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Abstract

The back circulant latin square of order n is the latin square based on the
addition table for the integers modulo n. A critical set is a partial latin
square that has a unique completion to a latin square, and is minimal
with respect to this property. In this note we show that the size of
a critical set in the back circulant latin square of order n is at least
n*3/2 —n —n?3/2 +2n!/3 — 1.

1 Introduction

We define scs(n) to be the size of the smallest critical set in any latin square of order
n. The problem of determining this value exactly for every m remains unsolved.
However, progress has been made on upper and lower bounds.

Fu, Fu and Rodger ([7]) showed that if n > 20, scs(n)> |(7n—3)/6|. Horak, Aldred
and Fleischner showed that if n > 8, scs(n)> |(4n — 8)/3| ([8]). Very recently, this
bound was improved by the author to scs(n)> n(logn)/?/2 (for all n > 1) ([3]).
Bate and van Rees ([2]) showed that the size of the smallest strong critical set (a
critical set with a certain type of completion) is [n?/4]. The smallest critical set
so far constructed for any latin square of size n has size |n?/4] ([6], [5]). A critical
set of such size is known to exist in back circulant latin squares, namely those latin
squares based on the addition table for the integers modulo n. Some computational
results for critical sets in small latin squares are given in [1]. See [9] for a survey
paper on critical sets in latin squares, or [10] for more general results on defining sets
and trades in combinatorial structures.

The lower bound in this paper is essentially a refinement of the result in [3],
exploiting the cyclic structure of back circulant latin squares.
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2 Definitions

We start with basic definitions which allow us to state and prove our main results.

Let N ={0,1,2,...,n—1}. A partial latin square P of order n is a set of ordered
triples of the form (7, j; k), where 4, j, k € N with the following properties:

e if (4,5;k) € P and (i,5;k") € P then k =/,
e if (i,j;k) € P and (¢,5';k) € P then j = j' and
e if (i,j;k) € P and (7,5;k) € P then i = ¢

We may also represent a partial latin square P as an n X n array with entries chosen
from the set N such that if (i, ;&) € P, the entry k occurs in cell (¢,7). A partial
latin square has the property that each entry occurs at most once in each row and
at most once in each column.

If all the cells of the array are filled then the partial latin square is termed a latin
square. That is, a latin square L of order n is an n X n array with entries chosen
from the set N = {0,1,2,...,n — 1} in such a way that each element of N occurs
precisely once in each row and precisely once in each column of the array.

We define the back circulant latin square B, to be the latin square based on the

addition table for the integers modulo n. That is,

By ={(i,j3i+j (modn)) [0 <i,j <n—1}.

For a given partial latin square P the set of cells Sp = {(i,5) | (4,7;k) €
P, for some k € N} is said to determine the shape of P and |Sp| is said to be
the size of the partial latin square. That is, the size of P is the number of non-empty
cells in the array. For each 7, 1 < r < n, let R} denote the set of entries occurring
in row 7 of P. Formally, R} = {k | (r,7;k) € P}. Similarly, for each ¢, 1 < ¢ < n,
we define C% = {k | (i,¢; k) € P}.

A partial latin square T of order n is said to be a latin trade (or latin interchange)
if T # () and there exists a partial latin square T" (called a disjoint mate of T) of
order m, such that

° ST = ST’:
o if (4,5;k) € T and (4,5; k') € T', then k # ¥/,
e for each r, 1 <r <n, R}, = RY., (the row r is balanced) and

e for each ¢, 1 < ¢ < n, C&% = C&, (the column c is balanced).

A critical set in a latin square L (of order n) is a partial latin square P C L, such
that
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(1) L is the only latin square of order n which has element & in cell (4, j) for each
(1,7;k) € P; and

(2) no proper subset of P satisfies (1).

If there exists a latin trade T" in L such that PNT = (), then P is also contained
in the latin square (L \ T') U T", where 1" is a disjoint mate of T". Therefore if P is
a critical set in a latin square L, P must intersect every latin trade in L. It comes
as no surprise, then, that the study of latin squares is closely related to the study of
critical sets in latin squares. Other applications of latin trades include the compact
storage of large catalogues of latin squares (see Wanless, [11]).

