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Erratum to: 2-walks in 3-connected planar graphs
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Abstract

An error in the proof of the main theorem of our earlier paper in Australas.
J. Combin. 11 (1995), 117-122, was pointed out by Henning Brithn. We
correct this error.

We pick up the proof of Theorem 4 in [1] from the second to last paragraph of
page 119.

We now extend P back to z. For each K -bridge L in G, L N K consists of at most
one vertex, which we call a(L). Let L be the bridge (if there is one) containing the
path wCz. Because (G,C) is a circuit graph, this is the only K—bridge in G that
can have only two vertices of attachment. If L has only two vertices of attachment,
then we shall do nothing with it; w will be its representative.

Let F' denote the union of zCwu, all K—bridges in G and all I:’—bridges in K that
contain a vertex a(L) that is not in P. Let F = F' — P. Let ay,a1,as,...,a, be
the vertices z, u and the cut vertices of F' that are in xCu, in the order they appear
from z to w. Thus, ag = z and a, = u.

For each i = 1,2,...,r, either there is a path in F' from a; ; to a; that is disjoint
from a;—1Ca; (except for their common ends) or there is not. If there is not, then a;_;
and a; are consecutive vertices of zCu and we set @; to be the path (a;_1,a; 104, a;)

and R; = 0.
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Let P be a path in F from a; 1 to a; that is disjoint from a; 1Ca; (except for common
ends) and let H be the union of a; ;Ca; and the {a; 1, a;}-bridge in F containing P.
Let B be the block of H containing a; ;Ca;. If H # B, then B contains a unique
cut vertex b of H. If H = B, then either H contains no K-bridge L for which a(L)
is defined or, letting Cy denote the cycle bounding the outside face of H, there is
a unique subpath PH of Cy that: is disjoint from a;_;Ca;; has its ends adjacent to
distinct vertices in P; and has no internal vertex adjacent to a vertex of P. Let b be
any vertex of Py.

Now let @; be a Tutte path in B from a; ; to a; through b, and let S; be a SDR of
the Q;-bridges in B so that, if a =z, a;_1 ¢ S;, while if a = u, a; ¢ S;.

The desired Tutte path @ for G is obtained by taking P and the union of all the
Q;, together with the edge uu;. The SDR is the union of the SDR for P and the
Si. The only interesting Q-bridges are the ones that have vertices not in K and
have attachments in P. For example, if the H from two paragraphs above is not
2-connected, then there is a single Q-bridge M having three attachments, one being
b and the other two being on P. This is contained in a ﬁ—bridge in K, and therefore
has one of the two attachments on P as its representative.

If H is 2-connected, then each @;-bridge M in H is contained in a Q-bridge M' in
G. If M’ has an attachment that is not an attachment of M, then M has a vertex
on the outside face of H and so has only two attachments on @;. The additional
attachment is a vertex of P, and the choice of b guarantees that there is only one
such vertex. In this case, the representative for M’ is the representative for M. O
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