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Abstract

In a given graph G, a set S of vertices with an assignment of colors to
them is a defining set of vertex coloring for G, if there exists a unique
extension of the colors of S to a X(G)-coloring of the vertices of G. A
defining set with minimum cardinality is called a smallest defining set (of
vertex coloring) and its cardinality, the defining number, is denoted by
d(G,X). Mahmoodian et al. (1999) determined the defining number of
graph C3 x C,. In this paper, we study the defining number of graph
C,, X C,, and show that

maxd [] 2TV < (e x o) < | ™22 oda).
2 2 2

Also, we prove a similar result for the defining number of graph C), x P,.
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1 Introduction

A k-coloring of a graph G is an assignment of k different colors to the vertices of G
such that no two adjacent vertices receive the same color. The (vertex) chromatic
number of a graph G, denoted by X(G), is the minimum number £, for which there
exists a k-coloring for G. A graph G with X(G) = k is called a k—chromatic graph.
In a given graph G, a set of vertices S with an assignment of colors to them is called
a defining set of vertex coloring for G, if there exists a unique extension of the colors of
S to a X(G)-coloring of the vertices of G. A defining set with minimum cardinality
is called a smallest defining set (of a vertex coloring) and its cardinality, the defining
number, is denoted by d(G, X).

Defining sets of vertex coloring are closely related to the list coloring of a graph. In
a list coloring for each vertex v there is a given list of colors £, allowable on that
vertex. Coloring must be done so that each vertex is colored with an allowable color
and no two adjacent vertices receive the same color. It should be noted that any
defining set S in a graph G naturally induces a list of possible colors for the vertices
of the induced subgraph (V(G)\ S). Furthermore, using this list of colors, (V(G)\S)
is uniquely list colorable.

A graph G with n vertices, is called uniquely 2-list colorable, if for each vertex v €
V(G), there exists a list of colors £, with |£,| = 2, such that there is a unique list
coloring for G using this list. In the following theorem, Mahdian and Mahmoodian
characterized uniquely 2-list colorable graphs.

Theorem A ([3]) A connected graph is uniquely 2-list colorable if and only if at least
one of its blocks is not one of the following graphs:

(a) a cycle;
(b) a complete graph; or

(c) a complete bipartite graph.
The following proposition is very useful in our discussion.

Proposition 1. Suppose there are list of colors L;, i = 1,...,n, on the vertices of
a cycle C,, such that each L; is of size 2 and | U, L;| = 3. Then there exist two
different colorings for C,, from these lists.

Proof. Since |£;| = 2 for each i and |UL, £;] = 3, there exists some ¢ with £; # L;41.
We may assume £; # L£,. Then we have a proper coloring ¢ such that c(vy) = £\ £,
and c(v;) = L; \ ¢(vi—1) for ¢ > 1. Now since by Theorem A, C,, is not a uniquely
2-list colorable graph, there exists another coloring from the lists £; for C,,.
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There are some results on defining numbers in [5] (see also [2], and [4]). Nasesasr
et al. in [6] showed that d(Cs x Cn,X) = |%| + 1, and in [5] it is shown that

d(Py x Cy, X) = [2] (n 0dd).

2

Note that the graph C,, x C, (respectively, Cp, X P,) can be viewed as a graph with
vertex set as an m x n array [v;;], where each induced subgraph on the vertices on
row i is a copy of cycle C,, (path P,), and each induced subgraph on the vertices on
column j is a copy of cycle C,,.

Here we find a lower bound and an upper bound for d(Cy, x Cp, X) and also for
d(Cpm x Py, X). We also propose two conjectures for their exact values.

2 Defining number of C,, x C),

First we note that when both m and n are even, then the defining number of C,,, x C;,
is easy to determine. Indeed, since X(Cp x C,) = max{X(Cn), X(Cr)}, and when
m and n both are even, we have X(C,, x C,) = 2, thus C,,, x C, is a connected
bipartite graph and we have d(Cy, x Cy, X) = 1.

