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Abstract

The largest NDS (number of dominating sets) and the smallest NDS
among n-vertex trees are determined. Corresponding trees (with those
NDS’) are characterized. NDS’ in the n-vertex path P, as well as in so-
called palm trees are determined. The largest NDS’ are attained among
stars and some palms. 2K, is the only disconnected forest with largest
NDS. For n > 3, any tree T of order [%] or 27+ is an induced subgraph
of an n-vertex tree with smallest NDS, the n-vertex supertree with n > 8

being uniquely determined by T ifand only if 3|n.

1 Introduction

The star K, ,_; and path P, are the two extreme structures among so-called palms
which are trees with at most one vertex of degree three or more. Just among those
n-vertex palms there are trees whose NDS’ (numbers of dominating sets) occupy the
top positions among all trees of order n. The star is on the first position for all n and
is unrivaled for n # 4,5, the path P, being quite close to the star in this ranking also
if n is large. Recurrences and a method of “short steps” works well in establishing
the ranking at the top. Recursion involving pendant stars gives a result at the other
end of the ranking. All exponentially many n-vertex minimal trees (where minimal
reads with smallest NDS) are identified. It appears, for instance, that all minimal
trees on 3k vertices are obtained by joining two new leaves to each vertex of a tree
T if T ranges over all trees of order k. Thus there is a bijection between minimal
trees of order 3%k and all k-vertex trees. No such bijection exists for remaining orders
n > 7. However, for each n > 3, the removal of all leaves from minimal trees of
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order n gives nothing more than all trees on [§] vertices and also, but precisely if
n =1 (mod 3), all trees on | %] vertices.

2 Preliminaries with stars, paths, and palms

Only simple graphs G are considered. The order of G is denoted by |G|. In general
we use the standard terminology and notation of graph theory, cf. Chartrand and
Lesniak [1] or West [14]. A dominating set in G is a vertex subset S such that every
vertex of G either is in S or is adjacent to a vertex in S. Let 9(G) stand for the
number of dominating sets (NDS for short) in G. Given a set X of vertices, let dx(G)
denote NDS in G with X included in each of the dominating sets; we write 9,(G)
instead if X = {z}, a singleton which includes the vertex z. On the other hand, let
0;(G) be the count of dominating sets in G which all avoid the vertex z, 8;(G) being
zero exactly if  has no neighbor in G. Then the basic rule for recursively evaluating
NDS in a graph G is as follows

A(G) =, 0,(G) + 0;(G) for any vertex = of G (1)

where =, stands for the ordinary equality symbol ‘=" together with requirement that
what follows the symbol is the sum of two summands 9, and J; in this order.

Recall that a vertex of degree 0 or 1 is called a leaf. Given a tree T" and an integer
kE > 2, a pendant (k-)star with k rays in T is a subgraph K whose central vertex
is of degree k in T, too, and is adjacent to k — 1 or k leaves of T. The attachment
vertex a(x) of a vertex x in a nontrivial tree T is defined to be the only neighbor of
if & is a leaf and the only non-leaf neighbor of « if x is the center (or central vertex)
of a pendant star, otherwise a(x) is not defined. The center z of a pendant star as
well as the star itself are said to be attached to a(z) if a(z) exists. The following is
easily seen.

0:(T) = 04(z)(T — 2) if z is a leaf of T with |T| > 2. (2)
Given an n-vertex path P, whose endvertices are denoted by z, 21, let
P = O(Pn), P, 1= 0x(Pn), " = O o) (Pa)-
Proposition 1 For the n-vertex path P, if ¢ = p,p*,p** then
$n = Pn-1+ Pn—2+ Pn-3 (3)
with initial conditions
po=1=p1, p2=3 (¢ =p),
pi =i for i=0,1,2 (¢ =9"),
Py =0, pI" =1=p" (¢ =p").
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By the palm (or palm tree), P(n,D), with n vertices and maximum degree D
where n > D+4+12>1but n =D+ 1 for D = 0,1 we mean the path P, if D < 2,
the star K ,_1 if D =n — 1, and otherwise P(n, D) is the n-vertex union of a star
K, p_1 and path P,_p4, such that the center of the star coincides with an endvertex
of the path. Therefore all eight trees of order up to five are palms. For each palm,

d(P(n,D)) =2"""p,_poi + Pu-p, D>1. (4)

It is quite clear that NDS in the star K;,_; is the maximum value of NDS, say
NDS™, among all n-vertex trees (and n-vertex forests, too). Moreover, for n > 6,
K 51 is the only n-vertex tree (forest) with that maximum NDS. Thus, if y is the
central vertex of the star,

NDS™ = (K1) =, 2" + 1. (5)

We are going to show that the opposite number, say NDS(,) being the minimum
NDS among n-vertex trees, equals B, - 5*/3! provided that n > 2, m = n mod 3,
and (by formula (16) below)

1 if m =0,
Bm=1<9/5 iftm=1,
3 it m=2.

