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Abstract

A partition {Vi,V,,---,V,} of the vertex set of a graph G = (V, E) is
a t-partition if the number e(V;) of edges contained in the class V; is at
most ¢ for 1 < 4 < p. The minimum number of classes in a t-partition
of G is the t-chromatic number x;(G). Since a 0-partition is a partition
of V into independent sets, xo(G) equals the chromatic number x(G).
A t-partition is s-complete if the number e(V;, V;) of edges between two
parts V; and Vj is at least s for all 1 <7 < j < p. The minimum number
of classes in a s-complete ¢-partition of G, if any, is denoted x;(G).

We study some properties of x:(G) and x;(G), in particular bounds
on x:(G), the complexity of x;(G) and conditions for the existence of
x: (G).

1 Introduction
Let G = (V, E) be a finite and simple graph with |V| = n vertices and |E| = e edges.

If S and T are disjoint vertex subsets of G, we denote by E(S) and e(S) the set of
the edges of G having both endvertices in S and their number, and by E(S,T) and
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e(S,T) the set of the edges of G having one endvertex in S and one in T and their
number, respectively. The induced subgraph (S, E(S)) is denoted by G[S] and the
bipartite subgraph (SUT, E(S,T)) by G[S,T]. We write w(G) for the clique number
of G, that is the maximum number of vertices in a complete subgraph of G.

A partition P = {V}, V3, -+, V},} of the vertex set V' is said to be a t-partition of G
ife(V;) < tfor 1 <i < pwhere tis a non-negative integer. Since the trivial partition
into n classes containing one vertex each is a t-partition for any ¢, t-partitions exist
for all values of t. The t-chromatic number x:(G) is defined as the minimum number
of classes in a t-partition of G. Since a O-partition is a partition into independent
sets, xo(G) equals x(G), the chromatic number of G. (Note that similar kinds of
partitions have been considered before, e.g. that in which the maximum degree
A(G[V4]) is at most ¢ for 1 <4 < p [1], [5]).

A t-partition {V4,Va,---,V,} of G is said to be s-complete if e(V;,V;) > s for
1 < i< j<p. The s-complete t-chromatic number xi(G) of G is defined as the
minimum number of classes in a s-complete t-partition of G, provided that such a
partition exists.

Our aim in this paper is to study some properties of x:(G) and x:(G). For x;(G),
the main question is that of the existence of s-complete t-partitions of G while for
Xx:(G), which always exists, we are interested in good bounds and in complexity
results.

The idea of t-partitions is not new but the problem has been presented until now
under the following different form. Given a partition P = {V4,---,V,} of V into p
classes let y(P) = max {e(V;) | 1 <i < p}. Furthermore, let

7p(G) = min {y(P) | P is a partition of V into p classes}.

The problem is to find a good upper bound on 7,(G). For p = 2, Erdés conjectured
in 1988 that 72(G) < e/4+ O(+/e) for every graph with e edges [4]. This was proved
by Porter in [7]. Later, several authors worked on the generalization of the problem
(see for instance [2], [3], [8]). The following sharp bound was established by Bollobés
and Scott.

Theorem A [2] Let p be a positive integer and G a graph with e edges. Then
G has a vertex partition into p classes such that each of them has at most 1% +

1%21 (,/26 —+ i - %) edges.
2 Properties of y;

Since every t-partition of G is a t'-partition for all ¢’ > ¢, the ¢t-chromatic numbers
of a graph G with e edges form an inequality chain
X(G) = x0(G) 2 x1(G) = .. Z Xe-1(G) 2 xe(G) = 1. (2.1)

If ¢t < e, then not all edges of G can belong to the same class and thus x:(G) > 2. If
t = e — 1, two classes always suffice and thus x. 1(G) = 2.
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For a given graph G, it would be interesting to know the smallest value of ¢ for
which x:(G) = 2 and more generally to know an upper bound on x:(G). If G is
bipartite, xo(G) = 2 and if G is an odd cycle, then xo(G) = 3 and x:(G) = 2. For
general graphs, Theorem A provides an answer to the previous question. It is easy
to see that ,(G) < t holds if and only if x;(G) < p. Therefore Theorem A leads to
the following corollary.

Theorem 2.1. Let p > 1. Every graph G with e edges satisfies

Mg (varr (@ =P

Before giving other bounds on x:(G), we show that the terms of the decreasing
sequence (2.1) are not completely unrelated. We need the following lemma.

Lemma 2.2. Every graph H with m edges satisfies x(H) < m* where m* is the
largest integer j such that (;) < m.