Next theorem which is about the graph C,, x C,,, when at least one of m or n is odd,
is our tool in finding a lower bound for d(C,, X Cy, X). To prove this theorem first
we introduce the following lemma. Throughout our discussion about G = Ky x C,
we suppose that the vertices of two copies of C, in G, C} and C?, are also labeled
by v11, ..., U1, and vay, ..., Uay.

Lemma 1. Let G = K, x C,, and let L;; be a list of colors on vy, where

(i) |Lij] =2, and | U, Uj_, Lij] = 3;

(i) Lij # Lij+1) where j+ 1 is the unique number k in {1,2,...,n}

such that
j+1=k (modn), fori=1and2, and j =1,2,...,n.

Then G either has no coloring from L;;, or it has at least two different colorings.

Proof. There are three cases to be considered:

Case 1. There exists p € {1, ...,n} such that £, = L5, and there exists ¢ € {1,...,n}
such that L£ig # Lo,.

Without loss of generality assume that L£;; = Lo and L5 # Ly. Also, since
L11 # Li2 and Ly; # Lag, we can assume L1 = Lo = {a, B}, L12 = {5,7}, and
Ly = {a,v}. Now if ¢ is a coloring for G, we must have c(vy;) = «, for if ¢(vy) =
then the color of v15 and ve; will be forced to v and «, respectively, which make it
impossible to have a color for vey. Therefore, ¢(v1;) = a and ¢(vay) = .
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Now for each fixed ordered pair (r,s), (1 <r <2, 1 <s < n), and with respect to
coloring ¢, we define an assignment F,; : V(G) — {a, 3,7} as follows:

] elvy), if (i,7) # (r,s), and
frs(Uu) - { Ers \ {C(U”)}, if (l,j) _ (T, 8).

Note that without loss of generality we may assume that c(vy2) = 8. For, if ¢(v12) = 7y
then ¢(va2) = «, which can be changed to the case when ¢(v12) = § by renumbering
the vertices of G with the permutation v;; <* vs; and changing the colors by the
permutation a <> 3.

Thus we have two cases to consider.
Case 1.1. c¢(vyp) = f and ¢(ver) = a.

We claim that either Fi, or Fas is a coloring for G which is obviously different from c.
To prove our claim, on the contrary assume that neither Fj, nor Fys is a coloring
for G. Since Fia(via) =, we must have c(vi3) = 7. Also Faz(v2) = v implies that
¢(ve3) = 7y, which is a contradiction. So either Fi5 or Fas is a coloring for G.

Case 1.2. c¢(vyp) = f and ¢(vee) = 7.

We proceed by applying strong mathematical induction on n > 3. It is obvious that
Fis is not a coloring for G. Now if Fy, is also not a coloring for GG, then we must have
c(ve3) = . Since Loz # Lag, Loz = {«, B}. Note that if n = 3, then Lo3 = {«, 8} is
impossible because we have L£y; = {«a,5}. This implies that if n = 3, then Fy, is a
coloring for G.

If n > 4, then c(v3) = « and c(vy2) = S force the color of vy3 to be 7. By a
similar argument as above we have £13 = {a,7}. It is obvious that Fy3 is not a
coloring for G. Moreover, if Fas is not a coloring for G we must have c(vyy) = 8 and
Los = {B8,7}. c(vaa) = B and c(vi3) = ~y force that c(via) = a. So L4 = {«, S}
Note that if n = 4, £14 = {a, 8} is impossible, because L£1; = {a, 3}. It means that
for n = 4, Fy3 is a coloring for G. Similarly, for n > 5, Fy4 is not a coloring. If Fyy
also is not a coloring for G, we have c(ves) = 7, La5 = {a,7}. c(ves) =7, c(vg) =
force that e(vis) = 8. So Li5 = {7,5}. Note that if n = 5, then also in this case,
Fs is another coloring, so we may assume that n > 6.

Now it can be seen that the second column in G has the same list of colors with
the fifth column. In graph G we delete the vertices vis, V13, V14, Va2, Va3, V24 and join
v11 t0 v15 and ve; to ves and obtain the graph H = K, x C),_3, which by induction
hypothesis has two different colorings. Note that in each coloring of H, v;; has the
color a and wy; has the color . Also independent of the coloring of v15 and vs5 from
their lists in H, we can add six deleted vertices to H, with their colors from ¢ and
obtain two different colorings for G.