Hence, for n-vertex trees with n > 2,
B - 513 < NDS < 1+ 277,

with both bounds being attainable for each n.
An n-vertex tree T is called 9-minimal (or domination #-minimal, or simply
minimal), in symbols T' € T,mi, if §(T) = NDSy). Let

Tmin _ Un 7—T'Lmin.

All 9-minimal trees of any order are characterized recursively.

The second and the third largest NDS’ among n-vertex trees with n > 9 are at-
tained in the palm trees P(n, D) with maximum degree D = n—3,n—2, respectively.
Thus, due to (4), these NDS’ are 22" 4 4 =& 1, respectively.

3 Counting dominating sets

We continue presenting general rules for evaluating 9(G) (which is NDS in a graph

G).
0(G)=[JoH) (6)

where H ranges over all (nontrivial) components of G (possibly nontrivial since

A(Ky) = 1).
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Lemma 2 For any verter x of G,
0:(G) < 0(G — )
with equality if and only if x is adjacent to a leaf in G.

Proof: The inequality follows because every dominating set in G which avoids x
is dominating in G — z. However, G — z has an extra dominating set exactly if no
neighbor of x in G is a leaf. It is so because the only possibility for the extra set is
that it avoids all neighbors of x in G. a

By a branch B at a vertex z in a tree T we mean a maximal subtree which
includes z and exactly one edge incident to z. On using the basic formula (1) we get
the following useful rule in case G is a tree. (It is assumed that a product over the
empty set is 1.)

Proposition 3 Let T be a tree with vertex x of degree b, b > 1, and with b branches
B; all at x. Assume that the set, L(z), of leaves attached to x has ¢ elements whence
1< <b. Then clearly

AT) =5 20,(T - L(x)) + (T — L(x) — x) (8)
b—¢ b—¢
= 2 [[o.(B) + ][ o(B: - 2).

O

Proof of Proposition 1: Let z, z; be the endvertices of the path P,. The formula

(8) gives
Pr = 2P}y + Pn2 (9)
and
P = Pt + Po2 (10)
whence
Pn =P+ P (11)

as well as p;,_; = p; — Pn—z. Consequently p, = 2p; — Prs, i.e. P = 2(Pn + Paz2),
which together with (11) gives the recurrence equation (3) for p. The recurrence (3)
for p* follows from (9) on using twice the equality (11), firstly in order to eliminate p,,,
and next p,_s. It is easily seen that p}* =,() Wi + Pr_y and pr_y =, Piy + P s,
which together give the recurrence (3) for p**. |

The following table will be helpful.
Remark. The characteristic equation of the recurrence (3),

M=+ A+1, (12)
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Table 1:
n 011123
P |1]1]13|5
pr |0 1]2)3
prr0]1])1]2

has exactly one real root \g = 1.839". Standard numerical methods lead to the
following general solution

P = C1 " + Cyp™ cosnb + Csp" sin nd

of the recurrence (3) because the real A\¢ and non-real numbers pexp(%if) are the
three roots of the characteristic equation (12) (with p = 0.737%). The initial con-
ditions for p, determine the above constants Cj, in particular C; = 0.801". Hence
pn ~ C1 A" The bound p, < A" (attained for n = 0 only) follows by induction.
The constant factor in the upper bound p,, < A" above can be lowered for larger
n’s, e.g. Pp < 3N" 2 for n > 1, with equality for n = 2, and p,, < 173" for n > 3,
with equality for n = 5.

The formula (4) for NDS in a palm tree follows immediately from the basic
formula (8) if « therein is the vertex with maximum degree in the palm.