Proof. {Uy,Us,...,U;} with ¢ = x(H) be a minimum 0O-partition of H. Since for
i # j, U;UU; is not independent, H has at least one edge between each pair (U;, U;),
and thus has at least (g) edges. Hence (g) < m, which implies m* > ¢ = x(H) by
the definition of m*. O

Theorem 2.3. For allt > 1, every graph G satisfies x(G) < t*x;(G) where t* is the
largest integer j such that (;) <t

Proof. Let {V1,V,,...,V,} with p = x4(G) be a minimum ¢-partition of G. Each
V; can be partitioned into x(G[V;]) independent sets which all together form a 0-
partition of G. By Lemma 2.2, x(G[Vi]) < (e(V;))* < t*. Hence x(G) < pt* =

t*Xt(G) O
The inequality in Theorem 2.3 is sharp as can be seen in the family F; below.

Definition 2.4. A graph G = (V, E) belongs to the family F, if there exists a
positive integer p such that

(i) V is the disjoint union V3 UV;--- UV, where e(G[Vi]) < t and w(G[V;]) = ¢*
and

(ii) G[X;U---UX,]is complete where X; is a clique K of G[V}].

Theorem 2.5. Every graph G in F; satisfies x(G) = t*x:(G).

Proof. Clearly, V1 U... UV, is a t-partition of G and thus x:(G) < p. On the other
hand, the graph G contains a clique with |X; U ... U X,| = pt* vertices and thus
X(G) > pt* > t*x:+(G) vertices. By Theorem 2.3, x(G) = t*x+(G). O

Remark 2.6. There exist graphs not in F; satisfying x(G) = t*x,(G). For instance let
G be obtained from a complete p-partite graph K55 . 5 by adding five edges forming
a C5 in each part (note that G belongs to the family Gy defined below in Definition
2.10). Then x5(G) = p and x(G) = 3p = 5*x5(G).
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However when t = 1, the graphs in F; are the only graphs for which x(G) =
1*x1(G) = 2x1(G). For, if x(G) = 2x1(G) then, from the proof of Theorem 2.3,
every class V; of a minimum l-partition of G contains exactly one edge z;y;. If
GH{z1,t, -, Tp, yp}] is not complete, let, say, z122 ¢ E(G), then (Vi —{z1}), (Va—
{x2}), {z1, m2}, (Vs—{s}), {3}, -+, (V,—{xp}), {,}) is a O-partition of G with 2p—
1 classes, a contradiction to x(G) = 2x1(G) = 2p. Therefore G[{z1,y1," - . Tp, Yp}]
is complete and G € F;.

Remark 2.7. Similar proofs give the same kind of results relating x;(G) and xy(G)
for other values of ¢t and #'. For instance, the consideration of all the possible config-
urations of three edges yields to x1(G) < 2x3(G) for every graph G. This bound is
sharp as shown by the following example. The graph constructed from a complete
k-multipartite graph K¢ ¢ by adding the edges of a perfect matching in each class
satisfies x3(G) = k and x1(G) = 2k = 2x3(G).

We now give sharp bounds on x;(G) in terms of the numbers of vertices and edges

of G.

Theorem 2.8. Let t* be the largest integer j such that (;) <t. Every graph G with

n vertices satisfies x:(G) < [ %] and for the clique, x:(Kp) n

= | ¢* |

Proof. We obtain a minimum ¢-partition of K,, by taking as many parts of order ¢* as
possible plus possibly one smaller part. Hence x;(K,) = [£]. If G is a subgraph of
H, then any t-partition of H is a ¢-partition of G and thus x;(G) < x:(H). Therefore,
(G < k) = [2]. -

Corollary 2.9. If G is a connected graph with mazimum degree A > 1, then x1(G)
<A.

Proof. By Brook’s Theorem, x1(G) < x0(G) < A+1 and xo(G) = A+1 if and only
if G is either a clique K,,, in which case x1(G) =[] = [%] <n—1= A, or an odd
cycle, in which case x1(G) =2 = A. O

Definition 2.10. A graph G belongs to the family G, if its vertex set V' admits
a partition {Vi, Vs, - ,V,} such that [V} = V5| = -+ = |V,|, G[Vi] has exactly ¢
edges, and the graph (V, E\ (E(Vi) U E(Vo) U--- U E(V,))) is complete p-partite.