Case 2. L,; = L, for each j € {1,...,n}.

Assume that ¢ is a coloring for G. By interchanging the color of vertex v, in C}
with the color of vertex vy; in Cﬁ and vice versa, we obtain another list coloring for



DEFINING SETS OF SOME SPECIAL GRAPHS 73

G. Thus, there are two different list colorings for the graph G.
Case 3. Ly; # Lo for every j € {1,...,n}.

In this case we show that the graph G, indeed has two different colorings. By
assumption (ii), one may check that the assignment ¢ : V(C}) — Uj_,Ly;, where
c(vi;) = L1; \ Laj, is a list coloring for C}. Now given this coloring for C}, each
vertex vy; of C? still has two choices of colors L3;. By Proposition 1, C2 with given
list of colors, Ly, has two different colorings ¢; and c;.

Obviously, ¢ U c; and ¢ U ¢y are two different list colorings for the graph G.

For example, in Figure 1 we show two different list colorings for the graph G =
K, x (5, where its list of colors satisfy Case 3. In each coloring the color of each
vertex is shown in bold face characters.

The proof of the lemma is now complete. [

Ci: 12 23 13 23 13 Ci: 12 23 13 23 13

C¢: 13 12 23 13 12 C¢: 13 12 23 13 12

Figure 1: G = Ky x Cj

Theorem 1. Each defining set for the graph G = C,, x C,,, where at least one of
m and n is odd, must contain at least one vertex from every two consecutive rows
(columns) of the array of vertices of G.

Proof. Suppose that S is a defining set for the graph G = C,, x C,, which contains
no vertices from consecutive rows, say r; and rs. Also, assume that all vertices in
G are colored by unique extension of the colors of S, except the vertices in rows r;
and ry. Thus the colors of other vertices of G induce a list of possible colors for
the vertices in rows r, and ry, say Li1, ..., Lin, and Loy, ..., Loy, TEspectively. Since
each two adjacent vertices have different colors, we have L;; # Li(j41), for i = 1,2;
and j = 1,2,...,n. Also since x(C,, x C,) = 3, for each £;; we have |£;;| = 2 and
|UT_; Lij| = 3, for i = 1 and 2. Now by Lemma 2, this contradicts the fact that S is
a defining set for the graph G. Similar argument holds for consecutive columns.

Corollary 1. If at least one of the positive integers m and n is odd, then

N ]
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Proof. By Theorem 1, we have: d(Cy, x Cp, X) > [%W and d(Cy, x Cpy X) > [ﬂ .
Therefore,  d(Cpy x Cp, X) > max{[%} , [g}} q

Next we find an upper bound for d(C, x Cy, X).

Theorem 2. If at least one of the positive integers m and n is odd, then

d(Cy x Co X) < [LHJ .

2

Proof. To prove this theorem, we present in Table la, diagrams showing a defining
set S of size {%HJ for the graph C,,, x C,,. In each diagram, a vertex in S is denoted
by the symbol *. Also, the symbol e e @ in the diagrams represent even number of
vertices with the first, third, fifth, and so on ... vertices are in the defining set S.

The assignment of colors 1,2, or 3 (having x = 3) to the vertices in the defining
set S depends on the positions of it in the first row and in indicated column of the
diagrams. We assign the colors to the defining vertices (i.e. vertices of S) in the first
row before we do the assignment of colors to the column.

