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Abstract

Let G be a graph and suppose that for each vertex v in G, there exists
a list of & colors, L(v), such that there is a unique proper L-coloring for
G; then G is called a uniquely k-list colorable graph. M. Ghebleh and
E.S. Mahmoodian have characterized almost all uniquely 3-list colorable
complete multipartite graphs except for nine of them. In this paper, some
graphs, which are exempt by Ghebleh and Mahmoodian, are studied,
and it is proved that Ki.ayp, Kiwa, Koo, (r = 4,5,6) have property
M(3). Finally, we obtain an improvement of Ghebleh and Mahmoodian’s
theorem.
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1 Introduction

In this section we mention some of the definitions and results which are referred to
throughout this paper. For the necessary definitions and notation we refer the reader
to standard texts, such as [9]. For each vertex v in a graph G, let L(v) denote a list
of colors available for v. A list coloring from the given collection of lists is a proper
coloring ¢ such that ¢(v) is chosen from L(v). We will refer to such a coloring as an
L-coloring. The idea of list colorings of graphs is due independently to Vizing [8]
and to Erdés, Rubin and Taylor [2]. For a survey on list coloring and some more
information we refer the interested reader to Alon [1] and West [9].

Let G be a graph with n vertices and suppose that for each vertex v in G, there
exists a list of k colors, L(v), such that there is a unique proper L-coloring for G from
this collection of lists. Then G is called a uniquely k-list colorable graph or a UkLC
graph for short. We say that a graph G has the property M (k) (M for Marshall
Hall) if and only if it is not uniquely k-list colorable. So G has property M (k) if for
any collection of lists assigned to its vertices, each of size k, either there is no list
coloring for G or there exist at least two list colorings. The m-number of a graph
G, denoted by m(G), is defined to be the least integer k such that G has property
M(E).

On uniquely k-list colorable complete multipartite graphs, some results have been
obtained as follows.

Theorem 1.1 (Mahdian and Mahmoodian [6]) A connected graph G has property
M(2) if and only if every block of G is either a cycle, a complete graph, or a complete
bipartite graph.

Lemma 1.2 (Ghebleh and Mahmoodian [5]) If L is a k-list assignment to the
vertices in the graph G, and G has a unique L-coloring, then |U, L(v)| > k+ 1 and
all these colors are used in the unique L-coloring of G.

Lemma 1.3 (Ganjali et al. [4]) If G is a complete tripartite U3LC' graph, then all
vertices in each part cannot take the same color in any unique 3-list coloring of G.

Lemma 1.4 (Ghebleh and Mahmoodian [5]) If G is a complete multipartite graph
which has an induced UKL C subgraph, then G is UkLC.

In the following, we use the notation Ky, for a complete r-partite graph in which
each part is of size s. The notation K., ., etc. is used similarly. Ghebleh and
Mahmoodian also show the following result.

Theorem 1.5 (Ghebleh and Mahmoodian [5]) The graphs K333, K214, K235, K229,
K1,2,2,2, K193, K11122, K1*4,6, K1*6,4 and K1*5,5 are USLC.

IRIR] s d4,

Theorem 1.6 (Ghebleh and Mahmoodian [5]) Let G be a complete multipartite
graph that s not Ko ,, forr =4,5,...,8, Ks34,Kisaa, Kisas, o7 Kius4. Then G is
U3LC if and only if it has one of the graphs in Theorem 1.5 as an induced subgraph.
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For the result in Theorem 1.6, there are nine graphs exempted. In order to perfect
Theorem 1.6, it is clear that the remaining work is to determine, for the nine graphs
above, whether they are USLC' or not. So Ghebleh and Mahmoodian give the open
problem as follows.

Problem [5] Verify property M(3) for the graphs exempted in Theorem 1.6, i.e.
Kooy, forr =4,5,---,8, Kaza, Kiuaa, Kias, and Kiusa.

In this paper, we research some complete multipartite graphs for which property
M (3) is not decided in Theorem 1.6, and prove that Ki.as,K14a4, Koo, (r =4,5,6)
have property M(3). Furthermore, an improved version of Theorem 1.6 is obtained.