For ¢t = 0, a lower bound on the usual chromatic number of a graph G in terms

of its order n and size e is known, namely x(G) > n{ie with equality if and only if

G € Gy [6]. We give an analogous result for any positive value of ¢ in the following

Theorem 2.11. Fort > 1, every graph G of order n and size e satisfies

2¢ — n? + 4/(n? — 2¢)2 + 8tn?
>
x(G) 2 4

with equality if and only if G € Gy.



t-PARTITIONS AND s-COMPLETE ¢-PARTITIONS OF A GRAPH 299

Proof. Let {Vi1,Va,--+,Vp} with p = x4(G) be a minimum #-partition of G. The
complement G of G has at least (”2’) — t edges in the part V; where n; = |V;|. Hence

p

— ni(n; — 1 1< n
6(0)22%—@:52@2—5—@
i=1

i=1

with equality if and only if G contains all the edges between two different parts and
e(V;) =t for all i. By Schwarz’s inequality, p > 57 n? > (30, n;)* with equality if

i=1""
and only if all the n;’s are equal. Hence e(G) > g—; — % —tp with equality if and only
if G € G;. Therefore

2

. . n? n
@<y
e(G) < 5 op TP

n(n —1)

e(G) = 5

that is
2tp* + (n? — 2e)p — n® > 0,

and p is at least equal to the positive root of the equation 2tz + (n? —2e)x —n? = 0.
Whence

2e — n? + /(n? — 2e)? + 8tn?2

x+(G) > ( P )

and equality holds if and only if G € Gg. O

3 Complexity issues

For integers t > 0 and k > 1 we consider the following problem.

Problem ¢t-CN < k

Instance: A graph G.

Question: Is x;(G) < k7

For t = 0, the problem of the well-known colorability problem which is known to be
polynomial for £ = 2 and NP-complete for £ > 3. In this section we show that the
same result holds for every value of ¢.

Theorem 3.1. Lett > 0 and k > 1 be given integers.
(i) The problem t-CN < k is solvable in polynomial time for k = 2.
(ii) The problem t-CN < k is NP-complete for k > 3.

Proof. (i) The graph G satisfies x;(G) < 2 if and only if we can find two disjoint sets
F, and F, of at most ¢ edges of G such that the graphs (V(F1), F1) and (V(Fy), Fs)
are induced in G, and the two vertex sets V(F;) and V(Fy) are disjoint and can
be extended to a bipartition A; U Ay of the graph (V,E \ (F; U F3)) such that
V(F1) C A; and V(F3) C A,. Since the value of t is fixed, the choice of F; and F,
the examination of the graphs (V(F;), F;), and the test of the extension of (Vi,V3)
to a bipartition of G — (Fy U F3) are polynomial.

(ii) For k > 3, the problem is clearly in NP.
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Claim If the graph H consists of tn + 1 disjoint copies of a graph G of order n, then
xi(H) = x(G).
Proof of the claim: Clearly, x:(H) < x(H) = x(G) < n.

Now let P = {V1,V5,...,V,} be a t-partition of H with p = x;(H). We have
> L e(Vi) < pt < nt. If for each copy C of G in H there exists one V; such that V;
contains at least one edge of C, then > 7, (Vi) > tn + 1 which is a contradiction.
Hence there is one copy of G in H such that the restriction of P to it yields a
p-coloring of G. Thus x(G) < x:(H) and the proof of the claim is complete. O

Now the desired result follows from the NP-completeness of the ordinary colorability
problem (¢t = 0). O

4 Existence of the s-complete t-chromatic numbers

Usually a partition is called “minimal” if no two different classes can be gathered into
one without creating a violation. This immediately implies that minimal 0-partitions
are 1-complete, x4 always exists and equals x,. Already the complete graph shows
that x2 does not always exist.

In this section we prove results on the existence of s-complete t-partitions. Since
every s-complete partition is s’-complete for all s' < s, we are interested in the
maximum value of s for which s-complete t-partitions exist. For a given partition
P = {V4,...,V,} we define the weight of P as f(P) :=>"  e(V}).

Theorem 4.1. For every graph G, x3(G) ezists and x3(G) = x1(G). Fort > 2,
i t
thJH(G) ezists and thHl(G) = x(G).

Proof. Let P = {V3,V4,...,V,,} be a t-partition of G such that p is minimum and
subject to this condition f(P) is minimum. Clearly, p = x:(G) and

e(V;) <tforalll <i<p. (4.1)
Since P is minimal
e(V;) +e(V;) +e(Vi, V) >t+1forall 1 <i#j<p. (4.2)

If the partition P is not s-complete for some integer s, 1 < s < t+ 3, there exist two
indices 7 # j such that
e(V;,V;) <s—1. (4.3)

For these indices i and j, we have, by (4.1) and (4.3),
e(V;) +e(V;) +e(Vi,V;) <2t +s— 1. (4.4)

Let {V/,V]} define a partition of V; U V; such that e(V}/,V/) is maximum. Since
GV} UVj] = G[Vi UV}], inequality (4.2) implies

e(Vi, Vi) +e(Vi) +e(Vj) = e(Vi, Vi) +e(Vi) +e(Vj) =t + 1. (4.5)

i Vg
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Since e(V}, V}) is maximum, |Ng(u) NV]| > [Ng(u) N V/| for all w € V;" and |[Ng(v) N
Vi| = |Na(v) N V]| for all v € V;. Adding these inequalities gives

e(V;,V]) = 2e(V)) and e(V}, V)) > 2¢(V}) (4.6)
and thus
e(Vy) +e(V)) < e(V/, V) (4.7)

(note that the inequalitie (4.7) expresses the property of every graph to contain a
bipartite subgraph with at least |E|/2 edges.

