Chromaticity of the complements of some sparse graphs*

Haixing Zhao

Department of Mathematics Qinghai Normal University Xining, Qinghai 810008 P.R. China h.x.zhao@eyou.com

XUELIANG LI

Center for Combinatorics and LPMC
Nankai University
Tianjin 300071
P.R. China
lxl@nankai.edu.cn

Ruying Liu

Department of Mathematics Qinghai Normal University Xining, Qinghai 810008 P.R. China

Abstract

For a graph G, let \overline{G} be its complement and h(G,x) its adjoint polynomial. Let $\mathcal{L} = \{P_i | i \geq 2\} \cup \{C_j | j \geq 4\} \cup \{D_k | k \geq 4\} \cup \{F_s | s \geq 6\} \cup \{K_4^-, K_4\}$, where P_i denotes the path with i vertices, C_j denotes the cycle with j vertices, D_k denotes the graph obtained from K_3 and P_{k-2} by identifying a vertex of K_3 with an end-vertex of P_{k-2} , P_s denotes the graph obtained from K_3 and D_{s-2} by identifying a vertex of K_3 with the vertex of degree 1 of D_{s-2} , and K_4^- denotes the graph obtained from complete graph K_4 by deleting an edge. In this paper, we obtain a necessary and sufficient condition for each graph of form $\overline{aK_3} \cup \bigcup_i \overline{G_i}$ to be chromatically unique when $h(K_3, x) \not|h(G_i, x)$ and $G_i \in \mathcal{L}$ for each i. Moreover many known results are generalized.

^{*} Research supported by National Science Foundation of China and the Science Foundation of the State Education Ministry of China.

1 Introduction

All graphs considered here are finite and simple. Undefined notation and terminology will conform to those in [1, 2]. Let V(G), E(G), p(G), q(G), $\delta(G)$ and \overline{G} denote the set of vertices, the set of edges, the number of vertices, the number of edges, the minimum degree of vertices and the complement of a graph G, respectively.

For a positive integer r, a partition $\{A_1, A_2, \cdots, A_r\}$ of V(G) is called an r-independent partition of a graph G if every A_i is a nonempty independent set of G. Let $\alpha(G,r)$ denote the number of r-independent partitions of V(G). Then, the chromatic polynomial of G is given by $P(G,\lambda) = \sum_{r\geq 1} \alpha(G,r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda-1)(\lambda-1)$

 $2) \cdots (\lambda - r + 1)$ for all $r \geq 1$, see [3,4] for more details. Two graphs G and H are called *chromatically equivalent*, denoted by $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. A graph G is called *chromatically unique* (or simply χ -unique) if $H \cong G$ whenever $H \sim G$.

For a graph G with p vertices. If H is a spanning subgraph of G and each component of H is complete, then H is called an *ideal subgraph* of G [10]. Let $b_i(G)$ denote the number of ideal subgraphs H in G with p-i components. It is clear that $b_0(G)=1$, $b_1(G)=q(G)$ and $b_i(G)=\alpha(\overline{G},p-i)$ for each i. The polynomial

$$h(G, x) = \sum_{i=0}^{p-1} b_i(G) x^{p-i}$$

is called the adjoint polynomial of the graph G.

Two graphs G and H are said to be adjointly equivalent, denoted by $G \sim_h H$, if h(G,x) = h(H,x). Clearly, " \sim_h " is an equivalence relation on the family of all graphs. Let $[G]_h = \{H|H \sim_h G\}$. A graph G is said to be adjointly unique if $H \cong G$ whenever $H \sim_h G$. For a set G of graphs, if $[G]_h \subset G$ for every $G \in G$, then G is called adjointly closed. More details on h(G,x) can be found in [3,4,10-15].

From the above definitions, we have

Theorem 1.1

- (i) $G \sim H$ if and only if $\overline{G} \sim_h \overline{H}$;
- (ii) $[G] = \{H|\overline{H} \in [\overline{G}]_h\};$
- (iii) G is adjointly unique if and only if \overline{G} is χ -unique.

Let G be a graph and $h(G, x) = x^{\alpha(G)}h_1(G, x)$, where $h_1(G, x)$ is a polynomial with a nonzero constant term. If $h_1(G, x)$ is an irreducible polynomial over the rational number field, then G is called an *irreducible graph*.

