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Abstract

For a graph G, let G be its complement and h(G,z) its adjoint poly-
nomial. Let £ = {PFli > 2} U {Cjlj > 4} U {Dylk > 4} U {Fy|s >
6} U {K,,K,}, where P, denotes the path with ¢ vertices, C; denotes
the cycle with j vertices, Dy denotes the graph obtained from K3 and
P;_» by identifying a vertex of K3 with an end-vertex of Py_,, Fy de-
notes the graph obtained from K3 and D,_» by identifying a vertex of K3
with the vertex of degree 1 of Dy ,, and K, denotes the graph obtained
from complete graph K4 by deleting an edge. In this paper, we obtain a
necessary and sufficient condition for each graph of form a K3 U J, G; to
be chromatically unique when h(Ks,z) fh(G;,x) and G; € L for each i.
Moreover many known results are generalized.
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1 Introduction

All graphs considered here are finite and simple. Undefined notation and terminology
will conform to those in [1, 2]. Let V(G), E(G), p(G), ¢(G), §(G) and G denote the
set of vertices, the set of edges, the number of vertices, the number of edges, the
minimum degree of vertices and the complement of a graph G, respectively.

For a positive integer r, a partition {A;, A, -, A, } of V(G) is called an r-independ-
ent partition of a graph G if every A; is a nonempty independent set of G. Let

a(G, r) denote the number of r-independent partitions of V(G). Then, the chromatic
polynomial of G is given by P(G,\) = > a(G,7)()),, where (A), = A(A — 1)(A —

r>1

2)---(A—r+1) for all » > 1, see [3,4] for more details. Two graphs G and H are
called chromatically equivalent, denoted by G ~ H, if P(G,\) = P(H,\). A graph
G is called chromatically unique ( or simply y-unique) if H = G whenever H ~ G.

For a graph G with p vertices. If H is a spanning subgraph of G and each component
of H is complete, then H is called an ideal subgraph of G [10]. Let b;(G) denote the

number of ideal subgraphs H in G with p —i components. It is clear that by(G) = 1,
b1(G) = ¢(G) and b;(G) = (G, p — i) for each i. The polynomial

p—1

WG, x) = b(G)a?

=0
is called the adjoint polynomial of the graph G.

Two graphs G and H are said to be adjointly equivalent, denoted by G ~p, H, if
h(G,z) = h(H,z). Clearly, "~;” is an equivalence relation on the family of all
graphs. Let [G], = {H|H ~; G}. A graph G is said to be adjointly unique if H = G
whenever H ~; G. For a set G of graphs, if [G], C G for every G € G, then G is
called adjointly closed. More details on h(G,z) can be found in [3,4,10-15].

From the above definitions, we have
Theorem 1.1
(i) G ~ H if and only if G ~;, H;
(it) [G] ={H|H € [G]»};
(i) G is adjointly unique if and only if G is x-unique.
O

Let G be a graph and h(G,z) = %y (G,z), where h(G, ) is a polynomial with
a nonzero constant term. If hy(G, ) is an irreducible polynomial over the rational
number field, then G is called an irreducible graph.

For convenience, we simply denote h(G,z) by h(G) and hy(G,z) by hi(G). Next
we introduce some notation: For a graph G and v € V(G), by Ng(v) we denote
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the set of all vertices of G adjacent to v. For e = vivy € E(G), set Ng(e) =
Ng(v1)UNg(v2) — {v1,v2} and d(e) = dg(e) = |Ng(e)|. Let G and H be two graphs,
G U H denotes the disjoint union of G and H, and mH stands for the disjoint union
of m copies of H. For g(z), f(z) € Q[z], let (9(x), f(x)) denote the greatest common
factor of g(x) and f(z), g(z)|f(x) (respectively, g(z) ff(z)) mean that g(x) divides
f(z) (respectively, g(z) does not divide f(x)).

By C,, (respectively, P,) we denote the cycle (respectively, the path) with n vertices.
By K, we denote the graph obtained by deleting an edge from K,. The graphs
shown in Figure 1 are frequently used throughout the paper. In Figure 1, a dotted
line denotes a path whose number of vertices is at least 2, and n denotes the number
of vertices in each graph. We write £ = {P,, Cyta, Dpyo, Foyaln > 2} U{K;, K4}.