In order to identify palms with large and small NDS’ we investigate the difference

dp := 8(P(n,D)) — (P(n,D —1))  where D>3,n>D+1,

= 2772200 _ st = Ph_pea) T PaeD — Pu-pit by (4).
Hence, for large D > n — 3 and D > 3, using the above table gives:
dp=2"%-2>0 for D=n-1ifn > 5; dp = =2 for D =n —2if

n > b;

dp=2""%—4>0 for D=n-3ifn>8.
Otherwise, on using twice both (3) for ¢ = p, p*, each time in order to eliminate the
largest subscript, we get

dp =2"72p s — 2Pn-D-2 — Pu-D-3 — Pn_D—14,
= (2D_2 = 3)Pr_p_2— 2P, py—Pp_p_s by (11)and (3), (13)
for D >3 andn > D +4.
Summarizing, due to monotonicity of the function p*, we see that dp > 0 for

5 <D <n-—3orfor D =n-—1withn > 5 On the other hand, dp < 0 if
D=n—-2>3aswellasif D=3 and n>5;and if D =4 and n > 9.

Proposition 4 For n > 9, NDS on the path P, is strictly between NDS’ on palm
trees P(n, D) with D =5,6. In fact,

A, 5 :=0(P(n,5)) — 0(P,) <0 forn >17,

A, g:=0(P(n,6)) — 0(P,) >0 forn >9.
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Proof: Because P, = P(n, D) with D = 2,

A,y =ds +ds+ ds
= —Ph s = Pne T 20, 7 — 3P s — P o by (13), for n > 9,

which is negative because the function p* is nonnegative and strictly increasing.
Similarly,

Apg=ds+Aps
= —Prs5— Prnog T 2p,_r+10p; s = 3pp_9 — Pr_1o for n > 10.

Hence using recurrence (3) for ¢ = p* four times, each time to decrease the largest
subscript at p*, gives

Ape=4ps_1o+6ps_;; >0  forn>11.
The lacking inequalities for n = 7, 8,9, 10 follow from (4) and recurrence (3). O

The concluding result on NDS in palm trees follows.

Proposition 5 NDS, as a function of an integer D among n-vertex palms P(n, D)
withn > 9, has exactly three strong local extremes: local minima at D = 4,n —2 and
local maztmum at D = n — 3. The global mazimum is at D = n — 1, only in the star
ifn > 6. a

4 Domination #-minimal trees

Recall that a tree T is called d-minimal if NDS in T', 9(T'), is the smallest possible
among all trees of order |T|. Let 7™ denote the subclass of T™" comprising O-

minimal trees of order n = m (mod 3), m = 0, 1,2. The next subclass, with fixed n,
is denoted by 7,™® or 7,™.

Table 2
no [|1]2]3]4[5]6]7|8]9]10
Teerfrlfrj2frjafsfaf1] s

Lemma 6 Let z be a leaf in a nontrivial tree T. Then
82(T) - a(T - Z) >0

with equality if and only if there is another leaf, y, attached to the neighbor, a(z), of
zinT,y#z.
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Proof: The inequality is clear. To avoid trivialities, assume that |T"| > 3 and suppose
that T does not have any such leaf y. Then |T| > 3 and T has a dominating set, say
S, which includes z and avoids both a(z) and all neighbors of a(z) different from 2.
Hence S is not dominating in 7" — z. This shows that the existence of y is necessary
for the equality to hold. Sufficiency is evident. a

Corollary 7 If z is one of two leaves with a common neighbor in a tree T then

0,(T) = (T — z). 0

From now on, for a tree T' with |T'| > 2, k-addition (or ady) stands for a local
augmentation which is the operation 7' — ad(7) of adding to T" a pendant k-star
with k new vertices and k new edges, k > 2, so that a vertex of T which is adjacent
to a leaf of T' (and is not a leaf if |T'| > 3) is identified with a leaf of the k-star.

Corollary 7 and Proposition 3 imply the following.

Corollary 8 If a tree T = ady(T) where k > 2 then O(T) = (28" +1) 8(T). O

Theorem 9 Every pendant star in a minimal tree of order n > b is attached to a
vertex which has a leaf as a neighbor.