For convenience, we simply denote h(G, x) by h(G) and $h_1(G, x)$ by $h_1(G)$. Next we introduce some notation: For a graph G and $v \in V(G)$, by $N_G(v)$ we denote

the set of all vertices of G adjacent to v. For $e = v_1v_2 \in E(G)$, set $N_G(e) = N_G(v_1) \cup N_G(v_2) - \{v_1, v_2\}$ and $d(e) = d_G(e) = |N_G(e)|$. Let G and H be two graphs, $G \cup H$ denotes the disjoint union of G and G and

By C_n (respectively, P_n) we denote the cycle (respectively, the path) with n vertices. By K_4^- we denote the graph obtained by deleting an edge from K_4 . The graphs shown in Figure 1 are frequently used throughout the paper. In Figure 1, a dotted line denotes a path whose number of vertices is at least 2, and n denotes the number of vertices in each graph. We write $\mathcal{L} = \{P_n, C_{n+2}, D_{n+2}, F_{n+4} | n \geq 2\} \cup \{K_4^-, K_4\}$.

Figure 1. Graphs D_n , F_n , Z_n and U_n .

For the study of chromatic uniqueness of graphs, in addition to the chromatic polynomial, the following polynomials have been employed: the σ -polynomial (see [5,6]) and the adjoint polynomial of graphs (see[3–4] and [8–15]). In [8–12], when P_n , C_n , D_n and F_n are irreducible graphs, the chromatic uniqueness of $\overline{\cup P_{n_i}}$, $\overline{\cup C_{m_i}}$, $\overline{\cup C_{m_i}}$, and $\overline{F_n}$ were studied. In [5,6], Du discussed the chromatic uniqueness of $\overline{lK_3 \cup (\cup_i P_{n_i})}$ and $\overline{U_j C_{m_j}}$, and obtained that $\overline{lK_3 \cup (\cup_i P_{n_i})}$ and $\overline{U_j C_{m_j}}$ are chromatically unique if $n_i \not\equiv 4 \pmod{10}$ and n_i is even, $m_j \geq 3$ and $m_j \not= 4$. Very recently, Dong et al. in [4] investigated chromaticity of complements of $H = aK_3 \cup bD_4 \cup \bigcup_{1 \leq i \leq s} P_{u_i} \cup \bigcup_{1 \leq j \leq t} C_{v_j}$, where $a, b \geq 0, u_i \geq 3, u_i \not\equiv 4 \pmod{5}, v_j \geq 4$,

and obtained a necessary and sufficient condition for \overline{H} to be chromatically unique. In this paper, we first show that \mathcal{F}_a is adjointly closed, where

$$\mathcal{F}_a = \{aK_3 \cup \bigcup_i G_i \mid G_i \in \mathcal{L}, h(K_3) \not| h(G_i)\}.$$

We then investigate the chromaticity of $\overline{G} \in \mathcal{F}_a$ and give a necessary and sufficient for \overline{G} to be chromatically unique. Many of the results in [9–12] are generalized.

2 Preliminaries

Lemma 2.1 ([10]) Let G be a graph with k components G_1, G_2, \ldots, G_k . Then

$$h(G) = \prod_{i=1}^{k} h(G_i).$$

Let G be a graph and $e = v_1v_2 \in E(G)$. A new graph G *e is defined as follows: the set of vertices of G *e is $V(G) \setminus \{v_1, v_2\} \cup \{v\}$, where $v \notin V(G)$, and the set of edges of G *e is $\{e' | e' \in E(G), e' \text{ is not incident with } v_1 \text{ or } v_2\} \cup \{uv | u \in N_G(v_1) \cap N_G(v_2)\}$. For example, let C_4 be the cycle on 4 vertices with an edge uv, and let $H = C_4 + e$ be the graph obtained from C_4 by adding a chord e. Then $C_4 * uv = K_1 \cup P_2$ and $H *e = P_3$.

Lemma 2.2 ([3,8]) Let G be a graph and $e \in E(G)$. Then

$$h(G, x) = h(G - e, x) + h(G * e, x).$$

Lemma 2.3 ([11])

(i) For all
$$n \ge 2$$
, $h(P_n) = \sum_{k \le n} \binom{k}{n-k} x^k$;

(ii) For all
$$n \ge 4$$
, $h(C_n) = \sum_{k \le n} \frac{n}{k} \binom{k}{n-k} x^k$;

(iii) For all
$$n \ge 4$$
, $h(D_n) = \sum_{k \le n} \left(\frac{n}{k} \binom{k}{n-k} + \binom{k-2}{n-k-3} \right) x^k$.