[
SA

l

Dn,

Un

Figure 1. Graphs D,, F,, Z, and U,.

For the study of chromatic uniqueness of graphs, in addition to the chromatic poly-
nomial, the following polynomials have been employed: the o-polynomial (see [5, 6])
and the adjoint polynomial of graphs (see[3-4] and [8-15]). In [8-12], when P,,
Cy, D, and F, are irreducible graphs, the chromatic uniqueness of UP,,, UC,,,,
(UP,,) U (UCh,), (UCy,) U (UDy,,) and F, were studied. In [5,6], Du discussed the
chromatic uniqueness of /K3 U (U;F,;) and U;C,,;, and obtained that [K3 U (U;F,,)
and U;Cl,, are chromatically unique if n; # 4(mod 10) and n; is even, m; > 3 and
m; # 4. Very recently, Dong et al. in [4] investigated chromaticity of complements of
H=aK3UbD,U |J P,U |J C,, where a,b > 0,u; > 3,u; Z 4(mod 5),v; > 4,

1<i<s 1<5<t
and obtained a necessary and sufficient condition for H to be chromatically unique.

In this paper, we first show that F, is adjointly closed, where

Fo={aKs U| JGi | Gi € £, h(K3) fh(Gi)}.

We then investigate the chromaticity of G € F, and give a necessary and sufficient
for G to be chromatically unique. Many of the results in [9-12] are generalized.
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2 Preliminaries

Lemma 2.1 ([10]) Let G be a graph with k components G1,Gs, ...,Gg. Then

Let G be a graph and e = vjv, € E(G). A new graph G e is defined as follows: the
set of vertices of G * e is V(G)\{v1,v2} U {v}, where v € V(G), and the set of edges
of Gxeis {¢|¢' € E(G),¢' is not incident with vy or v} U{uv|u € Ng(v1) N Ng(vq)}.
For example, let C4 be the cycle on 4 vertices with an edge uv, and let H = Cy + e
be the graph obtained from C, by adding a chord e. Then Cy * uv = K; U P5 and
Hxe=P;.

Lemma 2.2 ([3,8]) Let G be a graph and e € E(G). Then

MG, z) = h(G —e,z) + h(G xe,z).
Lemma 2.3 ([11])

(i) For alln > 2, h(P,) = >, ( K )mk;
i<n n—=k

(it) For alln >4, h(C,) =3

(iii) Fomzznzzx,h(Dn):%(%(nﬁk>+(nf;33>>xk.

Lemma 2.4 ([11]) (i) Forn > 3, h(P,,z) = 2(h(P,_1,z) + W(Py—2, )).

(it) Forn > 6, h(C,,z) = 2(h(Cy_1,2) + h(Cp_2, x)).

(itt) For n > 6, h(D,,,z) = 2(h(Dy,_1,2) + h(D,_2, ).

(iv) Forn > 8, h(F,,z) = (h(F,_1,z) + h(F,_s,2)).

Lemma 2.5 (i) ([11]) For alln,m > 2, h(P,)|h(Pm) if only and if (n+ 1)|(m + 1).
(i1) ([12]) For allm > 4, h(Py) fh(C.,).

Lemma 2.6([15]) Let {g;(z)|i > 0} be a polynomial sequence with integer coeffi-
cients and gn(r) = (gn-1(x) + gn-2(2)). Then hi(Pp)|gr(n+1)+i(z) if and only if
hi(Py)|gi(x), where 0 <i<n andn > 2.

Lemma 2.7 (i) For n > 4, hy(Py)|h(D,,) if and only if n = 5k + 3, where k > 1;
(ii) Forn > 6, hi(Py)|h(Fy) if and only if n = 5k + 2, where k > 1.
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Proof. (i) Let m > 0 and g,,(z) = h(Dy,44). By Lemma 2.4 we have

gn(2) = 2(gm-1(2) + gm-2()).