2 Kiups and Ky, 4 have property M (3)

First, we introduce some lemmas.
Lemma 2.1. For any five sets S(i) (i = 1,2,...,5) where |S(i)] = 2 and S(i) C
{1,2,3,4}, there exist S C {1,2,3,4} of size 2 such that S N S(i) # O for each
1=1,2,...,5.
Proof. By contradiction. Assume that there exist five sets S*(i) (1 = 1,2,...,5)
which do not satisfy the lemma. We conclude {1,2} € {S*(1 ),S*( ) S5*(5)},
(otherwise, let S = {3,4}, for any i = 1,2,...,5, SN .S*(i) # 0). By the same
reason, {1,3}, {1,4}, {2,3}, {2,4}, {3,4} also belong to {S*(1),5%(2),...,5%(5)},
which is impossible by the fact that there are only five sets. O

For the graph Ki.as, let {vi}, {v2}, {vs}, {va} and {vs,ve, v7,vs,v9} be the five
parts of Ky.5. Assign the list L(i) = {c;1, cia, ci3} to the vertex v;,i = 1,2,...,9.
Now we assume that there exists an L-coloring ¢ for Ki.ayp, say c(v;) = ¢, =
1,2,...,9. Let 2 < k <4, 4y,10s,...,0 € {1,2,3,4}, and they are different pairwise.
If ¢;;1 € L(ijq1) for j < k, and ¢,y € L(iy), then [i1, iy, ... ,%] is called a k-coloring
rotation in this paper.

Now we assume that c is the unique L-coloring for Ki,45. With this assumption,
we obtain the following lemmas.

Lemma 2.2. There is no k-coloring rotation in the graph Kiup for 2 < k < 4.
Proof. Otherwise, for a k-coloring rotation [i1, is, . .., ix], let ¢ (v;,) = ¢, ¢ (v;;) =
ci;_, where j > 1, and for any j € [i1,%2,... %], ¢ (v;) = ¢(v;). Obviously, ¢ is
another proper coloring of G from the given list assignment, which is a contradiction
to the fact that c is a unique L-coloring for Ky,45. O

Lemma 2.3. There is at least one i € {1,2,3,4} such that {ci2,cis} C {cs1,¢61,- - -,
Cgl}.

Proof. By contradiction. Suppose |{ci,ci3} N {cs1,¢61,..-,c01}| < 1 for each
¢t = 1,2,3,4. Let H denote the induced subgraph of K. 5 by the vertex set
{v1,v2,v3,v4}; then H is obviously a complete graph. We introduce a 2-list as-
signment L' of H as follows. For every vertex v;, i = 1,2,3,4, if there exists

s € L(i) N {cs1,Ce15---,cor}, then L'(i) = L(i)\{s}, otherwise L'(i) = L(i)\{t},
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where t € L(i) and t # c;. Obviously {c11, a1, 31, ca1} is also a proper L'-coloring
of H. We can obtain a new coloring ¢ of H from L' since every complete graph
has the M(2) property (by Theorem 1.1). From the construction of L', ¢ can be
extended to an L-coloring of Kj,45—a contradiction. O

From above lemma, it is evident that |{cs1,ce1,...,co1}] > 2.

Lemma 2.4. {c;,ci3} C {c11,021,031,ca1}, where 1 =5,6,...,9.

Proof. If for some k € {5,6,7, 8 9}, {cka, cra} ﬂ {011,02170317041} #+ {CkZ,Ckg} say
crs & {c1n, a1, ca1,car ), then let ¢ (vg) = cps and ¢ (v;) = c(v;) for i # k. Then ¢ is a
new L-coloring, a contradiction. O

Theorem 2.5. Ky, has the property M(3).

Proof. By contradiction. Suppose that K45 is USLC. Let {v1}, {va}, {vs}, {va}
and {vs,vg, ..., vg} be the three parts of Kj,a5. Assign the list L(7) = {ci, cio, Cis}

to the vertex v;,7 = 1,2,...,9, and assume that there exists a unique L-coloring c
for Kiwp, say c(v;) = ¢i1,i = 1,2,...,9. For clarity, it is assumed that ¢;; = i for
1=1,2,3,4.