Lemma 2.4 ([11]) (i) For $n \ge 3$, $h(P_n, x) = x(h(P_{n-1}, x) + h(P_{n-2}, x))$.

- (ii) For $n \ge 6$, $h(C_n, x) = x(h(C_{n-1}, x) + h(C_{n-2}, x))$.
- (iii) For $n \ge 6$, $h(D_n, x) = x(h(D_{n-1}, x) + h(D_{n-2}, x))$.
- (iv) For $n \ge 8$, $h(F_n, x) = x(h(F_{n-1}, x) + h(F_{n-2}, x))$.

 $\textbf{Lemma 2.5} \ \ \textit{(i)} \ ([11]) \ \textit{For all } n, \, m \geq 2, \, h(P_n) | h(P_m) \ \textit{if only and if} \ (n+1) | (m+1).$

(ii) ([12]) For all $m \ge 4$, $h(P_4)$ $h(C_m)$.

Lemma 2.6([15]) Let $\{g_i(x)|i \geq 0\}$ be a polynomial sequence with integer coefficients and $g_n(x) = x(g_{n-1}(x) + g_{n-2}(x))$. Then $h_1(P_n)|g_{k(n+1)+i}(x)$ if and only if $h_1(P_n)|g_i(x)$, where $0 \leq i \leq n$ and $n \geq 2$.

Lemma 2.7 (i) For $n \geq 4$, $h_1(P_4)|h(D_n)$ if and only if n = 5k + 3, where $k \geq 1$;

(ii) For $n \ge 6$, $h_1(P_4)|h(F_n)$ if and only if n = 5k + 2, where $k \ge 1$.

Proof. (i) Let $m \geq 0$ and $g_m(x) = h(D_{m+4})$. By Lemma 2.4 we have

$$g_m(x) = x(g_{m-1}(x) + g_{m-2}(x)).$$

Without loss of generality, let m=5k+i, where $0 \le i \le 4$. By Lemma 2.6 we have $h_1(P_4)|g_{5k+i}(x)$ if and only if $h_1(P_4)|g_i(x)$, where $0 \le i \le 4$. By Lemma 2.3 we obtain the following: $h_1(P_4)=x^2+3x+1$, $g_0(x)=h(D_4)=x^2(x^2+4x+2)$, $g_1(x)=h(D_5)=x^2(x+1)(x^2+4x+1)$, $g_2(x)=h(D_6)=x^3(x^3+6x^2+9x+3)$, $g_3(x)=h(D_7)=x^3(x^4+7x^3+14x^2+8x+1)$ and $g_4(x)=h(D_8)=x^4(x+1)(x+4)(x^2+3x+1)$. When i=0,1,2,3,4, it is easy to verify that $h_1(P_4)|g_i(x)$ if and only if $h_1(P_4)|g_4(x)$. So, by Lemma 2.6 it follows that $h_1(P_4)|h(D_n)$ if and only if n=5k+3, where $k\ge 1$. (ii) By Lemma 2.2 we have $h(F_n)=h(D_n)+h(P_2)h(D_{n-3})$. By Lemma 2.3 we have $h(F_6)=x^2(x^4+7x^3+13x^2+7x+1)$, $h(F_7)=x^3(x^2+3x+1)(x^2+5x+3)$, $h(F_8)=x^3(x+1)(x^4+8x^3+18x^2+9x+1)$, $h(F_9)=x^4(x^2+4x+2)(x^3+6x^2+8x+2)$ and $h(F_{10})=x^4(x^6+11x^5+43x^4+72x^3+51x^2+14x+1)$. It is not difficult to verify that when $6\le n\le 10$, $h(P_4)|h(F_n)$ if and only if n=7. Similar to the proof of (i),

3 Invariants for Adjointly Equivalent Graphs

we can show that (ii) holds.

Let G be a graph. Liu [11] introduced an invariant $R_1(G)$ for adjointly equivalent graphs as follows:

$$R_1(G) = \begin{cases} 0 & \text{if } q(G) = 0, \\ b_2(G) - \binom{b_1(G) - 1}{2} + 1 & \text{if } q(G) > 0. \end{cases}$$

For the invariant $R_1(G)$, the following results can be found in [3–6] and [10–14].