Proof: Let T’ be a minimal tree in which a pendant star has exactly ¢ leaves, ¢ > 1,
and has central vertex, z, attached to the vertex a(z) nonadjacent to any leaf of T”.
Let T =T+ 2y — {za(x)} where y is a vertex of 7" — z adjacent to a leaf of T". Let
H be a nontrivial component of 7' — z. Then H contains vertices y and a(z). Let B
and B’ be branches both at x in T and 7", respectively. Then H = B —x = B’ — x.
Hence and due to formula (8),

AT") — d(T) = 2%(0,(B') — 0,(B)) > 0

(because 0,(B') > 0(H) = 0,(B) by Lemma 6 and Corollary 7, respectively), a
contradiction. a
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1-3 1.3 14 1
n=4
1,3 3 1
n=>5 n==~6
1
2 ~
H’S 14
n==19
1,3
1,3
3 1,3
3 ’ 3 3 1

Fig. 1. All small 0-minimal trees and possible local augmentations

S [ 02|_>>.
o o

Fig. 2. Local augmentations

The list of all 0-minimal trees of order up to 10 has been found by inspection.
Numbers of those trees are given in Table 2. Trees themselves of order up to seven
are depicted in Fig. 1. We have noted that larger 0-minimal trees are obtainable by
so-called local augmentations, the augmentations being encoded in Fig. 2. These are
four k-vertex augmentations (i.e. k new vertices are added, 1 < k < 4). Just such
augmentations are indicated in Fig. 1 by using numbers £ at some vertices. Each
(up to isomorphism) of such augmentations is indicated there if it results in a larger
O-minimal tree.
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Fig. 1 is a data base which can be used for determining the rules of producing
larger J-minimal trees from smaller ones. It can be seen that the lacking 0-minimal
trees of orders 8-10 are obtainable by applying 2- and 3-additions only. In fact, it
appears that 1-vertex augmentations can be neglected.

In the sequel, if T has a pendant k-star Sy (= Ky x) with k=2, 3 and IT| > k+2,
the symbol T — S, denotes the tree resulting from T on removing the center of Sy
together with incident edges and the resulting isolated vertices.

Let M,, denote the n-vertex caterpillar with n = 3k+1, £ > 1, which is obtainable
from a path P on k + 1 vertices by attaching two new leaves to every inner vertex of
P and a single new leaf to each endvertex of P. Then M, = P, and

M, is of the form ady(M, — S;) where M, — S, € T (14)
Note that from Fig. 1 we get
7'2min = {PQ}a Emin = {P3}7 7:1min = {P4’K1,3}' (15)

Let ad;[7] stand for the image of a class 7 under the operation adj. The main result
of this section follows.

Theorem 10 Forn > 2

5n/3 if 3|n,
NDS(n) = ¢ 9-5m=9/ if p =1 (mod 3), (16)
3-5m=2/3  ifpn =2 (mod 3).

Forn > 5, all n-vertex 0-minimal trees are obtainable recursively by 3- or possibly
2-additions only, namely for m = n mod 3,
ds[ T, =0,2
7—nm — a 3[7;,173} form <y (17)
ads[T, 5] U {M,} form =1.
The construction (15), (17) of minimal trees is made more clear by the following
auxiliary observation.

Proposition 11 Let T € T,™" and m = n mod 3. Then, for n > 5, T has two or
more pendant k-stars, all k-stars with k = 3 (which is the case if m = 0) unless
possibly one with k = 2 for m = 2, or otherwise m = 1 and possibly either one is
with k =4 or either one or two is/are with k = 2.

Remark 1. If T = ady(T) for a T € T° (whence T € 7' and |T| > 7) then ady can
be replaced by ads because there exists a pendant 3-star, Ss, of T whence T can be
adg(f S3) where T—S,eT