If e(V/) = e(Vj) = 0 then, by (4.5), e(V/,V]) > t+1 > 2 while if e(V/) > 1
or ¢(V) > 1 then, by (4.6), e(V/,V/) > 2. On the other hand, by (4.7) and (4.5),
e(V/,V/]) > [%]. Therefore

iV

e(V/, V) > max { {%W ,2} . (4.8)

Let P’ be the partition (P —{V;,V;}) U{V/,V/} of G. If e(V]) > t +1 then, by (4.6)
and (4.4),

3(t+1) 3e(VY) +e(V})

e(Vi,Vj) +e(Vi) +e(Vj)
e(Vi, Vj) + e(Vi) +e(V))
2t+s—1

ININ

IN

which contradicts s < ¢ + 3. Hence e(V/) < t. Similarly e(V}) <t and thus P’ is
a minimum ¢-partition of G. If s — 1 < max{{%] ,2} then, by (4.3) and (4.8),
e(V/,V]) > e(Vi,V;) and by (4.5), e(Vi) + e(V;) > e(V/) + e(V]). This implies
f(P') < f(P) and contradicts the choice of P. This proves that if the t-partition
P is not s-complete, with s < ¢ + 3, then s > max { (%] ,2} + 1. In other words,
for s = max { [%1 ,2} = max { L%J +1, 2}, P is a s-complete t-partition of G with
x+(G) parts. Hence x;(G) exists for this value of s and is at most x;(G). Since the
inverse inequality always holds, x§(G) = x:(G). O

For t = 1 and t = 2, Theorem 2 says that x3(G) = x1(G) and x3(G) = x2(G)
for every graph G. These results are sharp since the 1-partitions and 2-partitions of
Koy11 consist of parts isomorphic to K; (at least one) and possibly K, and are never
3-complete. They are probably not sharp for large values of ¢.

Theorem 4.2. If the graph G has no odd cycle of length at most s, then x5(G) exists
and x$(G) = x:(G) for all integert > s — 1.

Proof. We suppose t > s — 1 and as in the proof of Theorem 4.1, we consider a
minimum ¢-partition P = {V4, Vs, ..., V,} of G of minimum weight f(P). If P is not
s-complete, the inequalities (4.1) to (4.3) are still valid and for the two particular
indices i and j, we get from (4.2) and (4.3)

e(Vi)+e(V;) >t—s+2>1. (4.9)
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Let U; (U; respectively) be the set of the vertices in V; (V; respectively) that are
incident with an edge in E(V;,V;). Suppose e(U;) > 0 and let ug, us be two vertices
of U; such that ujus is an edge of G. Since e(V;, V;) < s — 1 and G has no odd cycle
of length at most s, the graph G' = (U; U U;, E(V;,V;) U {uqus}) is bipartite. Let
{U{, U;} be a bipartition of G'. There is no edge between U; N'V; and V; \ U; by the
definition of U;, and no edge between U; N'V; and U} N'V; since U] is a class of the
bipartition. Hence E((V; \ U;) UU]) C E(V;). Similarly, E(V; \ U;) UU;}) C E(V;).
Therefore P' = (P — {V;,V;}) U {(Vi \ U;) U U}, V; \ U;) U U} is a t-partition of
G. Moreover, f(P') < f(P) since the edge ujuy of the class V; of P joins different
classes of P’. This contradicts the choice of P. Therefore e(U;) = 0 and by symmetry
e(U;) = 0. By (4.9) we can assume without loss of generality that e(V;) # 0.
Since e(U;) = 0, there exists a vertex v € V; — U; with |Ng(v) N V;| > 0. Then
P" = (P - {V;,V;}) U{V; \ {v},V; U {v}} is a t-partition of G with f(P") < f(P),

a contradiction. Hence the t-partition P is s-complete. a

Finally, we can remark that the notion of minimality of a ¢-partition, meaning
that e(V;) + e(V;) + e(V;,V;) > t+ 1 for all ¢ # j, can be reduced to a notion of
completeness of the partition only when ¢ = 0.
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