By Lemma 2.3, there exists {u,v} C {cs1,¢61,- - -, o1} such that {cs, c3} = {u, v}
for some i € {1,2,3,4}. Without loss of generality, it is assumed that ¢ = 1. For

9
clear, let {cia,c13} = {5,6} and M = J{cu}, so {5,6} C M. By Lemma 2.4, it
i=5

is known that U {ciz,c3} C {1,2,3,4}, then by Lemma 2.1 there exist two colors

{z,y} C {1,2,3 4} such that {x,y} N {ci,ci3} # 0 for each i = 5,6,...,9. {z,y}
may be one of {1,2},{1,3},{1,4},{2,3},{2,4} and {3,4}. By whether 1 belongs
to {z,y}, we just need to consider the following two cases: {z,y} = {1,2} and
{z,y} = {3,4}. In the following statements, it is shown case by case that there is
another proper coloring from the given list assignment, which is contradicting with
the assumption. In all the following new L-coloring ¢, except the vertices with
special announce, we will let ¢ (v;) € {cip,cis} N {x,y} for i = 5,6,...,9, and other
vertices were assigned the same color as in c.

Case 1. {z,y} ={1,2} .

Subcase 1.1, L(2) N M # 0.

Suppose s € L(2)NM and z € {5,6}\{s}. Let ¢ (v2) = s,¢ (v1) = 2, ¢ (v;) = c(vy)
for i = 3,4 and ¢ (v;) € {cip,ci3} N {1,2} for i = 5,6,...,9. Obviously, ¢ is a new
L-coloring, which is a contradiction with K45 is U3LC.

Subcase 1.2, L(2) N M = 0.

Then L(2) C {2,1,3,4}. So L(2) N {3,4} # 0. Without loss of generality, it is
assumed that 3 € L(2). By Lemma 2.2,2 ¢ L{3}. If L(3)N M # 0,let s € L(3)NM,
z € {5,6}\{s}, and ¢ (v3) = s,¢ (v1) = z and ¢ (vy) = 3, a new L-coloring then a
contradiction. So L(3)NM = (I) then L(3) = {3,1,4}. For L(4) since 4 € L(3), then
3 ¢ L(4) (otherwise, [4,3] is a 2-coloring rotation, then a contradiction is obtained by
Lemma 2.2; since 3 € L(2),4 € L(3), then 2 ¢ L(4) (otherwise, [2,4,3] is a 3-coloring
rotation). In sum, L(4) C {4,1}UM, then L(4)NM # 0. Suppose s € L(4)N M and
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2 € {5,6}\{s}. Let ¢ (vq) = 5,¢ (v3) = 4,¢ (v3) = 3,¢ (v1) = 2, a new L-coloring.
Case 2. {z,y} = {3,4} .

Let J = M U{1}.
Subcase 2.1 |J N (L(3) U L(4))| > 2.

If there are two elements s, and z, such that s # z, s € L(3)NJ and z €
L(4) N J, let ¢'(v3) = s,¢ (va) = 2, ¢ (v1) € L(D)\{s,2}, ¢ (vs) = 2, and ¢ (v;) €
{cin,cis} N {3,4} for i = 5,6,...,9. Then ¢ is a new L-coloring, a contradiction.
Otherwise, either |L(3)NJ| = 2 and |L(4)NJ| = 0, or |L(3)NJ| = 0 and |L(4)NJ| = 2.
Without loss of generality, we may assume that |L(3) N J| = 2 and |L(4) N J| = 0.
Then L(4) = {4,2,3}. Since 2 € L(4), then 4 ¢ L(2) by Lemma 2.2. So L(2) C
{2,3} U J, then L(2) N J # 0. Suppose s € L(2) N J and z € L(3)\{s}. Let
CI(U;;) = z,c’(v4) = 2,01(1)2) = s,c’(vl) € L(1)\{s,z}. Then a new L-coloring is
obtained.

Subcase 2.2 |J N (L(3) U L(4))| =1.

Subcase 2.2.1 either |L(4)NJ| =0or |[L(3)NJ| = 0.