Remark 2. If T is obtained by a 2-addition from a T € 70U T2 then T can be
obtained from a Ty := T — S5 by the 3-addition unless T = M, with m (=nmod 3) =
1,n>4(and T € T2).
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Proof of Theorem 10: Proceed by induction. By using Proposition 1 for paths,
formula (5) for stars, or the recursive formula in Corollary 8, we first show that RHS
of (16) is equal to J(T) for each initial tree T in (15) as well as for each remaining
T in Fig. 1. So is d(T) for each n-vertex tree T belonging to RHS of (17), which
follows from Corollary 8 by the induction hypothesis. For instance, if m = 1 then
T = ad(T) with k = 3 or 2, see formula (14), whence T € T*-} and consequently
A(T) = (2k —1)(T) = 9-5"F can be seen for both k, as is required. Thus RHS
of (16) is the exact value of NDS(,) for n < 7 only and an upper bound otherwise.
Take now any T € T,min with |T| =n > 8. Then T has two or more pendant stars
because d(Ky,_1) is too large. Due to Theorem 9, T is obtained from a smaller tree
T by applying an operation ady for some k& > 2. Moreover, if T = adg(T) then T
is of order n — k and, by Corollary 8, T is minimal, 7" € 7™7. Furthermore, k =4
for m = 1 is possible since then, by Corollary 8, (T) =9 - (T) =9-5"F because
T € T2 ,. However, k = 4 can be omitted, cf Remark 1 above. Thus k = 3 for
m=0,2and k =2, 3, or 4 for m = 1. In each of remaining cases if T € 7,™2 then
aT) > NDS() can be seen. For example, if m = 0 (whence T € T° but k = 2
(whence T € T1), then, by Corollary 8, d(T) = 39(T) = 3-9-5"5 = 2 .53 > 55.

Thus the proof is complete. O
Corollary 12 Let T € T™" and m = nmod 3. Then ady(T) € T,™ if and only if
m=0and k € {2,3,4}, m=2 and k € {2,3}, orm =1 and k = 3. a

The construction of minimal trees described in Theorem 10 and Proposition 11
implies the following structural properties of the set of leaves. Let T be an n-vertex
minimal tree, T € 7@ and let m = n mod 3, n > 4. Then each vertex is either a
leaf or a neighbor of a leaf in T and the set of leaves is split into 2-element subsets
but possibly n subsets of cardinality 1 or 3 with n < 2 and such that leaves in each of
subsets have one private neighbor (which implies that different subsets have different
neighbors). Moreover, for m = 0, 7 = 0 (and the number of leaves is even). If m = 2,
the number of leaves is odd, n = 1, and the unique exceptional subset is a singleton.
For m = 1, if the number of leaves is odd, then n = 1 and the exceptional subset
has 3 leaves. Otherwise the number of leaves is even, n = 2, and both exceptional
subsets are singletons.

Thus, given any T € T,™® with n > 3, removal of all leaves from T' gives a unique
tree, say T, of order [%] or possibly (n —1)/3. Conversely, attaching new leaves to

each vertex of a small tree T can give a member of 7,;™®. This is made precise below.

Theorem 13 Assume that k > 1. The value of m, m = 0, 1,2, differentiates between
three cases:

(0) The class T is obtainable from the class of all k-vertex trees T by the fol-
lowing operation: join two new leaves to every vertex of T .

(2) The class T3 (containing trees with 2k+1 leaves) is obtainable from the class
of all (k+1)-vertex trees T' by joining one new leaf to a vertez, sayy, of T and
two new leaves to each of remaining vertices of T.
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(1) A tree T € T% is obtainable either from a (k + 1)-vertex tree T or from a
k-vertex tree T'. Namely, if the number of leaves in T is even, i.e., 2k, then T
is obtainable from T by choosing two vertices in T and joining one new leaf to
each of them, and then joining two new leaves to each of remaining vertices in
T. If T has an odd number of leaves, which is necessarily 2k+1, T' is obtainable
from T" by joining three leaves to any one vertex of T and by joining two new
leaves to each of remaining vertices of T'. a

Corollary 14 The cardinality of T™® is exponential because it is not less than the
number of all trees on f%] vertices, the lower bound being sharp precisely if 3 | n and
n > 6. O

5 Domination #-maximal forests and trees

A forest (or tree) F is called d-mazimal (or domination #-mazimal) if NDS in F
is the largest possible among all forests (trees) of order |F|. By inspection we can
see that five paths F,, two stars K, with k£ = 3,4, and the disconnected forest 2K,
make up the family of d-maximal forests of order n < 5. The forest 2K, appears to
be unique in general.

Theorem 15 2K, is the only disconnected forest which is 0-mazimal.
It is enough to show the following.

Lemma 16 Let F be a forest with two or more components such that F # 2K,.
Assume that a spanning supergraph FT of F is obtained by adding one edge or two
edges to F as follows. If F = sKy with s > 3 then two edges are added so that
F* has Ps as a component. Otherwise exactly one edge, e = vy, is added such that
endvertices x, y are in different components of F and there is no leaf among neighbors
of v (ory) in F (e.g., x is a leaf in a component # Ks). Then O(F*) > 9(F).