3 Latin trade constructions

In this section we construct latin trades that are used later in our proof on critical
sets. The following theorem first appeared in [4]. We omit the proof in this paper.
However, an example follows to illustrate the construction.

Theorem 1 (Theorem 2.4, [4]) Let z,y > 1. Consider the subrectangle in the back
circulant latin square By, cornered by the following elements:

(0,0;0),(0,4;9), (z,0;z) and (z,y;0).

Then there exists a latin trade, denoted by I,,, with the following properties:

1. I, is contained within the above subrectangle.
2. I, includes the above four elements.

3. The disjoint mate of I, denoted by I, includes the elements (0,y;0) and
(z,0;0).

Example 2 Figure 1 shows the latin trade Isg, together with its disjoint mate I g,
constructed as in Theorem 1.

0 5 8 5 8 0

8 10|11 10 11| 8

11(12 12(11

5 10 12| 0 0 5 10(12
Iss Igs
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4 Main Results

Note that since a back circulant square of even order n can be partitioned into 2 x 2
subsquares (which are latin trades), the smallest size of a critical set when n is even
is n%/4. The results in this section apply for both n even and n odd.

Because of the cyclic nature of B,, partial latin squares may be “shifted” by
translation to different positions in B,. We assume throughout this section that
row, column and entry values are calculated modulo n. We describe the process
more precisely in the next definition.

Definition 3 Let I be a partial latin square in the back circulant latin square of
order n. We define I & (i,7) to be the partial latin square in B, given by:

1®(i,j) ={(a+1,8 +j;v +i+ jmod n)) | (a,8,7) € I}.

The next lemma exploits the latin trades constructed in the previous section.

Lemma 4 Let C be a critical set in B,, a and b integers such that a +b < n — 1
and a,b > 1. Suppose that every cell in C of the form (i,j) is empty, where r < i <
r+a—1landc<j<c+b-—1. Then:

1. Columns c through to c+b—1 (mod n) in C must contain at least

min (|6%/4],alb/2])
entries, and

2. rows r through tor+a—1 (mod n) in C must contain at least

min (|a®/4],bla/2])

entries.

Proof Because of the cyclic structure of B,,, we may assume, without loss of gen-
erality, that 7 = ¢ = 0. Let B = [b/2]. Consider column 0 and column B in B,.
For each 4, 0 < i < min(a, B), we construct a latin trade T; that intersects columns
0 and B only within rows a through to n — 1. All other elements of T; will lie within
the first a rows and the first b columns. Informally, we find ¢ in column B, then
zig-zag between columns B and 0 until we reach an element that lies between rows 0
to a —1. We then adjoin this zig-zagging sequence of elements with one of the trades
from Theorem 1 (pasted in the first a rows) to create a new latin trade.

Formally, we construct T; as follows. Let x be the least positive integer such that

i+ B <i—zB(modn) < B+ (a—1).
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Let v = (i — zB) (mod n).

Suppose first that Bln. In this case, x = n/B, v = i and our latin trade T} is
equal to:

{(i —aB— B,B;i—aB),(i—aB,0;i—aB) |0 < a < z}.
The disjoint mate T}, obtained by exchanging the entries in each row, is:
{(i—aB—B,B;i—aB — B),(i—aB,0;i —aB+ B) |0< a <z}

Clearly T; and T occupy the same shape and are disjoint. Also, since we are just
swapping entries in the same row, T; and 7} are row-balanced. Finally,

Cy=Cl =C =Ch={i—aB|0<i<uz}.

Thus T; is a latin trade with disjoint mate T7.

Otherwise B does not divide n. We have two subcases: v > i+ B and v < i + B.
For the first subcase, our latin trade T; is:

(Iy-a+m.8 \ {(v = (i + B),B;0)}) & (i,0) U{(y — B, B;7)}
U{({t —aB—-B,B;i—aB),(i—aB—-B,0;i—aB—B)|0< a<z}.