Without loss of generality, let m = 5k 4 ¢, where 0 < ¢ < 4. By Lemma 2.6 we
have hy(Py)|gsk+i(z) if and only if hy(Py)|g;(z), where 0 < ¢ < 4. By Lemma 2.3
we obtain the following: hy(Py) = 22 + 3z + 1, go(z) = h(Dy) = 22(2? + 4z + 2),
g1(z) = h(D;5) = 2?(z+1)(2? +4a+1), g2(x) = h(Dg) = 23(23 +6224+92+3), gs(z) =
h(Dy) = 23 (a*+ 723+ 1422 +8x+1) and g4(x) = h(Dg) = z*(x+1)(z+4) (22 +3x+1).
When i = 0,1,2,3,4, it is easy to verify that hy(Ps)|g;(«) if and only if by (Py)|ga(x).
So, by Lemma 2.6 it follows that hy(Py)|h(D,,) if and only if n = 5k+3, where k > 1.

(ii) By Lemma 2.2 we have h(F,) = h(D,) + h(P2)h(D,—3). By Lemma 2.3 we
have h(Fg) = z*(z* + 72® + 132% + Tz + 1), h(F;) = 23(2* + 3z + 1)(2® + bz + 3),
h(Fg) = z3(z+1)(2* + 823 + 182 + 9z + 1), h(Fy) = z*(2® +4x+2)(2® + 62 + 8z +2)
and h(Fi) = *(2®+ 112° 4 432 +722% + 5122 4 142+ 1). It is not difficult to verify
that when 6 < n < 10, h(Py)|h(F,) if and only if n = 7. Similar to the proof of (i),
we can show that (ii) holds. O

3 Invariants for Adjointly Equivalent Graphs

Let G be a graph. Liu [11] introduced an invariant R;(G) for adjointly equivalent
graphs as follows:

0 if ¢(G) =0,
0

bi(G) — 1

R(@) = bo(G) — ( ) > +1 if¢(G) >

For the invariant R;(G), the following results can be found in [3—6] and [10-14].
Lemma 3.1 ([11]) Let G and H be two graphs. If h(G,z) = h(H, z), then

Ry(G) = Ry(H).

Lemma 3.2 ([11]) Let G be a graph with k components G1,Gs, ...,Gg. Then

Ri(G) = Z Ry(G)).

Lemma 3.3 ([11]) Let G be a connected graph and e € E(G). Then

Ry(G) = Ry(G — ¢) — dgle) + 1.
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Very recently Dong et al. introduced an graph invariant, denoted by Ry(G) (see [4]),
for adjointly equivalent graphs. In [16], Zhao introduced a parameter R3(G) of a
graph as follows:

Ry(G) = Ra(G) +4(G) = p(G).

Evidently, p(G) and ¢(G) are invariant. Thus R3(G) is an invariant for adjointly
equivalent graphs. The following theorem follows from Lemma 3.2.

Theorem 3.1 Let G be a graph with k components G1,Gs, -+ ,Gy. Then
k

Ry(G) = Ry(Gy).

i=1

By Lemma 3.3 we obtain

Theorem 3.2 Let G be a connected graph and e € E(G). Then

Rg(G) = Rg(G — 6) — dg(e) + 2.

The following result can be found in [3].

Theorem 3.3 ([3]) For any connected graph G with G & {K3, K4},
(i) if =1 < Ri(G) <1, then Ry (G) < p(G) — q(G) with equality if and only if

G € { Py, Cni2, Duya, Foyaln > 2} U{K }

(i1) if Ri(G) < =2, then R,(G) < p(G) — ¢(G) — 1.

It is not hard to see that the above theorem is equivalent to the following theorem.
Theorem 3.4 ([3,16]) Let G be a connected graph. Then

(i) R3(G) <1, and the equality holds if and only if G = K.
(it) R3(G) =0 if and only if G € L.

Theorem 3.5 Let F, = {aK; U J;Gi|G; € L and W(K3) fh(G;)}. Then F, is
adjointly closed.
Proof. Suppose that G € F, and H ~;, G. It is sufficient to prove that H € F,.

So, we shall show that H contains exactly a components K3 and each of the other
components of H belongs to L.



