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Abstract

Necessary and sufficient conditions are given to embed a A-fold kite sys-
tem of order n into a A-fold kite system of order m.

1 Introduction

Let G be a set of graphs. A A-fold G-design of order n is a pair (X, B) where B is
a collection of subgraphs (blocks), each isomorphic to a graph of G, which partitions
the edge set of A copies of the complete undirected graph K, with vertex set X.
If we drop the quantification “partitions” we have the definition of a A-fold partial
G-design. When A = 1 we simply say G-design. When G contains a single graph G,
the design is a G-design.

Let G be a graph. The A-fold G-design (X, B;) is said to be embedded in the
A-fold G-design (X, By) provided X; C X, and B; C Bs; we also say that (X, By)
is a subdesign (or subsystem) of (X, Bs), or that (Xs, Bs) contains (X;,B;) as a
subdesign. Let N)(G) denote the set of integers n such that there exists a A-fold
G-design of order n. A question which naturally arises is the following: given n,m €
Ni(G), with m > n, and a A-fold G-design (X, B) of order n, does there exist a
A-fold G-design of order m containing (X, B) as subdesign? Doyen and Wilson were
the first to pose this problem for G = K3 and A = 1 (Steiner triple systems) and
in 1973 they showed that given n,m € N;(K3) = {v: v = 1,3 (mod 6)}, a Steiner
triple system of order n can be embedded in a Steiner triple system of order m if
and only if m > 2n+ 1 or m = n (see [4]). Over the years, any such problem has
come to be called a “Doyen-Wilson problem” and any solution a “Doyen-Wilson type
theorem”. The work along these lines is extensive ([5], [8], [2]) and the interested
reader is referred to [3] for a history of this problem.

* Supported in part by M.U.R.S.T. “Strutture geometriche, combinatoria e loro applicazioni”,
COFIN., and ILN.D.A.M. (G.N.S.A.G.A.)
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In [7] the following theorem is proved: Given n,m € Ni(G), where G is a kite,
any kite system of order n can be embedded in a kite system of order m if and only
ifm > gn +1 or m = n. The aim of this paper is to prove a similar result for A-fold
kite systems with any value of A > 2.

2 Preliminaries and basic lemmas

A kite is a triangle with a tail consisting of a single edge. A A-fold kite system of
order n (briefly, KS(n, A)) is a A-fold G-design, where the graph G is a kite. It is
well-known that the spectrum for A-fold kite systems is the set of all integers n such
that

(i) n=0,1 (mod 8), n > 8 for A =1 (mod 2),
(i) n=0,1 (mod 4), n > 4 for A = 2 (mod 4), and
(iii) » >4 for A =0 (mod 4).

It is also evident that if (X, B) is a KS(n, A), then |B| = )\ﬂns—*ll. From now on, we
will assume throughout the paper that the integers n and m belong to the spectrum
for A-fold kite systems, and that m > n .

Lemma 2.1 (see [7]) If a KS(n, ) is embedded in a KS(m, X), then m > 2n + 1.

Proof. Suppose (X, B) embedded in (X', B"), with |X'| = m. Let u = m —n
and ¢; be the number of kites each containing exactly ¢ edges in X'\ X. Then
c1 + 2cy + 3c3 + dey = A(;) and 3c; + 2¢y + ¢3 = Au - n from which it follows

02+2c3+3c4:)\w that givesuzgn—i—land songn—i—l. m|

In what follows we will denote the kite
a

b

by (a,b,c)-d or (b,a,c)-d. Let (Z,,B) be a partial KS(n,A). For any kite k =
(a,b,¢)-d € B and any z € Z,, let k+x = (a + z,b + z,c + z)-(d + z), where the
addition is performed modulo n. (Z,, B) is called cyclic if k+x € B for every k € B
and every z € Z,. The set (k) = {k+ x : z € Z,} is called the orbit generated by k,
and k is called a base block of (k).

Let S be a set. We define A\S to be a multiset in which each element of S appears
exactly A times.

