Ss, of 2n + 1 stars of order n 4+ 1 into Ks,,; as above. We will
inductively apply Lemma 1 and show by induction on ¢ that Tp, ..., T}, S; 1, .., S5,
can be packed into Ky, where Sj,,...,S55,,, are stars of order n + 1 such that

|E(S;) N E(S))] > [n - 2V/en], (1)

for every i+1<j<2n,andifzy =e € E(T; —j),0<j <i,thenz,y € V(S;). As
we will be applying Lemma 1, the vertex of maximal degree in T; will always be 4. If
¢ = 0, then we have the packing Sy, S, ..., S, as above into Ky, 1. Define a digraph
D by V(D) ={0,...,2n} and E(D) = {ij : ij € S;,0 < i < 2n, and degg,(j) = 1}.
By Lemma 7, D[V(S,) — {0}] is a transitive tournament and thus contains every
indirected tree (and thus forest) of order n (and so of order ¢n). Thus by Lemma 1,
1o, 51, - - -, Sy, can be packed into Ky, 4. Furthermore, |E(S;)NE(S})| =n or n—1.
To verify that Equation 1 holds, we will show that |E(S;)NE(S})| > n—1 > n—2/cn.
Elementary calculations will show that Equation 1 holds provided that 1/(24/c) < n.
Asen >1,n > 1/c > 1/(24/c) and thus Equation 1 holds. Finally, by Remark 1,
V(To) = V(So). Thus if e = zy € E(Ty — 0), then z,y € V(So).

We now assume that the induction hypothesis holds for i > 0, and will show that
our packing of Ty, ..., T}, S;,q, ..., Sy, into Ks,pq can be extended to a packing of
Tos -3 Tig1, 89, - -, Sy, into Kopy1 by using Lemma 1 in such a way so that the
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induction hypothesis is satisfied. As Equation 1 holds, there are at least [n —2/cn |
vertices of Sip1 — @41 that are also vertices of S/, — @41 Let L = {v € (V(Si11) —
{i+1)Nn(V(Sjy,) —{t+1}) : v = z; forsomei +2 < j < 2nand |[E(S;) N

E(S)| = |n - 2yen]}, and ¢ = |L|. For 0 < j < i, let F; = {jk : jk € E(S;) N
E(T, ) and degy, (k) = 1}, and for i+2 < j < 2n, let F; = {jk:jk € E(S;)NE(S))}.
Let 7 be the transitive tournament T[Z2ny1 — {¢ + 1}] (here 7 is the canonical
transitive tournament of order 2n + 1). Define a digraph D' by V(D') = V(') and
E(D') = {@ : ) € Ujezgn,, i} Fj and @,y € Zonyr — {i + 1}}. By the remark
following Lemma 1, |E(7') — E(D')| < 2¢n - i < 4cn®. Hence

{(n— |n —2ven]) < den®.

Whence ¢ < 2y/cn. Let V(Di1) = (V(Si1) N V(SL,,)) — (LU {i +1}) and Dyy, =
D'[V(Dis1)]. As |E(Siz1) N E(SI)| > n — 2\/En and ¢ < 2v/en, |V(Diy1)| = m >
n —4y/cn. Removing every directed edge of Dz+1 that is not contained in E(7'), we
have a subdigraph D, of Dy, such that [V(D.,,)| = m whose underlying simple
graph contains at least m(m—1)/2—4cn? edges. Note that DHl is a subdigraph of a

transitive tournament of order m. We now show for z € V/(Dj.,), that i+1 ¢ V(T,),
0<z<iandi+1¢V(S),1+2<z<2n.

Let © € V(D). As z € (V(Sit1) NV(SL,,)) — {i + 1}, and every vertex of
V(Sit1) N V(Si,,) is a neighbor of ¢ + 1 in S;jy; or is itself 4 + 1, we have that
z€{i+1+k(mod2n+1):1<k<n}. Lete=abe E(S,)ifi+2 <z < 2n,
e=abe E(T,)if 0 <z <. It suffices to show that a # i+1 # b. If e € E(S,), then
x = a or b. Assume without loss of generality that © = a, so that z # i+ 1. As we
began with the canonical packing of Sy, ..., Sa, into Kopy1, b € {x+k (mod 2n+1) :
1<k<n}. Thusbe {i+1+k (mod2n+1):1<k<2n}. We conclude that
b#i+1 Ifab=¢e¢ ¢ S, and e € E(T, — ) for some 0 < j < i, then by the
induction hypothesis a,b € V(S;). Thus a,b € {z + k (mod 2n +1) : 1 < k < n}.
We then have that a,b € {i+ 14k (mod 2n+1): 1 <k <2n} sothat a #i+1#b.
Finally, if e = ab ¢ E(S,) UE(T, —z), 0 <z <iore=abe€ E(S,) — E(S,),
142 < x < 2n, then, following the description in the remark following Lemma 1, ab
has had its “direction reversed”. If, say, b € {a+ k (mod 2n+1) : 1 < k < n} (so
that ab € E(S,)), then z = a. Again we then have that a,b € {i+1+k:1 < k < 2n}
and a #i+1#0.

Let T be the directed graph obtained by indirecting every edge of Tj+1 to x;41,
then deleting ;11 and then deleting any isolated vertices. In order to apply Lemma
1, we need only show that D! ip1 contains a subdigraph isomorphic to T. We now do
thls considering Cases 1 and 2 separately.