CHROMATICITY OF COMPLEMENTS 17

Clearly, h(H) = h(G). Denote by N, the number of the components K3 in H. By

Theorems 3.1 and 3.4, we have R3(G) = R3(H) = a and N4 > a.

Since [h(K3)]** J h(G), we have [hi(K3)]*™ Y h(H), and so Ny < a. Thus Ny =

a, which implies that H has exactly a components K; and R3(H;) = 0 for every

component H; of H except K3. By Theorem 3.4, H; € L except K3. Hence H € F,.
O

4 Chromatic uniqueness of graphs

In this section, we denote by A, A;, B, B;,C, M;, E and E; the multisets of some
positive integer numbers, where i = 1,2. For a graph G, let f(G,z) denote the
characteristic polynomial of an adjacency matrix of G. We denote by v(G) and
B(@G), respectively, the maximum real root of f(G,z) and the minimum real root of
h(G, z). The following lemmas can be found in [13, 14].

Lemma 4.1([13]) Forn > 6, h(F, U2K;) = h(Z,12).
Lemma 4.2 ([13]) For a tree T, B(T) = —(v(T))*.

Lemma 4.3 ([14]) (i) Forn > 2, —4 < 5(P,) < B(Pu-1);

(ii) Forn >4, —4 < B(Cpy1) < B(Cr) < =3 and B(Dny1) < B(Dy);

(iit) Forn >4, 5(D,) < B(Cy) < B(Py);

(iv) Forn >9, B(D,) < —4.

Lemma 4.4 ([13]) Let fi(2), fa(x) and f3(x) be polynomials in x with real positive
coefficients. If (i) fs(x) = fo(x) + fi(2) and 8fs3(x) — Of1(x) = 1(mod 2), where f3;
(or 8fi(x) ) denotes the minimum real root (or the degree) of fi(z) (i =1,2,3), (i)

both of fi1(x) and fo(x) have real roots, and By < P1, then f3(x) has at least one real
root (33 such that 53 < 5.

Recently, the authors of [14] determined all connected graphs G with —4 < 8(G) <0
and proved the following result:

Theorem 4.1 ([14]) Let G be a graph with p vertices and 5(G) > p — 3; then G is
x-unique if and only if G is one of the following graphs:

(i) rKi U(UPR;) forr =0, i=0(mod 2) and i #4; orr =0 and i =3,5; orr #£0,
i =0(mod 2) and i #4; orr #£0 and i = 3;

(ZZ) t1P2Ut2P3Ut3P5U(U]PJ)U(Uka)UlCQ, fOTtl :0,120,;3?5]4‘1 and] 18
even; ort; 0,1 >0,k #j+1, k#6,9,15 and j is even, where j > 6,k > 5.

An internal 1 —xy path of a graph G is a sequence xy,Ts, 23, -+, T} such that all
x; are distinct (except possibly @1 = xy,), the vertex degrees d(x;) satisfy d(z1) > 3,
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d(zy) = d(z3) = -+ = d(xp—1) = 2 (unless k = 2), d(zx) > 3 and z; is adjacent to
Zi—1, where i =1,2,--- 'k — 1.

Lemma 4.5 ([2]) Let Gy be the graph obtained from G by introducing a new vertex
on the edge vy of G. If xy is an edge on an internal path of G and G % U, for any
n > 6(see Figure 1), then v(Gyy) < 7(G).

Theorem 4.2 (i) Forn > 6, f(F,_1) < B(F,) < 3(D,) < 8(Dn_1);
(it) B(K4) < B(Fs) < —4;

(ii1) If G is connected and G € L, then S(G) = —4 if and only if G = K; or
G = Ds.

Proof. (i) By Lemma 4.1, hy(Z,12) = hi(F,). From Lemma 4.2, we have 3(Z,) =
—v%(Z,). By Lemma 4.5, ¥(Zy42) < Y(Znt1). S0, 8(Znt1) < B(Zy+2). This implies
By Lemma 2.2, one can obtain that h(F,) = h(D,,)+ h(P2)h(D,_3). By Lemma 4.3,
B(Dy,) < B(h(Py)h(Dy_3)). By Lemma 4.4, B(F,) < B(Dy).