To solve the Doyen-Wilson problem for A-fold kite systems we use the difference
method (see [9], [6]). Let D, denote the following set with elements from Z,:

D _ d:1<d< g if u is even;
R A if u is odd.
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The elements of D, are called differences of Z,. For any d € D, the set {{i,i+d} :
i € Zy}, known as the orbit of the pair (0, d) is a single 2-factor. When w is even, the
orbit of (0, %) is the multiset containing the pairs of the 1-factor {{i,i + §} : 0 <
i < § — 1} repeated twice. It is also worth remarking that 2-factors obtained from
distinct differences are disjoint.

Let R = {00y, 002,...,00.}, RN Z, = 0. Denote by (Z, U R,{dy,ds, ..., d;})
the graph I' with vertex set V(I') = Z, U R and edge set E(T') = {{z,y} : z,y €
Zy, x—y==d;, i €{1,2,...,t}} U{{o0j,k} : k€ Z,, 1 <j<r}

Now we introduce some useful lemmas.

Lemma 2.2 (sse [7]) Let d € D, \ {§}. The graph (Z, U {oo1, 002, 003}, {d}) can
be decomposed into kites.

Proof. The subgraph (Z,,{d}) is regular of degree 2 and so can be decomposed

into r-cycles. Let (zo,x1,...,2Z,_1) a such cycle. Consider the following kites, where
the addition is performed modulo r.
If r is odd:

o r—3.
(001, T2, T2i11)-003, 0 < i < 155
. r—5,
(002, Tai41, T2it2)-003, 0 <4 < 525
(%4,%4,002)-1"0; (003,330,%71)-001-

If r is even:

; r—2
(001, Tai, T2i11)-003, (002, Taiy1, Taite)-003, 0 <1 < 755 O

Lemma 2.3 Let u and s be integers such that uw > 4s. Then there exists a cyclic
partial KS(u,2), whose base blocks contain every difference d € {1,2,...,2s} exactly
twice.

Proof. It is a simple matter to check that the orbits of the following s kites define
the kites in a cyclic partial kite system (Z,, B).

(1,2s,0) — (u — 2s),
(2,25 —1,0) — (u+ 2 — 2s),

(s,s+1,0) — (w—2). O

Lemma 2.4 Let u = 0 (mod 4) and d € D,, be odd. The graph 2(Z, U {001, 002},
{d,3}) can be decomposed into kites.
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Proof. Let r = = consider the kites (4id+j, (424 1)d+j, 001)-((4i+3)d +j),
(46 + 1)d + 7, (45 + 2)d + j,001)-((¢ + 1)4d + j), (oo1, (47 + 2)d + j, (41 + 3)d +
J)- ((z+1)4d+]) (002, (4i + 1)d + j, 4id + j)-(% + 4id + j), (ooz,(4i+2)d+j (4i +
1)d + j)-(% + (4i + 1)d + 7), (002, (41 + 3)d + 7, (4i + 2)d + j)-(% (4z+2)d+])
(002,(z+1)4d+1, (4i+3)d+7)-(5+(4i+3)d+j), for0 <i< F—land 0 < j < 2—1.

O

Lemma 2.5 Letu =0 (mod 4) andd € D, be odd. The graph 2(Z,U{o01, 003, 003},
{d,5}) can be decomposed into kites.

Proof. Let r = consider the kites (4id + j, § +4id + j, 001)-((4i + 3)d + j),

cd(u,d)’
(4i+1)d+ 7,5+ (4z(+ 1))d+], 001)-(5 + (46 +3)d +j), (001, 5 + (4i+2)d + j, (4i +
2)d+§)-((4i +1)d + j), (4id+ j, (4Z+1)d+],002) ((4i+3)d+7), ((4i+1)d+j, (4i +
2)d + j,002)-((i + 1)4d + j), (002, (4 4 2)d + j, (45 + 3)d + j)-(% + (4i + 3)d + j),
(4id+ 7, (4i+1)d+ 7, 003)-((4i+2)d+7), ((4i+3)d+7, (i+1)4d+j, 003)-((4i+1)d+7),
(003, (44 +2)d+j, (46 +3)d+j)-((i +1)4d+j), for 0<i < F—land 0 < j <% 1.
O

Lemma 2.6 Letu =0 (mod 4) and d € D, be odd. The graph 2{Z, U {co1, 002, 003,
004}, {d, §}) can be decomposed into kites.