Lemma 3.1 ([11]) Let G and H be two graphs. If h(G, x) = h(H, x), then

$$R_1(G) = R_1(H).$$

Lemma 3.2 ([11]) Let G be a graph with k components G_1, G_2, \ldots, G_k . Then

$$R_1(G) = \sum_{i=1}^k R_1(G_i).$$

Lemma 3.3 ([11]) Let G be a connected graph and $e \in E(G)$. Then

$$R_1(G) = R_1(G - e) - d_G(e) + 1.$$

Very recently Dong et al. introduced an graph invariant, denoted by $R_2(G)$ (see [4]), for adjointly equivalent graphs. In [16], Zhao introduced a parameter $R_3(G)$ of a graph as follows:

$$R_3(G) = R_1(G) + q(G) - p(G).$$

Evidently, p(G) and q(G) are invariant. Thus $R_3(G)$ is an invariant for adjointly equivalent graphs. The following theorem follows from Lemma 3.2.

Theorem 3.1 Let G be a graph with k components G_1, G_2, \dots, G_k . Then

$$R_3(G) = \sum_{i=1}^k R_3(G_i).$$

By Lemma 3.3 we obtain

Theorem 3.2 Let G be a connected graph and $e \in E(G)$. Then

$$R_3(G) = R_3(G - e) - d_G(e) + 2.$$

The following result can be found in [3].

Theorem 3.3 ([3]) For any connected graph G with $G \notin \{K_3, K_4\}$,

(i) if
$$-1 \le R_1(G) \le 1$$
, then $R_1(G) \le p(G) - q(G)$ with equality if and only if $G \in \{P_n, C_{n+2}, D_{n+2}, F_{n+4} | n \ge 2\} \cup \{K_A^-\}.$

(ii) if
$$R_1(G) \leq -2$$
, then $R_1(G) \leq p(G) - q(G) - 1$.

It is not hard to see that the above theorem is equivalent to the following theorem.

Theorem 3.4 ([3,16]) Let G be a connected graph. Then

- (i) $R_3(G) \leq 1$, and the equality holds if and only if $G \cong K_3$.
- (ii) $R_3(G) = 0$ if and only if $G \in \mathcal{L}$.

Theorem 3.5 Let $\mathcal{F}_a = \{aK_3 \cup \bigcup_i G_i | G_i \in \mathcal{L} \text{ and } h(K_3) \not| h(G_i) \}$. Then \mathcal{F}_a is adjointly closed.

Proof. Suppose that $G \in \mathcal{F}_a$ and $H \sim_h G$. It is sufficient to prove that $H \in \mathcal{F}_a$. So, we shall show that H contains exactly a components K_3 and each of the other components of H belongs to \mathcal{L} .

Clearly, h(H) = h(G). Denote by N_A the number of the components K_3 in H. By Theorems 3.1 and 3.4, we have $R_3(G) = R_3(H) = a$ and $N_A \ge a$. Since $[h(K_3)]^{a+1} \bigvee h(G)$, we have $[h_1(K_3)]^{a+1} \bigvee h(H)$, and so $N_A \le a$. Thus $N_A = a$.

Since $[h(K_3)]^{a+1} \not h(G)$, we have $[h_1(K_3)]^{a+1} \not h(H)$, and so $N_A \leq a$. Thus $N_A = a$, which implies that H has exactly a components K_3 and $R_3(H_i) = 0$ for every component H_i of H except K_3 . By Theorem 3.4, $H_i \in \mathcal{L}$ except K_3 . Hence $H \in \mathcal{F}_a$.

4 Chromatic uniqueness of graphs

In this section, we denote by A, A_i , B, B_i , C, M_i , E and E_i the multisets of some positive integer numbers, where i=1,2. For a graph G, let f(G,x) denote the characteristic polynomial of an adjacency matrix of G. We denote by $\gamma(G)$ and $\beta(G)$, respectively, the maximum real root of f(G,x) and the minimum real root of h(G,x). The following lemmas can be found in [13, 14].

Lemma 4.1([13]) For $n \ge 6$, $h(F_n \cup 2K_1) = h(Z_{n+2})$.