Without loss of generality, it is assumed that |L(4) N J| = 0, then |[L(3)NJ| = 1.
By |L(4) N J| = 0, it is concluded that L(4) = {4,2,3}. Since 3 € L(4), then
4 ¢ L(3) by Lemma 2.2. Together with the assumption |L(3) NJ| = 1, it is affirmed
that L(3) = {3,s,2}, where s € J. For L(2), since 2 € L(4) and 2 € L(3), then
4 ¢ L(2) and 3 ¢ L(2) by Lemma 2.2. Then |L(2) N J| = 2. Let ¢ (v3) = s,¢ (v4) =
2,¢ (vg) = 2, where z € L(2)\{s}, ¢ (v1) € L(1)\{s,2}. Then a new L-coloring.

Subcase 2.2.2 |[L(3)NJ|=|L4)NJ| =1

Let {s} = L(3)NJ = L(4)NJ. Tt is obvious that {2}N(L(3)UL(4)) # @ (otherwise,
3 € L(4) and 4 € L(3), then [3,4] is a 2-coloring rotation, which contradicts with
Lemma 2.2. Suppose that L(3) = {3,s,2}. For L(2), since 2 € L(3), then 3 ¢
L(2). With the above assumptions, it is concluded that either L(4) = {4,s,2} or
L(4) = {4,s,3}, then 4 ¢ L(2) (otherwise, [2,4] or [2,3,4] is a coloring rotation).
So |L(2) N J| = 2. Let c'(v3) = 2,c(v4) = s5,¢(va) = 2, where z € L(2)\{s},
¢ (v1) € L(1)\{s,2}. Then a new L-coloring is constructed.

Subcase 2.3 JN(L(3)UL(4)) = 0.

With the assumption, it is obvious that L(3) = {3,4,2} and L(4) = {4,3,2},

which is impossible by Lemma 2.2.

Hence, in all cases there exist a new L-coloring, which contradicts with the as-
sumption that K44 is U3LC. O

Corollary 2.6. Ki.4 has the property M(3).

Proof. By contradiction. If Kju4 is USLC, we can obtain that Kius is URLC
by Lemma 1.4 since Ky, 4 is a induced subgraph of Ki.45. A contradiction with
Theorem 2.5. O

Corollary 2.7. m(Kyua) = m(Kias) = 3.

Proof. By Theorem 1.1, Theorem 2.5 and above corollary, it is obvious. O
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3 Some structural properties of the graph K

For the graph Ky, let X; = {v1,v2}, Xy = {vs3,vs} and X3 = {vs, vs, v7, vs, v, V10}
be the three parts of Ks6 respectively. Assign the list {c¢;1, ¢, i3} to the vertex
v;,9=1,2,...,10. Suppose there exists a unique L-coloring ¢ for Kj 46, say c(v;) =
ci,1=1,2,...,10. Let S = {c51,¢61,- - -, Cr0,1}. We have the following propositions.

Proposition 3.1. ¢y1, 91,31 and cq are all different.

Proof. It is obvious from Lemma 1.3. O

Proposition 3.2. If v; and vj are in same part of Kaag, then ca ¢ {cja,¢js}.

Proof. If ¢;; = cj1, then the result is obvious. Else if ¢;; = ¢j;, where k = 2 or 3, let

¢ (vj) = ¢jr, = ¢y and ¢ (v;) = c(v;) for i # j, then ¢ is another L-coloring of K.
O

Proposition 3.3. Let i € {1,2} and j € {3,4}. If ca € {cja,cjs}, then cji &
{ciz, cia}-

Proof. Otherwise, let ¢ (v;) = ¢j1, ¢ (v;) = ca and ¢ (vy,) = c(vy) for k # i, 5. Then
¢’ is another L-coloring of K4, O

Proposition 3.4. There exists at least one ¢ € {1,2, 3,4} such that {c;,ci3} C S.

Proof. By contradiction. Suppose |{ci2,cis} N'S| < 1 for each 1 = 1,2,3,4. Let
H denote the induced subgraph of K26 by the vertices set {vy,vs,vs,vs}, then
H = K, is obviously a complete bipartite graph. We introduce a 2-list assignment
L' of H with L'(v;) = L(v;)\S. By the property M(2) of complete graphs (Theorem
1.1), we can obtain another L-coloring ¢’ for Ky, which is extendible to vertices of
K, 56. This is a contradiction to ¢ being a uniquely 3-list coloring. O

PI‘OpOSitiOIl 3.5. {CiQ,CB} g {011,02170317041}, where 1 = 5,6,7,8,9, 10.