Case 1: We wish to apply Lemma 3 to show that D], (the underlying simple
graph of Di +1) contains a complete subgraph of order cn. This will then imply that

13; 11 contains a transitive tournament of order cn, and hence that 13; 11 contains
every indirected tree, and hence forest, of order cn. We must show that m > (cn)?
and the complement of D], contains at most m?/(2cn) edges. It is straightforward
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to verify, as n > 47 and m > n — 44/cn, that m > (cn)?. It was shown above that
the complement of D, contains at most 4cn? edges. An elementary calculation
then shows that m?/(2cn) > 4cn? will hold provided that m > v/8c?n3. Using the
facts that m > n — 4y/cn and substituting ¢ = 1/(y/n(4 + 2v/2)), we have that
m?/(2en) > 4en? provided that n > (4 + 2v/2)?, which is true. Hence D), contains
a transitive tournament of order cn and ﬁ; +1 contains a subdigraph isomorphic to

—

T.

Case 2: Let § = 1 — 84/c. In order to apply Lemma 2, we first show that D/,
contains a subgraph of minimal degree at least én by applying Lemma 4.

Asm > (1-44/c)n and én = (1—84/c)n, m > dn+1 will hold provided that n >
1/(4y/c). It is not difficult to verify that ¢ < 1, and as nc > 1, n > 1/¢ > 1/(4+/c).
Thus m > dn + 1. In order to apply Lemma 4, it thus suffices to show that

—den® > (6n—1)(m — 67”) +1.

m(m — 1)
2

Substituting the above value of §, we have that the above inequality is equivalent to

m? +m(1+ 16vy/cn — 2n) +n® — 164/cn® + 56cn” +8y/en —n — 2 > 0.

The left-hand side of the preceeding inequality is a quadratic in m, and will hold
provided that m is at least the largest root of the left-hand side of the preceeding
inequality. As m > (1 — 44/¢)n, we thus need to show that

(=1 +2n — 16v/cn + V9 + 32cn?).

(NN

(1-4Ve)n >

The preceeding inequality is equivalent to

8ven +1 > v9 + 32¢n?,

which will hold provided that 4cn® + 2y/cn — 1 > 0. The left-hand side of this
inequality is a quadratic in n, and the inequality will hold provided that n > (\/_ —
1)/(4y/c). As (V5 — 1)/(44/c) < 1/4/c, it suffices to show that n > 1/y/c, which
holds as y/cn > c¢n > 1. Thus D), contains a subdigraph of minimal degree at least
én, so that D) +1 contains a subdigraph D_’Q’H such that Dj,, has minimal degree at
least én.

Let t = |V(D},,)], & = dn/t, and ¢ = en/t (so that ¢t = cn). I d(1—0') +¢ <
&', then by Lemma 2 D}, (and so D,,,) contains every directed forest of order
c't = cn with every edge of each component indirected towards some root, and in the
underlying simple graph of each component, the maximum distance from the root is
at most d. Thus if d(1 — &') + ¢ < &, then D/, contains T. Substituting the values
of §', ¢, and ¢ into this inequality, we obtain the following equivalent inequality:
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L < (1-8yc)n+ (1 —8y/c)dn —cn
- d -
As t < n, it suffices to show that

(1-8yc)n+ (1 —8y/c)dn —cn
y :

n <

The preceeding inequality is equivalent to

0<1-8yc—8ycd—ec.

The right-hand side of this inequality is a quadratic in /¢, and will hold provided
/¢ is less than or equal to the largest root of the right-hand side of this inequality
(note that the smallest root of the right-hand side of this inequality is negative).
Thus this inequality will hold provided that

Ve <V +4d)? +1— (44 4d).

Thus 5§+1 will contain T provided that ¢ < (v/1+ (44 4d)*> — (4 + 4d))?, which is
true. Thus ﬁ;+1 contains T.

We now consider the two cases together. In either case, it now follows by Lemma
1 that there is a packing of T1,...,Tiy1, iy, - -+, Sy, into Ka,, where each S} is
isomorphic to S;. Furthermore, as for every j € V(Dj, ), i+2 < j < 2n, |E(S;) —
E(S})| > |n—2y/cn) and |E(S!) — E(S})| < 1,if j € V(Dl,,) with i +2 < j < 2n,
then |E(S)NE(S))| > [n—2y/cn]. Of course, if i4+-2 < j < 2nand j ¢ V(Dj,,), then
S = 8% We conclude that |E(S;) N E(S})| < |n —2y/en] for every i 42 < j < 2n.
Finally, as every vertex of Dj,, is also a vertex of S;, it follows by Remark 1 that
if ab € E(Tyy1 — {i+ 1}), then a,b € V(S;41) — {i + 1}. The result then follows by

induction. O

Clearly the preceeding theorem implies the following special cases of Ringel’s
Conjecture.

Corollary 9 Let T be a tree of order n+ 1 such that there exists x € V(T') and one
of the following is true:

1. T — x has at least n —

N .
)
273 1solated vertices, or

2. if d is a non-negative integer, and ¢ = (1/1+ (4 +4d)? — 4 — 4d)?, then T — x
has at least n — cn isolated vertices and distr,(z;v) < d+1 for every v € V(T5).
(Note that this condition is satisfied if dlam(7T") < d+2.)

Then 2n + 1 copies of T can be packed into Kypy1.
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