Proof. Let r = gcd(u Ik consider the kites (4id + j, § +4id + j, 001)-((4i + 3)d + j),
(46 42)d+ 7,5 + (40 +2)d + j,001)-(§ + (40 + 3)d + 7), (001, § + (4i +1)d + 4, (4i +
1)d + j)-004, ((i 4+ 1)4d + 7, (4i + 3)d + j, 009)-((4i + 2)d + j), ((4i + 1)d + 7, (4i +
2)d + j,002)-((4i + 3)d + j), (002, (4i + 1)d + j,4id + j)-004, (4id + 7, (45 + 1)d +
J,003)-((45 4+ 2)d + 7), ((46 + 2)d + 7, (4i + 3)d + j, 003)-((47 + 1)d + j), (003, (4 +
3)d+ 74, (i+1)4d + j)-004, ((4i+1)d+ 7, (45 + 2)d + J, 004)-((4i + 3)d + j), (004, (47 +
2)d+7,(4i4+3)d+j)-(4+(4i+3)d+j),for0<i<Z—-land0<j<%—-1.0O

Lemma 2.7 Letd € D,\{3}. The graph 2(Z,U{oo},{d}) can be decomposed into
kites.

Proof. Consider the kites (00,7 4+ d,i)-(u —d+1), i € Z,. O
Lemma 2.8 Letd € D, \ {§}. The graph 4(Z, U {o01, 002}, {d}) can be decomposed
into kites.

Proof. Consider the kites (002,1,d + i)-001 twice and (oo, d + 4,4)-(u — d + @),

1€ Z,. O

Lemma 2.9 Let u be even and d € D, \ {5}. The graph 4(Z, U {001, 002},{d, 5})
can be decomposed into kites.
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Proof. Consider the kites (coy,d + i,i)-00, (001,d + i,i)-(5 + i), for i € Z,,
and (002, u — d +1,i)-(d + i), (002,14, 5 +i)-(§ +d +1i), (002, 5 —d +1i,§ +i)-i, for
0<i<®—1.0

Lemma 2.10 Let u be even and d € D, \{5}. The graph 4(Z,U{0c0;, 003, 003}, {d,
5}) can be decomposed into kites.

Proof. Consider the kites (002,d + 4,17)-003, (003,d + i,%)-001, for i € Z,, and
(001, § +1i,4)-(d+1), (002,14, 5 +1i)-(§ +d+1i), (003, § +1,%)-002, (001, d +1,1)-(§ +1),
(001, 5 +d+i,5 +1i)-00, for0<i< ¥ 1.0

Lemma 2.11 Letu be even andd € D, \{%}. The graph 4(Z,U{001, 003, 003,004},
{d, §}) can be decomposed into kites.

Proof. Consider the kites (coy,d + 4,1)-004, (002,d + 7,17)-003, (003,d + 7,1)-003,
for i € Z,, and (ocoy, § + i,%)-003, (004,14, § + 1)-003, (004,d +4,4)-(§ +14), (004, 5 +
d+1,% +1i)-001, (002, 5 +14,4)-00;, for 0 <i < § —1. O
3 The case A =2
Let (R, B) be a KS(n,2), m =0,1 (mod 4), m > n, and u = m — n; we note that if
u is even then v = 0 (mod 4).

For the sake of convenience, we classify the necessary condition in Lemma 2.1 as
follows.