Proof. By contradiction. For some k € {5,6,7,8,9,10}, by Lemma 1.2, at least
one of ¢pp and ¢gz is in S\ {cp} (note |S| > 2, by Lemma 1.3). Suppose that
cre € S\ {cr}. Let ¢'(vi) = cre and ¢ (v;) = c(v;) for i # k. Then ¢ is another
L-coloring of Ky26. O

Remark. By Proposition 3.1, without loss of generality, we assume c¢;; = i, =
1,2,3,4. By Lemma 1.3, S = {c51,¢61,.--,c101} = {5,6,...}. We declare that by
Proposition 3.4, without loss of generality, we assume that L(v;) = {1,5,6}. We
also declare that in the following proof, we use lowercase z,y, z,t to denote some
color in S.

Proposition 3.6. For K¢, suppose ¢ is a uniquely 3-list coloring with L(v;) =

{ci1, cins ciz} and c(v;) = cqa, for i =1,2,...,10, then any three colors in {1,2,3,4}

can be used to L-color the part X3 (not considering part Xy and X).

Proof. Consider the 2 x 6 array ( G2 Co2 Tt 02
Cs3 Ce3 ' C103

{1,2,3,4}, for i = 5,6,---,10, and k = 2,3. Assume the statement of Proposition

3.6 is not true. There must be three colors, say 1,2,3 which do not appear in some

). By Proposition 3.5, ¢ €
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column of the 2 x 6 array. Notice ¢;5 # ¢;3, for 1 = 5,6,...,10; this is impossible. O

Proposition 3.7. Suppose L(vy) = {1,5,6}, {caa, cas} C S, say cos = z,c03 = ¥,
then there exists another L-coloring ¢ for Koa6.

Proof. If {cas,ca3,ca2,c03} NS # 0, say ¢czo = z € S. Let d(v;) = l;,l; €
{ci2,cis}\{z}(i = 1,2), ¢'(vs) = z,d(vs) = 4. By Proposition 3.6, we can let
d(v;) = m;, where m; € {1,2,3} N L(v;), for i = 5,6,...,10. Then ¢ is another
L-coloring of Kj46.

If {632,633,6427043} ns = 07 then L(Ug) = {3,1,2} and L(U4) = {4,1,2}, by
Proposition 3.2. Let ¢'(vy) =5, (vy) = z,¢'(v3) = 1, (v4) = 1. By Proposition 3.6,
we can let ¢(v;) = m;, where m; € {2,3,4} N L(v;), for i = 5,6,...,10. Then ¢ is
another L-coloring of Ky5¢6. O

Proposition 3.8. Suppose L(v;) = {1,5,6}. If there exists i € {3,4} such that
{cia,cis} € S, then there exists another L-coloring ¢ for Kaag.

Proof. Without loss of generality, we suppose that {cs2,c33} C S; say cz2 = @, ¢33 =
Y.

If {coa,003} NS #£ 0, by Proposition 3.7, {c,¢03} NS = {z}. Then we put
d(va) = 2z, d(v3) = I3, 13 € {z,y}\{z}, d(v1) = L, i € {5,6}\{l3}, d(va) = 4.
By Proposition 3.6, we can let ¢(v;) = m;, where m; € {1,2,3} N L(v;), for i =
5,6,...,10. Then ¢ is another L-coloring of Koop.

If {cy2, ca3 NS = 0, by Proposition 3.2, {caz, c23} = {3,4}; then by Proposition 3.3
{ca2,ca3} NS # 0, say {ca2,ca3} NS = {z}. Then we put d(v4) = 2, ¢(v1) =11, 1; €
{5,6}\{z}, c'(v3) = 5,15 € {z,y}\{lh}, ¢'(v2) = 2. By Proposition 3.6, we can let
d(v;) = my, where m; € {1,3,4} N L(v;), for i = 5,6,...,10. Then ¢ is another
L-coloring of Ky4.6. O