Proof: Assume that F = sK, with s > 3. Then by (3) and (6), 8(F*) > 0(F)
because 9(FPs) = 31 > 9(3K,) = 3*. Consider F # sK, with s > 2. It is enough to
show that~F+ has a dominating set, ST, which does not dominate F. Note that there

is a set, S, which is dominating in /' — 2 and includes neither = nor any neighbor
of z. Then, for any fixed S, the set St := SU{y} is dominating in F™ but not in F'. O

By the root of a star or of a path we mean any of its leaves. By the root of a
palm P(n, D) with 2 < D < n— 1 we mean the only leaf whose neighbor is of degree
2. Given a palm P(n, D), consider vertices z, z and r where z is of maximum degree
D, z is a leaf incident to x, and 7 is aroot; 2 # r if 2< D <n —1and n > 5. Due
to (1)

9 (P(n, D)) =, 2D71p:1,*—D+1 +Prep: (18)

0.(P(n, D)) =, QD_ZpZ—DH + Pn-b-
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Lemma 17 Given a palm P(n,D) withn > 5 and 2 < D <n —1, let v and z be
respectively the root and another leaf of the palm. Then 0,(P(n, D)) > 0,(P(n, D)).

Proof: The two preceding formulas give

0,(P(n, D)) = 0:(P(n, D)) = (27 =1)p;_p,
> 0  due to (10) and Table 1.

Using (4) and (18) we get the following table of the largest possible NDS’ attained
at corresponding palms P(n, D).

Table 3: For n > 6

D d(P(n, D)) | 8,(P(n, D))
n—1] 2141 241
n—2|3-2343 =2 49
n—3]3-2"3+5 2" 43
n—4|11.-2"°49 | 7.-2"°+6

Proposition 18 Table 4 found by inspection presents n-vertex trees T at which the
largest possible NDS’ are attained; P, p therein stands for P(n,D), z = r, and
2<n<9. O

Table 4:

n 2131415 6 7 8 9

T | BB |\ Py | B | B By | P Preg| B3 Bsr | Poe Pog| By
o, (Ty| 2|36 11|20 17 |37 33 | 68 65 |131 129 | 125
oT) | 3|5 |9 1731 33 |57 65 105 129 | 197 257 | 193

Remark. Part (b) of the following theorem is an auxiliary result which helps to
prove the main part (a). The following general observation is clear.

Proposition 19 For any vertex x of an n-vertex tree T,
9,(T) < 2m71, (19)

the equality being attained exactly when T = Ky ,—1, n > 1, and = s of maximum
degree in T

Theorem 20 (a) The four largest NDS' in descending order among n-vertex trees
T are attained precisely at T = Ky ,—1 (for n > 6), P(n,n — 3) (for n > 9),
P(n,n —2) (forn >9) and P(n,n —4) (for n > 10), for n =9 the 4th largest
value, 193, being attained at the path Py only.
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(b) If z is a leaf of T, the four largest values of 0,(T') in descending order forn > 9
are attained precisely at palm trees P(n,D) with D =n—-3,n—2,n—1,n—4
provided that z is the root r of the palm, with two exceptions: the fourth value
is attained only at Py if n =9 and at Pig as well as P(10,6) if n = 10.

Proof: Proceed by induction on n. Using the tree diagrams in Harary [3] for n < 10
we can see that all data in Table 4 are correct. In fact, the largest value of 9(T) is
attained at T'= P, for 2 <n < 5 and at T'= K, ,_; for n > 4; the second largest
value at T = P, for n = 6,7,8 only. If z is a leaf of T, the largest value of 9,(T") is
attained at T' = P, for 2 < n < 8; the second largest value at T = P(n,n — 3) for
n =6,7,8 only, and at T = S(K,3) (the subdivision of the claw K;3) forn =7, z
therein being necessarily a root of T if T is a palm. Furthermore, what is stated in
theorem for n < 10 can similarly be verified. Moreover, there is no other extremal
tree. (Here and in the rest of this proof, extremal tree is a tree with NDS being equal
to the NDS in any tree listed in Theorem.)