To get the assignment of colors for the defining vertices in the first row, we proceed
as follows. Make a one to one correspondence between all the vertices in that row
with the colors 1,2, or 3 in repeating pattern 1,2,3,1,2,3,1,2,. .. with the first vertex in
the row corresponds to color 1. This means that if the second vertex in the row is a
defining vertex, then this defining vertex is assigned with color 2; and if, for example
there are 11 vertices in the row and the last vertex is a defining vertex, then this
defining vertex is given color 2 (the 11** cell in the pattern). Note that non-defining
vertices in the first row are not given any color; their colors are forced. (See Table
1b)

The assignment of colors for the defining vertices in the column (shown in the di-
agram) is performed as follows. Here we also make a one to one correspondence
between all the vertices in that column with the colors 1,2, or 3 in repeating pat-
tern 1,2,3,1,2,3,1,2,... with the first vertex in the column corresponds to color of the
vertex in the first row which has been corresponded above. This means that if, for
example the vertex (not necessarily a defining vertex) in the first row is corresponded
to color 2 (in the first row assignment above), then the second vertex in the column
corresponds to color 3; the third vertex corresponds to color 1, the fourth vertex cor-
responds to color 2, and so on. This means that if the second vertex in the column
is a defining vertex, then this defining vertex is assigned with color 3. Note that
non-defining vertices in this column are not given any color; their colors are forced.
(See Table 1b).

It is easy to see that in each diagram in the table, the defining vertices in S force the
color of non-defining vertices in the first row and also the the color of non-defining
vertices in the column shown in the diagram. Subsequently, the colors of the first
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row and the colors of the given column, force the color of all the other vertices in
Cpm x Cp. Therefore, the given set S is a defining set for C,,, x C,,. For example, the
defining set S for C13 x Ci3 is shown in Figures 2 and the unique extension of the
colors of S to a 3-coloring of the vertices of Cy3 x Ci3 is given in Figure 3.

[a[ [3[ [2] [1] [3] [2] [ |

[eo[ =] Jeof [eo] [=

[

Figure 2: A Defining Set S for

2
X
Q

NOCODN = WK WK WWDND|-

WHFR W WN R W - W
NDWNRFRWN —WN WD
FNRFRFWNDRFWNFEWND W

DN WD WD WD W

RN RN ORIt RN I
IR CR TN C RN C R XY
(=[] ]ee[ro]m]eo]bo]=]ee]ro]R]eo

RWN WK — WK WK -
WHFR WN R WND R WK~ WN

=N WD WD WM W
WHWNHFEWN R WK~ WN
WHWN HH WN WD - W

Figure 3: A Unique Extension of S to a 3-Coloring of C13 x C13

Conjecture 1. If at least one of the numbers m and n is odd, then

m+n—1J

d(Cr X Cr, X) = { :

Remark. By using a computer program, we have found that d(Cy x Cs,3) = 4 and
d(Cs x C5,3) = 4, which support Conjecture 1.
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3 Defining number of C,, x P,

If m is even, then C;, x P, is a bipartite graph. Thus, in this case d(Cy, x P, X) = 1.
If m is odd, with the similar argument in the proof for C,, x C),, we have a lower
bound and an upper bound for d(Cy, x Py, X), as follows.

Theorem 3. For each odd number m and each positive integer n, we have

w2 {357

Theorem 4. For each odd number m and each positive integer n, we have

d(Cy % Py, X) < r”"J .

Proof. To show this statement we present a defining set of size | ™| for Cy, x P,
which is similar to the one given in the proof of Theorem 2. The defining sets are
as in the Table 2a and the assignment of colors for the defining vertices is shown in
Table 2b. [

Conjecture 2. For each odd number m and each positive integer n, we have,

d(Cym X Py, X) = WHLJ'

2

Remark. By using a computer program, we found that d(C; x Ps,3) = 3, d(Cs x
P;5,3) =4, and d(C5s x P5,3) = 5, which are consistent with Conjecture 2.
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Table 1la:  Defining Sets For C,, x C),
‘*‘ ‘*‘ ‘ooo‘** ‘*‘ ‘*‘ ‘ooo‘*‘ * ‘*‘ ‘*‘ ‘o.o‘*
*
| | (b) Cor, X Copr+3 B
() Cor X Cory1 (¢) Cok X Cowss 1 (€) Corsr X Corrr E
i (d) Cérra x Corrts i ||
ol ol L
EINEIRETIE [ [*[ [x] [eee]x L[ [x] [eee]x]
ol ol ol
(f) Cory1 X C6k’+2T (g) Cory1 X CGk’JrST (h) Corr1 X Coprya T
K ] ]
EIEINEXTIEY HENEIRETE ENEINETIE
ol L* ol
(i) Cok+1 X Cows [ 1 =
. o (k) Corrz x Corrs ol (1) Corrz x Coprs .
(i) Corrs X Corrss B B ]
B ]
EINEINEITIEY EINEIRETIE