The disjoint mate of this latin trade, T}, is equal to:

(I _ymy,8 \{(y = (i+B),0;0)}) & (3,0) U {(y — B,0;7)}
U{(i—aB B,0;i—aB),(i—aB—-B,B;i—aB—-B)|0< a <z},

where I' ;. ) p is the disjoint mate of latin trade I, p),5-

We next verify that T; is a latin trade with disjoint mate 77. Since I,_(i15) B
and I’ S (i+B),B A€ latin trades (from Theorem 1), they have the same shape and
are disjoint. It follows that 7; and 7} have the same shape and are disjoint. Now,
let (d,e; f) be some element of T;. If we can show that there exists d’ and e’ such
that (d',e; f), (d,€'; f) € T}, it follows that T} is a disjoint mate of T;. First suppose
that (d,e; f) € (Iy—(i+B),B \ {(v = (¢ + B),B;0)}) & (3,0). Then (d — i,e; f — i) €

—a+8),8 \ {(v (z + B) ;0)}). Thus, there exists d' # d — i and €’ # e such that
(d —dgesf—1),(de f—1) € L’h(HB),B. So clearly (d,€'; f),(d',e; f) € T/ unless
(d—i,e;f—1)or (d,e;f—1i)=(y—(i+ B),0;0). Since column B is the unique
column for which row v — (i + B) contains entry 0 within I, ;| ) s (see Theorem
1), the former implies that (d —i,e; f — i) = (y — (i + B), B;0); a contradiction to
the definition of T;. Similarly, the latter implies that (d — i,¢e; f — i) = (0,0;0), or
equivalently, (d,e; f) = (4,0;¢). For this case observe that (v, 0;7) € T}.

Next suppose that (d,e; f) = (y— B, B;v). Then (y— B,0;7), (i—zB, B;v) € T}.
In the remaining rows we are simply swapping entries between column 0 and column

B, so these rows are clearly balanced. For (d,e; f) = (i — 2B,0;i — zB), observe
that (v — B,0;~) € T}. Otherwise if (d,¢; f) = (i —aB — B,0;i — aB — B) for some
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0 < a <z — 1, then observe that (i — (& +1)B — B,0;i —aB — B) € T}. It follows
that column 0 is balanced.

To see that column B is balanced, first consider (i—B, B; i) € T;. From Theorem 1,
(0,B;0) € I, p) - Thus (i, By i) € T;. Otherwise (d, ¢; f) = (i—aB—B, B;i—aB)
for some 0 < a < z and (i — aB, B;i —aB) € T}.

For the second subcase, our latin trade Tj is:

(Lo \ {(i+ B =, B;0)}) & (v — B,0) U{(i, B;i + B)}
U{(i—aB—-B,B;i—aB),(i—aB—-B,0;i—aB—-B)|0< a<z}.

The disjoint mate of this latin trade, 17, is equal to:

(Lisp—y \ {1 + B=7,0;0)}) & (v = B,0) U{(i, 0;4)}

U{(i —aB — B,0;i —aB),(i —aB — B,B;i—aB — B) |0 < a < z},
where I, 5 . p is the disjoint mate of latin trade I, (iyp) p. (All rows, columns and
entries are calculated modulo n.) The proof that T; is indeed a latin trade with
disjoint mate 77 is very similar to the previous subcase.

0 B
i [ IIIA
/ I, +B)B

(modified and shifted %

S S
vy—B i
A e |yt B
P 2B | i 2B i—B
i-B [iB | N

Figure 2: The latin trade T;, where v > i + B.

We will next show that if ¢ # j, T; and Tj intersect only within rows 0 through to
a — 1. First observe that each T; intersects rows a through to n — 1 exactly in rows
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i—B,i—2B,...i —xB =i — x(i)B. For the sake of a contradiction, assume that
i— k1B = j—koB (mod n) for some k; < (i) and ky < x(j). If k1 = ko, then ¢ = j.
Otherwise suppose that ¢ # j and let ks < k;. Then i — (k; — ko) B = j (mod n).
But since 0 < j < a, B< j+ B < B+ a, implying B <i— (k; — ks — 1)B (mod
n)< B + a, contradicting the minimality of z(i). The case k; < ks is analagous.

Thus, since C is a critical set, and C' contains no entries in the intersection of the
first a rows and the first b columns, C' must intersect each latin trade T; separately.
Thus C has at least min(B,a) — 1 entries in columns 0 and B.

Because of the cyclic nature of B,,, C' must have at least min(B,a) — 1 entries in
every pair of columns of the form ¢, B + i, where 0 < i < [b/2| — 1. Thus if B < a,
C has at least [b?/4] elements in columns 0 through to B — 1. Otherwise B > a,
and C has at least a|b/2] elements in columns 0 through to b — 1.