Proposition 3.9. Suppose L(vy) = {1,5,6} and {c,c23} NS = {x}. If there exists
i € {3,4} such that{c;2,ci3} = {1, 2}, then we can obtain another L-coloring of K 96.
Proof. Without loss of generality, we suppose that {cs2, ¢33} = {1,2}. By Proposi-
tion 3.2 and Proposition 3.3, {cs2,ca3} = {4,2}. By Proposition 3.8, 1 € {cas,ca3},
we put d(v3) = ¢(va) = 1,¢(v1) = 5, (vg) = x. By Proposition 3.6, we can let
d(v;) = my, where m; € {2,3,4} N L(v;), for i = 5,6,...,10. Then ¢ is another
L-coloring of Ky4.6. O

Proposition 3.10. Suppose L(vy) = {1,5,6} and {caz,c23} NS = {x}. Then if there
exists i € {3,4}, such that {c;2,cis} NS = {y}, we can obtain another L-coloring of
K.

Proof. Without loss of generality, we suppose that {cs2,c33} NS = {y}. By Propo-
sitions 3.8 and 3.9, {ca,ca3} NS = {z}.

Case 1. x #£y.

We let ¢(vg) = @, (v3) =y, (va) = 4. (v1) = 11,11 € {5,6}\{y}. By Proposition
3.6, we can let ¢/(v;) = m;, where m; € {1,2,3} N L(v;), for i = 5,6,...,10. Then ¢
is another L-coloring of Ky 5.

Case 2. x =y.
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Subcase 2.1. y = 2
We let ¢ (vs3) = ¢ (va) =y, (v2) =2, ¢ (1) = 11,11 € {5,6}\{y}. By Proposition 3.6,
we can let ¢/(v;) = m;, where m; € {1,3,4} N L(v;), for i = 5,6,...,10. Then ¢ is
another L-coloring of Ky »g.
Subcase 2.2, y # z.
If z € {5,6}, we let ¢(v1) = (v2) = @, (v3) = 3, (va) = 2. U & ¢ {5,6}, we let
d(vg) = x,d(va) = 2z, (v3) = 3. d(v1) = U1,1; € {5,6}\{z}. By Proposition 3.6,
we can let ¢(v;) = m;, where m; € {1,2,4} N L(v;), for i = 5,6,...,10. Then ¢ is
another L-coloring of Ky36. O

Proposition 3.11. Suppose L(v;) = {1,5,6} and L(v2) = {2,3,4}. Then if there
evists i € {3,4} such that {cp,c;3} NS = {z}, © ¢ {5,6}, we can obtain another
L-coloring of Ks 2.

Proof. without loss of generality, we suppose that {cs»,c33} NS = {z},2 ¢ {5,6}.
By Proposition 3.2, Proposition 3.3 and Proposition 3.8, we only need verify that
L(vs) = {1,3,z}, L(vy) = {1,4,y}. In fact, we can let '(v2) = 2, (vs3) =z, (v4) =
y, (v1) = I1,1; € {5,6}\{y}. By Proposition 3.6, we can let ¢’(v;) = m;, where
m; € {1,3,4} N L(v;), for i = 5,6,...,10. Then ¢ is another L-coloring of Kyy6. O

Proposition 3.12. If there are no two colors in {1,2,3,4} which can be used to
L-color {vs,ve,v7,0s,09,010} (not considering part X, and X, ), then {ci,cis} €
{{17 2}7 {1,3}7 {1,4}7 {2,3}7 {2,4}7 {374}}, and {CiQ,Cig} # {Cj27cj3}; fOT Z,j = 5,67
7,8,9,10, and i £ j.

Proof. Above all, by Proposition 3.5, {cp,ci3} C {c11,c01,c31,ca1} for v;,i =
5,6,7,8,9,10. Denote A = {{cs2, 53}, {Co2, Co3}> {Cr2, 13}, {Cs2, €3}, {co2, oz}, {c102,
c10,3}}. If one cannot use {1,2} to L-color {vs,vs,v7,vs,v9,v10}, then {3,4} € A.
By the same case, {2,4} € A. {2,3} € A. {1,2} € A. {1,3} € A. {1,4} € A. Then
we are done. O

Proposition 3.13. If there are no two colors in {1,2,3,4} which can be used to
L-color {vs,ve,v7,vs, 9,19} (not considering part X, and X), then we can use any
two colors in {1,2,3,4} to L-color some five vertices in {vs,ve, vz, Us, Vg, V19 } -

Proof. By Proposition 3.12, it is obvious. O

Proposition 3.14. If there are no two colors in {1,2,3,4} which can be used to
L-color {vs,ve, v7, s, 09,010} (not considering part X; and X,), then we can obtain
another L-coloring of Ky .