Passing on to the next step of induction we take any n > 10 and an n-vertex tree
T.
Part (a). Assume that T is different from each of would-be extremal palms P(n,n—
i),1=1,2,3,4. Let y be the center of a pendant star in T with % rays where £ is as
small as possible, 2 < k < 7, and let B stand for the unique non-K; branch of T" at
y. From Proposition 3,

O(T) =, 27'0,(B) + 9(B ~ y). (20)
Let ng, ng =n — k + 1, be the order of the branch B. Consider three cases.

Case al: k> 3, ng > 6, B; := P(ng,np — 1), T; stands for T" with B = B; where
i=1,2,3,4, and y is a root of B. Then, by (20) and Table 3 (with = y), we have
OTy) =, 2" 10, (K1 np-1) + O(Kyppyn) = 2" 2 4 2071 ponmhodl 4 p)
NTy) =, 2¥70,(P(np,np — 2)) + O(P(ng — 1,np — 2)) = 2" % 4 2F o=kt 4 1,
8(T3) =y Zk_lé)y(P(nB,nB - 3)) + 8(P(TLB - ].7713 - 3))

— 2n—2 +3. 21971 +3. 2n7k73 4 37
NTy) =, 2¥70,(P(np,np —4)) + O(P(ng — 1,np — 4))

=7.-2"546.2"1 4 3.2m R )

O(P(n,n—4)) —0(Ty) =3- 275 — 261 _gnh=1 L g 5
O(P(n,n—4)) — 0(Ty) = 3- 275 — 2k —9nh=1 1 8 5
d(P(n,n—4)) —9(T3) =3-2"5—3.21 —3.2" %3 L 6>
O(P(n,n—4)) —0(T,) =274 —3.28 — 3.3 L 4 5 ¢

because n > 10 and 3 < k < n/2. Thus no T; is extremal.
Case a2: k =2, B = P(ng,ng — 1) for ¢ = 2,3 or 4, and y is not a root of B, or
otherwise B # P(ng,ng — i) for i = 1,2,3,4 only. Since ng = n —1 > 10, using
induction hypothesis and Table 3 gives

9,(B)<7-2"%+6, O(B-y)<11-2""49
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(because |B — y| = n — 2) whence, by (20), &(T) < 39 - 2" 7 4 21. Therefore, by
Table 3,

O(P(n,n—4))—90(T)>5-2""T"—-12> 0.

Case a3: k > 3, B# P(ng,ng — 1) for i = 1,2,3,4, and each pendant star of 7" has
k or more rays. Let ng > 10, ng = n — k + 1. Then, by the induction hypothesis
and Table 3,

9,(B)<7-2"7%46, 9(B-y)<11-2"7%49
whence, by (20), 9(T) < 7-2"7° 4+ 11-2"7F=5 4 3. 2% 1 9. Therefore

(

O(P(n,n —4)) = 9(T) > 2" *5(2"! —11) 427" = 3.2" > 0, sincen > 94k > 12.
Otherwise, ng < 9and k =n—ng+1 > 12 —ng. Hence k > 6,5 if respectively
ng < 6,7. Therefore there is no required B of order ng < 7. By inspection of the
Harary list in [3] we find all possible trees B with np = 8,9. Let np = 8. Then
k > 4 and there are four trees B of which one is good if k£ = 5, too. For ng = 9,
k > 3 and there are 23 trees B of which one is good for £ up to 6. The sharp upper
bounds on 9,(B) and (B — y) are respectively 54 and 53 if ng = 8, on the other
hand, 116 and 101 if ng = 9 (the four bounds being attained at distinct trees B).
Since n = k + ng — 1, using formula (20) and Table 3 gives

k-1 : —Q I

O(P(n,n—4)) =(T) > 11-28"570 4 9 — {54' 2ot prn S k2

116 - 2" +101 >0 ifng=9, k> 3.
Part (b). Assume that either T is different from extremal trees, T # P(n,n — i),
i = 1,2,3,4, or otherwise z is not the root, r, of T = P(n,n — i) with i = 2,3,
or 4 (i # 1). In the latter case 0,(T) = 0,(P(n,n — i)) which, due to Lemma 17
and Tables 3 and 1, is too small because it is smaller than any value in the last
column in Table 3. In the former case, assume that 9,(T) is the largest possible.
Let x be the only neighbor of z, let ¢ be the number of leaves attached to x, and
let the degree degy x = t+ (¢, ¢t > 1, ¢ > 1. If { > 1 then, due to Corollary 7,
9,(T) = 0(T — z) < 11-2"7% + 9 by induction hypothesis and Table 3. For the same
reason as above, d,(T) is too small. Therefore { = 1. Let By, Bs, ..., B; denote the
t non-Ko branches of T" at x. Let n; be the order of B; with 22:1 n;=n-+t—2and
ny >mneg > ... 2> n; > 3. By Proposition 3,