Similarly, by considering latin trades in the rows rather than the columns, we
have: that C' has at least
min (|a%/4),b[a/2])

entries in rows 0 through to a — 1. ]

Example 5 This example illustrates a latin trade constructed by the proof of the
previous theorem. Heren =b=151=r=c=0, B =28 and § = 13. Essentially,
we have taken the latin trade Iyg from Ezample 2, removed the element (5,8;0),
embedded the resultant partial latin square in Bis, and finally added o zig-zagging
sequence between columns 0 and 8 to create a latin trade in Bis.

0 5 8 5 8 0

8 10(11 10] |11|8

11/12 12/11

5 10| [12(13 13 ) 10|12
6 14 14

7 0 0 7

13 6 6 13

14 7 7 14

The latin trade Its disjoint mate
Figure 3

Theorem 6 Let n > 8. The size of a critical set in B, is at least n4/3/2 -n—
n?3/2 +2n'/% — 1.
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Proof Consider a set of a contiguous rows in B,; call them a “strip” of width a.
Either, a strip of width a contains an a X b rectangle with no elements from the
critical set C, or it doesn’t. If it does then from the previous lemma there must be
at least min(|a?/4],bla/2]) elements of C in that strip of width a. If B, does not
contain an a X b rectangle with no entries from C, there must be at least [n/b] entries
from C in the strip to prevent it. So there are at least min(|a?/4],b|a/2], [n/b])
elements of C' in a strip of width a. Since B,, contains [n/a| strips of width a, then

|C| = [n/a]min(|a?/4], bla/2], [n/b]).
Let a = 2|[n'/?] and b= |n'/?]. We get

012 | 5ty min ()2 | ]

But
n n
{Ln—l/aﬂ 2 o =z (0]
Therefore,
n 1/31\2
Icl > LWJ (Ln'2])
> (ﬁ —0)(n*® —€)? where ,6 e Rand 0 < ¢,0 < 1
nl/3 —e
n
> (g — D =17
nA/3 n2/3

= — —p——— 21,
g My ten

O

Corollary 7 If n = a® for some even integer a, then the size of a critical set in B,
is at least n*/3/2.

Proof If n is the product of an even cube, € and § are 0 in the proof of the above
theorem. 0O

Acknowledgments I would like to thank Professor John van Rees whose comments
were very helpful in writing the final theorem.

References

[1] P. Adams and A. Khodkar, Smallest critical sets for the latin squares of orders
six and seven, J. Combin. Math. Combin. Comput. 37 (2001), 287-300.

[2] J.A. Bate and G.H.J. van Rees, The size of the smallest strong critical set in a
latin square, Ars Combinatoria 53 (1999), 73-83.



[3]

[4]

8]

[9]

A CRITICAL SET IN THE BACK CIRCULANT LATIN SQUARE 239

N.J. Cavenagh, A superlinear bound for the size of a critical set in a latin square,
submitted.

N.J. Cavenagh and A. Khodkar, Balanced critical sets in latin squares, Utilitas
Math. 64 (2003), 229-249.

J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimal
size, Australas. J. Combin. 4 (1991), 113-120.

D. Curran and G. H. J. van Rees, Critical sets in latin squares, Proc. 8th Mani-
toba Conference on Numerical Mathematics and Computing, Congressus Numer-
antium XXII, Utilitas Math Pub., Winnipeg, 1978, pp. 165-168.

C-M. Fu, H-L. Fu and C. A. Rodger, The minimum size of critical sets in latin
squares, J. Stat. Plan. Inference 62 (1997), 333-337.

P. Horak, R.E.L. Aldred and H. Fleischner, Completing latin squares: critical
sets, J. Combin. Designs 10 (2002), 419-432.

A.D. Keedwell, Critical sets in latin squares and related matters: an update,
Utilitas Math. 65 (2004), 97-131.

[10] A.P. Street, “Trades and defining sets,” CRC Handbook of Combinatorial De-

signs, C. J. Colbourn and J. H. Dinitz (Editors), CRC Press, New York, 1996, pp.
474-478.

[11] I. Wanless, Cycle switches in latin squares, Graphs and Combin. 20 (2004),

545-570.

(Received 19 July 2005; revised 18 Oct 2005)