Proof. By Propositions 3.7-3.12 we only need verify the case that L(v;) = {1, 5, 6},
L(vy) = {2,3,4},L(v3) = {1,3,5},L(va) = {1,4,6}. {ci,cis} € {{1,2},{1,3},
{1,4},{2,3},{2,4},{3,4}}, and {ciz,cis} # {cja,cjs}, for ¢, = 5,6,7,8,9,10, and
i # 5.

In fact, we let ¢/(vs3) = ¢'(vs) = 1, (v2) = 2. By Proposition 3.13, we can use col-
ors 3 and 4 to L-color some five vertices in {vs, v, vr, s, Vg, V10 }, Say {vs, Vs, U7, Vs, Vg }.
Then we let ¢ (v19) = ¢(v10), and we use 5 or 6 that is different from c(vyg) to L-color
vy. It is obvious that ¢ is another L-coloring of Ky26. O
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Proposition 3.15. If there are two colors in {1,2,3,4} which can be used to L-color
{vs, v, v7,8,v9,v10} (noOt considering part X1 and X, ), then we can obtain another
L-coloring of Ka 6.

Proof. By Propositions 3.7-3.11, we only need verify the case that L(v;) = {1,5,6},
L(vy) = {2,3,4}, L(vs) = {1,3,5}, L(vs) = {1,4,6}. It is obvious that if we can
use some two colors in {1,2,3,4} to L-coloring {uvs,vs,v7,vs,v9,v19} (Not consid-
ering part X, and X,), then we can use the remaining two colors in {1,2,3,4}
and colors {5,6} to L-color {vy,vs,v3,vs}. For example, if we can use colors {1,2}
to L-coloring {vs, vs, V7, Vs, Ve, v10} (Not considering part X; and X,), then we let
d(v1) =5, (vg) = 4, (v3) = 3, (vg) = 6. Other cases can be similarly proved. So
we are done. O

4 Ky, (r=4,5,6) has property M(3)

Theorem 4.1 K,,¢ has property M(3).

Proof. By contradiction. For the graph Kssg, let X; = {vi, v}, Xo = {vs,v4}
and X3 = {vs, vg, U7, Us, Vg, v10} be the three parts of K¢ respectively. Assign the
list {cs1, ¢, ci3} to the vertex v;, 4 = 1,2,...,10. Suppose there exists a unique L-
coloring ¢ for Ky, say c(v;) = ¢a,i = 1,2,...,10. By the property of L(v;),i =
5,6,7,8,9,10, there are two cases.

First case: there exist two colors {x,y} € {1,2,3,4} such that we may use them
to L-color the vertices vs, vg, v7,vs, vg and vig (Not considering part X, and X5).

Second case: there are no two colors in {1,2,3,4} such that we may use them to
L-color the vertices vs, vg, v7, s, Vg and vig (Not considering part X, and Xs).

By Propositions 3.14 and 3.15, we finish the proof. O
Corollary 4.2. K, 54 and Kya5 have property M(3).
Proof. By contradiction. For r = 4,5, it is clear that K5, is an induced
subgraph of Ky6. If Kyo,is USLC, then Ky5¢ is USLC by Lemma 1.4. This is a
contradiction to Theorem 4.1. O
Corollary 4.3. m(Ks24) = m(Kaa5) = m(Kaze) = 3.

Proof. By Theorem 1.1, Theorem 4.1 and above corollary, it is obvious. O

5 On characterization of uniquely 3-list colorable complete
multipartite graphs

According to our results in Sections 2 and 4, now we can restate Theorem 1.6 in an
improved form, which is given by M. Ghebleh and E. S. Mahmoodian.

Theorem 5.1. Let G be a complete multipartite graph that is not Kyo,, v = 7,8.
Ks34, or Kiu54. Then G s USLC' if and only if it has one of the graphs in Theo-
rem 1.5 as an induced subgraph.
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