Lemma 4.2 ([13]) For a tree T, $\beta(T) = -(\gamma(T))^2$.

Lemma 4.3 ([14]) (i) For $n \ge 2$, $-4 < \beta(P_n) < \beta(P_{n-1})$;

- (ii) For $n \ge 4$, $-4 < \beta(C_{n+1}) < \beta(C_n) < -3$ and $\beta(D_{n+1}) < \beta(D_n)$;
- (iii) For $n \geq 4$, $\beta(D_n) < \beta(C_n) < \beta(P_n)$;
- (iv) For $n \geq 9$, $\beta(D_n) < -4$.

Lemma 4.4 ([13]) Let $f_1(x)$, $f_2(x)$ and $f_3(x)$ be polynomials in x with real positive coefficients. If (i) $f_3(x) = f_2(x) + f_1(x)$ and $\partial f_3(x) - \partial f_1(x) \equiv 1 \pmod{2}$, where β_i (or $\partial f_i(x)$) denotes the minimum real root (or the degree) of $f_i(x)$ (i = 1, 2, 3), (ii) both of $f_1(x)$ and $f_2(x)$ have real roots, and $\beta_2 < \beta_1$, then $f_3(x)$ has at least one real root β_3 such that $\beta_3 < \beta_2$.

Recently, the authors of [14] determined all connected graphs G with $-4 \le \beta(G) \le 0$ and proved the following result:

Theorem 4.1 ([14]) Let G be a graph with p vertices and $\delta(G) \geq p-3$; then G is χ -unique if and only if \overline{G} is one of the following graphs:

- (i) $rK_1 \cup (\cup P_i)$ for r = 0, $i \equiv 0 \pmod{2}$ and $i \neq 4$; or r = 0 and i = 3, 5; or $r \neq 0$, $i \equiv 0 \pmod{2}$ and $i \neq 4$; or $r \neq 0$ and i = 3;
- (ii) $t_1P_2 \cup t_2P_3 \cup t_3P_5 \cup (\cup_j P_j) \cup (\cup_k C_k) \cup lC_3$ for $t_1 = 0, l \ge 0, k \ne j+1$ and j is even; or $t_1 \ne 0, l \ge 0, k \ne j+1, k \ne 6, 9, 15$ and j is even, where $j \ge 6, k \ge 5$.

An internal x_1-x_k path of a graph G is a sequence $x_1, x_2, x_3, \dots, x_k$ such that all x_i are distinct (except possibly $x_1 = x_k$), the vertex degrees $d(x_i)$ satisfy $d(x_1) \geq 3$,

 $d(x_2) = d(x_3) = \cdots = d(x_{k-1}) = 2$ (unless k = 2), $d(x_k) \ge 3$ and x_i is adjacent to x_{i-1} , where $i = 1, 2, \dots, k-1$.

Lemma 4.5 ([2]) Let G_{xy} be the graph obtained from G by introducing a new vertex on the edge xy of G. If xy is an edge on an internal path of G and $G \not\cong U_n$ for any $n \geq 6$ (see Figure 1), then $\gamma(G_{xy}) < \gamma(G)$.

Theorem 4.2 (i) For $n \geq 6$, $\beta(F_{n-1}) < \beta(F_n) < \beta(D_n) < \beta(D_{n-1})$;

(ii)
$$\beta(K_4) < \beta(F_6) < -4$$
;

(iii) If G is connected and $G \in \mathcal{L}$, then $\beta(G) = -4$ if and only if $G \cong K_4^-$ or $G \cong D_8$.

Proof. (i) By Lemma 4.1, $h_1(Z_{n+2}) = h_1(F_n)$. From Lemma 4.2, we have $\beta(Z_n) = -\gamma^2(Z_n)$. By Lemma 4.5, $\gamma(Z_{n+2}) < \gamma(Z_{n+1})$. So, $\beta(Z_{n+1}) < \beta(Z_{n+2})$. This implies $\beta(F_{n-1}) < \beta(F_n)$.

By Lemma 2.2, one can obtain that $h(F_n) = h(D_n) + h(P_2)h(D_{n-3})$. By Lemma 4.3, $\beta(D_n) < \beta(h(P_2)h(D_{n-3}))$. By Lemma 4.4, $\beta(F_n) < \beta(D_n)$.