1. if n =12k, k > 0, then m = 20k + 4s + a + 1, with a € {0,3};

2. ifn =12k + 1, k > 0, then m = 20k + 4s + « + 4, with a € {0,1};
3. if n = 12k + 4, then m = 20k + 4s + a + 8, with « € {0, 1};

4. if n = 12k + 5, then m = 20k + 4s + a + 12, with o € {0,1};

5. if n = 12k + 8, then m = 20k + 4s + a + 16, with a € {0,1};

6. if n =12k + 9, then m = 20k + 4s + a + 16, with o € {0,1}.

Step 1: u even

Proposition 3.1 Any KS(n,2) can be embedded in a KS(m, 2) for everym > 3n+1
such that u = m — n is even.
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Proof. Let R = {001,00y,...,0019k4a} and § = 4k + 2s + b, with (a,b) €
{(0,2),(1,2),(4,2),(5,4),(8,4),(9,4)}. (Note that § > 2s +2.)
By using the base blocks of Lemma 2.3 we obtain a cyclic partial KS(u, 2), say
(Z., B1), which partitions 2(Z,, D), where D = {1,2,...,2s}. By Lemmas 2.4, 2.5,
or 2.6 arrange the differences ¢ and 3 — 1 with ¢ different infinite points, to obtain
a decomposition of 2(Z, U {oo1, 009,...,00¢},{5 — 1, §}) into a collection of kites,
say Bs. By Lemmas 2.7 and 2.2 it is possible to decompose the remaining differences
of D, into two sets X of size z = b—3+% andYofsizey:4k+l—¥,
with (a,b, t) € {(0,2,2),(1,2,3),(4,2,4),(5,4,3),(8,4,2),(9,4,3)}, such that each
difference in X is arranged with one infinite point and each difference in Y with
three infinite points, respectively, and x + 3y = 12k + a — ¢. The result is a partial
KS(u,2), say (Z,, Bs). Ui_, B; is a decomposition of 2(Z, U R, D,) into kites and so
(RU Z,, BU (U3_,By)) is a KS(m, 2) which contains (R, B) as a subsystem. O

Step 2: u odd

Proposition 3.2 Any KS(n,2) can be embedded in a KS(m,2) for every m > 3n+1
such that w = m —n is odd.

Proof. Let R = {001,009,...,0012k44} and “7* = 4k + 2s + b, with (a,b) €
{(Oa 0)7 (17 1)3 (43 2)7 (57 3)a (83 4)7 (97 3)}
By using the base blocks of Lemma 2.3 we obtain a cyclic partial KS(u,2), say
(Zu, B1), which partitions 2(Z,, D), where D = {1,2,...,2s}. By Lemmas 2.7 and
2.2 it is possible to decompose the remaining differences of D, into two sets X of
size x = b+ "’T“ and Y of size y = 4k — b’Ta, such that each difference in X is
arranged with one infinite point and each difference in Y with three infinite points,
respectively, and z + 3y = 12k + a. The result is a partial KS(u, 2), say (Z, Bs).
By U By is a decomposition of 2(Z, U R, D,,) into kites and so (RU Z,, BU B; U By)

is a KS(m, 2) which contains (R, B) as a subsystem. O
Combining Lemma 2.1 and Propositions 3.1 and 3.2 gives the following:

Theorem 3.1 Any KS(n,2) can be embedded in a KS(m,2) if and only if m > 3n+1
orm =n.

4 The case A\ =3

Let (R, B) be a KS(n,3), m = 0,1 (mod 8), m > 3n+ 1, and u = m —n. If B
is a decomposition of (Z, U R, D,) into kites (see [7]), then 3B partitions 3(Z, U
R,D,) and so (RU Z,, BU2By) is a KS(m, 3) which contains (R, B) as a subsystem.
Therefore, the following result can be proved:

Theorem 4.1 Any KS(n,3) can be embedded in a KS(m,3) if and only if m > 3n+1
orm =n.
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5 The case A\ =4

Let (R, B) be a KS(n,4
andk>1,adm=5
(

if (a,0) € {(0,1),(0,3
(a b) € {(0.0).(0,2). (

) and m > 3n + 1. Write n = 3k + a, where a = 0,1,2
k+2a+ 1+ 4s+ b, where b = 0,1,2,3. We note that:
),(1,0),(1,2),(2,1),(2,3)}, then w = m — n is even; while if
1,1),(1, )( )(22)}u— —n is odd.