(i) Since hy(K4) = 2% + 622 + 72+ 1 and hy (F) = 2+ 72% 4+ 1322 + 7z + 1, it follows
immediately that S(Ky) < 8(Fs) < —4, by direct calculation.

(iii) As hy(Dg) = (22 + 32 + 1)(2® + 5z +4) = hy(K3)h (K] ), we have §(Dg) =
B(K;) = —4. By (i) and (ii) of the theorem, for n > 7 and m > 10 we have

B(Ks) < B(Fo1) < B(Fy) < B(Dm) < B(Dm-1) <--- < B(Dy) < B(Ds) = —4.
From Lemma 4.3, for i > 2, j > 3 and 4 < k < 7 we have
B(P) > —4,5(C;) > —4,8(Dy) > —4.
So, (iii) holds. O

Theorem 4.3 Let a,t,r be nonnegative integers and

G=(Jr)ulJcnul Do) u(l F)uaKs UtKT UKy,

€A JjEB keM SEE

where A = {i | i > 2,1 = 0(mod 2) and i # 4(mod 10)}, B = {j | j > 5},
M=A{k|k>9Fk%#3mod5)}, E={s]|s>6,s% 2(modb5)}. Then G is
x-unique if and only if {i+1|i€ AANB=0if2¢ A, or{i+1]|i€ A}NnB=0
and {5,6,7}NB =0 if2 € A.

Proof. It is not difficult to see that we need only to prove that G is adjointly unique
if and only if {i +1ji € AN B =0if2¢ A or {i+1]i € A}NB =0 and
(56, 7}NB=0if2¢€ A.

Let H be a graph such that h(H) = h(G). Since hy(K3) = hi(Py), by Lemmas 2.5
and 2.7 one can see that hy(K3) Jh(Y) for each Y € {P; | ¢ > 2,i = 0(mod 2),i #
4 (mod 10)}U{C; | j > 4}U{Dy | k > 4,k # 3 (mod 5)}U{Fs|s > 6,5 # 2 (mod 5)}.
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So, by Theorem 3.5, H € F,. Assume H = aK3 U H; and G = aK3 U G;. Then
h(G1) = h(H,). Without lost of generality, we assume

G=(Jpr)ulJcpul pyu(lF)utky urk,

icA jeB keM s€EE

and

Hl:( U Pil)U( U le)U( U Dkl)U( U Fs1)Ut1K4_U7'1K4a

i1€A1 J1€B1 k1€M; s1€E,

where i, j, k and s satisfy the condition of the theorem.

It is enough to prove that H; = G;. Since hy(Dg) = (2 + bz + 4)hy(K3), H; does
not contain the component Dg. By Theorem 4.2, we have

B(IKy) < B(Fp) < B(F7) < -+ < B(Fyy) < B(Fn) < B(Dim)
< B(Dm-1) < -+ <B(Do) < B(Ds) = B(Ky) = —4.

By comparing the minimum real root of h;(G;) with that of hy(H;), we know that
r=ry,t =1t,|E|=|Ei|,M C M;. Eliminating all components G* with 5(G*) < —4
from G; and H;, we obtain

rJr)uJen) =nlJ ryvlJ vl bw),
icA jeB €A j€B; keM,
where My = M; — M.
By Theorem 4.1, we know that (UjeaP;) U (UjepC;) is x-unique if and only if {i+1 |
ieAjnB=0if2¢g A or{i+1l]|i€e A nB=0and {5,6,7}NB=0if2€ A
when ¢ and j satisfy the condition of the theorem. Hence M, = () and M = M,
which implies that H; = G, and H = G. O

It is not difficult to see that all the chromatically unique graphs given in [9-12] are
special cases of our Theorems 4.3. In particular, from Theorem 4.3 we have

Corollary 4.1 Let k # 3 (mod 5) and k > 9, s # 2 (mod 5) and s > 6.

Then (U, F,) U (UpDy) is x-unique. O
Corollary 4.2 Let K(ny,na,--- ,n;) be the complete t-partite graph. Then K(2,--- |
2,3,--+,3,4,---,4) is x-unique. |
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