(ii) Since $h_1(K_4) = x^3 + 6x^2 + 7x + 1$ and $h_1(F_6) = x^4 + 7x^3 + 13x^2 + 7x + 1$, it follows immediately that $\beta(K_4) < \beta(F_6) < -4$, by direct calculation.

(iii) As $h_1(D_8) = (x^2 + 3x + 1)(x^2 + 5x + 4) = h_1(K_3)h_1(K_4^-)$, we have $\beta(D_8) = \beta(K_4^-) = -4$. By (i) and (ii) of the theorem, for $n \ge 7$ and $m \ge 10$ we have

$$\beta(K_4) < \beta(F_{n-1}) < \beta(F_n) < \beta(D_m) < \beta(D_{m-1}) < \dots < \beta(D_9) < \beta(D_8) = -4.$$

From Lemma 4.3, for $i \geq 2$, $j \geq 3$ and $4 \leq k \leq 7$ we have

$$\beta(P_i) > -4, \beta(C_j) > -4, \beta(D_k) > -4.$$

So, (iii) holds.

Theorem 4.3 Let a, t, r be nonnegative integers and

$$G = (\bigcup_{i \in A} P_i) \cup (\bigcup_{j \in B} C_j) \cup (\bigcup_{k \in M} D_k) \cup (\bigcup_{s \in E} F_s) \cup aK_3 \cup tK_4^- \cup rK_4,$$

where $A = \{i \mid i \geq 2, i \equiv 0 \pmod{2} \text{ and } i \not\equiv 4 \pmod{10}\}, B = \{j \mid j \geq 5\}, M = \{k \mid k \geq 9, k \not\equiv 3 \pmod{5}\}, E = \{s \mid s \geq 6, s \not\equiv 2 \pmod{5}\}.$ Then \overline{G} is χ -unique if and only if $\{i+1 \mid i \in A\} \cap B = \emptyset$ if $2 \not\in A$, or $\{i+1 \mid i \in A\} \cap B = \emptyset$ and $\{5,6,7\} \cap B = \emptyset$ if $2 \in A$.

Proof. It is not difficult to see that we need only to prove that G is adjointly unique if and only if $\{i+1|i\in A\}\cap B=\emptyset$ if $2\not\in A$, or $\{i+1|i\in A\}\cap B=\emptyset$ and $\{5,6,7\}\cap B=\emptyset$ if $2\in A$.

Let *H* be a graph such that h(H) = h(G). Since $h_1(K_3) = h_1(P_4)$, by Lemmas 2.5 and 2.7 one can see that $h_1(K_3) \not| h_1(Y)$ for each $Y \in \{P_i \mid i \geq 2, i \equiv 0 \pmod{2}, i \not\equiv 4 \pmod{10}\} \cup \{C_i \mid j \geq 4\} \cup \{D_k \mid k \geq 4, k \not\equiv 3 \pmod{5}\} \cup \{F_s \mid s \geq 6, s \not\equiv 2 \pmod{5}\}$.

So, by Theorem 3.5, $H \in \mathcal{F}_a$. Assume $H = aK_3 \cup H_1$ and $G = aK_3 \cup G_1$. Then $h(G_1) = h(H_1)$. Without lost of generality, we assume

$$G_1 = (\bigcup_{i \in A} P_i) \cup (\bigcup_{j \in B} C_j) \cup (\bigcup_{k \in M} D_k) \cup (\bigcup_{s \in E} F_s) \cup tK_4^- \cup rK_4$$

and

$$H_1 = (\bigcup_{i_1 \in A_1} P_{i_1}) \cup (\bigcup_{j_1 \in B_1} C_{j_1}) \cup (\bigcup_{k_1 \in M_1} D_{k_1}) \cup (\bigcup_{s_1 \in E_1} F_{s_1}) \cup t_1 K_4^- \cup r_1 K_4,$$

where i, j, k and s satisfy the condition of the theorem.