Case 1: u even

Proposition 5.1 Any KS(n,4) can be embedded in a KS(m,4) for everym > 3n+1
such that w = m —n is even.

Proof. Let R = {001,009,...,003k4a} and 5 = k + 25 + L’;H, with (a,b) €

{(0,1),(0,3),(1,0),(1,2),(2,1),(2,3)}. (Note that ¥ > 2s+ 2.)
By using twice the base blocks of Lemma 2.3 we obtain a cyclic partial KS(u,4),
say (Zu, B1), which partitions 4(Z,, D), where D = {1,2,...,2s}. By Lemmas 2.9,
2.10, or 2.11 arrange the differences § and d, d ¢ {1,2,..., 25,5}, with ¢ different
infinite points, to obtain a decomposition of 4(Z, U {co, 002, ...,00t},{d, §}) into a
collection of kites, say B,;. By Lemmas 2.7 and 2.2 it is possible to decompose the
remaining differences of D, into two sets X of size x = b—2+t— w and Y of size
y=Fk+1-2412 (g pt) € {(0,1,3),(0,3,2),(1,0,4),(1,2,3),(2,1,4),(2,3,3)},
such that each difference in X is arranged with one infinite point and each difference
in Y with three infinite points, respectively, and x + 3y = 3k +a — t. The result is a
partial KS(u,4), say (Z,, Bs). U?ZIB]- is a decomposition of 4(Z, U R, D,,) into kites
and so (RU Z,, B U (U3_, B;)) is a KS(mn,4) which contains (R, B) as a subsystem.
O

wle |

Case 2: u odd

Proposition 5.2 Any KS(n,4) can be embedded in a KS(m,4) for every m > 3n+1
such that w = m — n is odd.

Proof. Let R = {001,002, ...,00314,} and “31 = k + 2s + 2t with (a,b) €

{(0,0),(0,2), (1,1),(1,3), (2.0), (2,2)}.

By using twice the base blocks of Lemma 2.3 we obtain a cyclic partial KS(u,4), say
(Zu, B1), which partitions 4(Z,, D), where D = {1,2,...,2s}. By Lemmas 2.7, 2.2,
and 2.8 it is possible to decompose the remaining differences of D, into three sets
X of size z = b — %2 Y of size y = k — %22 and Z of size z, with (a,b,2) €
{(0,0,0),(0,2,1),(1,1,0),(1,3,1),(2,0,1), (2,2,0)}, such that each difference in X is
arranged with one infinite point, each difference in Y with three infinite points, each
difference in Z with two infinite points, respectively, and x + 3y + 2z = 3k + a. The
result is a partial KS(u, 4), say (Zu, B2). B1UBs is a decomposition of 4(Z, UR, D,,)
into kites and so (R U Z,, BU By U By) is a KS(m,4) which contains (R, B) as a
subsystem. O

Combining Lemma 2.1 and Propositions 5.1 and 5.2 gives the following:

Theorem 5.1 Any KS(n,4) can be embedded in a KS(m,4) if and only if m > 3n+1
orm =n.
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6 Main Theorem

Main Theorem Any KS(n,)\) can be embedded in a KS(m,\) if and only if m >
gn +1lorm=n.

Proof. The necessary condition follows from Lemma 2.1. Now, let (R, B) be a
KS(n, A), m > %n—l—l, and u =m —n. Write A\ =4h+r, r =0,1,2,3, and let B,
and By be two collections of kites decomposing 4(Z, U R, D,,) and r{Z, U R, D,,),
respectively (see [7] and Sections 3, 4, and 5). Then (RU Z,,BUhB; U By) is a
KS(m, A) containing (R, B) as a subsystem. O

A KS(n, A) with no repeated blocks is called simple. An open problem is to find
out whether or not it is possible to embed a simple KS(n, \) into a simple KS(m, A).
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