OT) =4 20,(T — z) + (T — {z,}).
Hence and from (1)
0.(T) = O(T) - O:(T) = O(T) = B,(T - 2) by (2)
= 0u(T = 2) + O(T — {2, 2}). (21)

We are going to show that 0,(T) is too small. Assume that ¢ = 1. Then z is
a leaf in the subgraph 7 — z. Hence, by induction hypothesis and from Table 3,
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9,(T — 2z) <7-2"%+6 (because = can be the root in T — z = P(n —1,(n — 1) —4))
and the second summand (T — {z,z}) < 32" + 5 because T — {z,2} cannot
be the star on n — 2 vertices (since T # P(n,n — i) with ¢ = 2,3). Therefore
9.(T) < (7/2+3)2"5 +11 < 9,(P(n,n — 4)) as claimed.

Consider the remaining case that ¢ > 1. We are going to reduce it to the preceding
case t = 1. Firstly, both the summands in (21) are products:

t
—z)= H 0.(B;) by Proposition 3,
T — {z,2}) = H d(B; —x) by formula (6).

Let 7 =t — 1. Assume that 7" is obtained from T by replacing two branches B; and
B, by a single tree B. which is made a branch at = in 7. In order to have 1" of
order n we find a tree B, of order n! :=n; +n, —1 (> 5) and such that z is a leaf
of B! with 0,(B.) being as large as possible. Therefore B! is among trees, actually
palms, in Table 4 if n! < 8 or otherwise, due to induction hypothesis, B. is the palm
tree of order n’. > 9 with D = n! — 3, cf. Table 3. Then z = r, the root of B., due
to Lemma 17.

In the following table ©' = ¢, - ¢;, and 7" = ¢}, - ¢, where ¢, and ¢ stand
for the largest possible values of 9,(B;) and 9(B; — x), respectively, j = ¢, 7, the
largest values being taken from Table 4 (if n; < 9) or Table 3. For all pairs of small
orders 3 < n; < n, <8, which appear in Table 5, 0.(T") > 9,(T") because

8,(B.) > 7' (strongly) and B, —r)>7"

which follows from Table 5. Similarly we proceed in cases n; < 9 < n, and 9 < n;.
O

6 Concluding remarks

The method of “short steps” (mentioned in the Introduction) is best seen in Sect. 3
where it establishes monotonicity and local extrema of the NDS among palm trees.
This contributes decisively to the inductive proof in the preceding section that a few
largest NDS’ are attained at palms with maximum degree A =n—1,n—3,n—2,n—4
provided that the order, n, is not too small.

Our characterization of domination #-minimal trees in terms of attaching new
leaves to all vertices of any tree suggests similar form of Ravindra’s description
of well-covered trees. Recall that a tree T is called well-covered if each maximal
independent (vertex) set in T is of maximum cardinality. T is known to be well-
covered [9] if and only if 7" has a perfect matching consisting of pendant edges. Thus
there is a bijection T — T from trees T on k vertices onto the family of well-covered
trees T' on 2k vertices. Namely, attaching a single new leaf to each vertex of a tree
T defines such a bijection.



DOROTA BROD AND ZDZISLAW SKUPIEN

288
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Recursive characterization of trees with some extremal domination properties has
recently been considered in a number of papers, see e.g. Haynes and Henning [4, 5],
Henning [6, 7], Fischermann and Volkmann [2].

Investigations presented in this paper were stimulated by characterizations of
trees with maximum number either of maximal independent sets [15, 10, 16] or of
maximum path-factors [11, 12]. The latter problem resulted in a constrained sharp
binomial inequality established by the second author in cooperation with A. Schinzel,
cf [12]. The inequality gives a solution to Tomescu’s number-theoretical problem [13]
of maximizing a product of binomial coefficients, the simplest possible case of the
problem which consists in maximizing a product of natural numbers whose sum is a
constant being solved in Moon and Moser [8].

Acknowledgment. The authors thank the referee for pointing out a gap which
was in the proof of the last theorem.
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