It is enough to prove that $H_1 \cong G_1$. Since $h_1(D_8) = (x^2 + 5x + 4)h_1(K_3)$, H_1 does not contain the component D_8 . By Theorem 4.2, we have

$$\beta(K_4) < \beta(F_6) < \beta(F_7) < \dots < \beta(F_{n-1}) < \beta(F_n) < \beta(D_m) < \beta(D_{m-1}) < \dots < \beta(D_9) < \beta(D_8) = \beta(K_4^-) = -4.$$

By comparing the minimum real root of $h_1(G_1)$ with that of $h_1(H_1)$, we know that $r = r_1, t = t_1, |E| = |E_1|, M \subseteq M_1$. Eliminating all components G^* with $\beta(G^*) \le -4$ from G_1 and H_1 , we obtain

$$h((\bigcup_{i\in A}P_i)\cup(\bigcup_{j\in B}C_j))=h((\bigcup_{i\in A_1}P_i)\cup(\bigcup_{j\in B_1}C_j)\cup(\bigcup_{k\in M_2}D_k)),$$

where $M_2 = M_1 - M$.

By Theorem 4.1, we know that $\overline{(\bigcup_{i\in A}P_i)\cup(\bigcup_{j\in B}C_j)}$ is χ -unique if and only if $\{i+1\mid i\in A\}\cap B=\emptyset$ if $2\not\in A$, or $\{i+1\mid i\in A\}\cap B=\emptyset$ and $\{5,6,7\}\cap B=\emptyset$ if $2\in A$ when i and j satisfy the condition of the theorem. Hence $M_2=\emptyset$ and $M=M_1$, which implies that $H_1\cong G_1$ and $H\cong G$.

It is not difficult to see that all the chromatically unique graphs given in [9-12] are special cases of our Theorems 4.3. In particular, from Theorem 4.3 we have

Corollary 4.1 Let
$$k \not\equiv 3 \pmod{5}$$
 and $k \geq 9$, $s \not\equiv 2 \pmod{5}$ and $s \geq 6$.
Then $\overline{(\bigcup_s F_s) \cup (\bigcup_k D_k)}$ is χ -unique.

Corollary 4.2 Let
$$K(n_1, n_2, \dots, n_t)$$
 be the complete t-partite graph. Then $K(2, \dots, 2, 3, \dots, 3, 4, \dots, 4)$ is χ -unique.

Acknowledgements

The authors are greatly indebted to the referees for their valuable comments and suggestions, which are very helpful for improving the presentation of the paper.

References

- [1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, 1993, 52–53.
- [2] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980, 72–79.
- [3] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little and M.D. Hendy, Two invariants of adjointly equivalent graphs, Australas. J. Combin. 25 (2002), 133–143.
- [4] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Chromaticity of some families of dense graphs, *Discrete Math.* 258 (2002), 303–321.
- [5] Q. Du, On the parameter $\pi(G)$ of graph G and graph classification, Acta Sci. Natur. Univ. Neimonggol 26 (1995), 258–262.
- [6] Q. Du, Chromaticity of the complements of paths and cycles, *Discrete Math.* 162 (1996), 109–125.
- [7] K.M. Koh and K.L. Teo, The search for chromatically unique graphs (II), Discrete Math. 172 (1997), 59-78.
- [8] R.Y. Liu, Adjoint polynomials of graphs, J. Qinghai Normal University (1990) (3), 1–8.
- [9] R.Y. Liu, Two new classes of chromatically unique graphs, Acta Sci. Natur. Univ. Neimonggol 27 (1996), 11-17.
- [10] R.Y Liu and L.C. Zhao, A new method for proving chromatic uniqueness of graphs, Discrete Math. 171 (1997), 169-177.
- [11] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997), 85–92.
- [12] S. Wang and R.Y. Liu, Chromatic uniqueness of the complement of unions of cycle and D_n, J. Math. Res. Exposion 18 (1998), 296.
- [13] H.X. Zhao and R.Y. Liu, A necessary and sufficient condition of chromatic uniqueness of B_n, Acta Sci. Natur. Univ. Neimonggol 34 (2003), 1–5.
- [14] H.X. Zhao, X.L. Li, S.G. Zhang and R.Y. Liu, On the minimum real roots of the σ-polynomials and chromatic uniqueness of graphs, *Discrete Math.* 281 (2004), 277–294.
- [15] H.X. Zhao, X.L. Li, R.Y. Liu and L.G. Wang, On properties of adjoint polynomial of graphs and its applications, Australas. J. Combin. 30 (2004), 291–306.
- [16] H.X. Zhao, On new parameters R_A(G) of a graph and graph classification, J. Qinghai Normal University (1999) (3), 15–17.