(m) Cerys X Ceprys

(n) Cors X Coprgs

(0) Ceits X Coprya

‘*‘...
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Table 1b: Color Assignment for Defining Sets of C,, x Cj,

E.S. MAHMOODIAN, BEHNAZ OMOOMI AND Y.H. PENG

l1*x3 0002 3%

*—0 @ @ X% Do

(a) Cor X Coprgr

1*3%e @] %

(b) Cer x Coprys

1*x3*eee@3 %

2
*
1
*
[ ]
[ ]
[ ]
3
*

(C) Cor X Corrgs

l1*x3*«eoee®3 %

2
*
1
*
°
[ ]
[ ]
1
*

(d) Cepga x Coprys

13 %0002 xx

N0 O 0 x—

(e) Cors1 X Copryr

l1*x3*xe00e0]

*
3
*
[ ]
[ ]
[ ]
1
*

(f) Corg1 % Corry2

*2*]x0e0e02

*
1
*
[ ]
[ ]
[ ]
2
*

(g) Cokt1 X Corr43

13000 ] x3x

N0 O @ x—

(h) Cert1 x Coprga

13 *0e0e03x

*
3
*
[ ]
[ ]
[ ]
1
*

(i) Cers1 X Copr1s

l1*x3 0003 %

*
3
*
°
°
[ ]
3
*

(j) Cor+3 X Corrgs

*2*]x00e02

*
1
*
[ ]
[ ]
[ ]
2
*

1
(k) Copr2 X Coprsg

130003 x

CLOF 0 @ @ % Lo

(1) Ceryz X Coprys

1*3*0e00] xx

MO*CO0 @ @ %10 *

(m) Cotts X Corrg

l]1*3*0e0@3 %%

L0 @ @

(n) Cérrs x Cor1

1*3*00e3x
*

N*XWe @0 b

(0) Ceits X Corr14q
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Table 2a: Defining Sets For ), x P,
[ [x] Jeee]x e[ Dl [eeofs] [x]  [x]x][ [x] Jeee]x
(a) Cery1 X Popr *] *
b Ps o [ | lo |
(B) Corr1 x Fosz : (e) Cort1 X Popria : (f) Corr1 X Poprys :
(¢) Cras X Perr | 1 1
(d) Cerss X Powso | | ] |
([ [x] [ oo [x e[ [x] Jeeofx] [#]  [x[*] [*] [eee]x
¥ ¥ ¥
(8) Cort1 X Poprya E (h) Crq1 X Porrys E (1) Corrs X Poprr E
B B B
e[ [l Jeeofx] [#]  [x] [*[ [eee]x ¢ [x] [eeefx] |+
(i) Cor+s X Poxrys E E E
Cer P
(k) Corts x Powrrs (n) Clrrs x P o (p) Corvs X Pows1
(1) Cgrs X Poprys i (0) Corrs X Poprya i i
(Hl) 06k+5 X PGk’+5 * i i
] ] ]
e[ [ [eoe]x EREEIE
*
B H
(a) Cores X P6k’+4T (r) Corys X Poprsa s
. |
- ¥
] |
] ¥
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Table 2b: Color Assignment for Defining Sets of Cp, x P,

]33 x0002

*
1
*
.
.
.
2
*

(a) Cort1 % Porr

13K x00e0]

*
3
*
.
.
.
1
*

(b) Cor+1 X Porr+2

134 0002

*
1
*
.
.
.
1
*

(¢) Cok+3 x Porr

134 xe0e0e]

*
3
*
°
°
°
3
*

(d) Ceprs x Popry2

l]x3xe0002 %

1
2
*
.
.
.
3
*

(e) Cokt1 X Porry1

12x1 %0002

*
1
*
.
.
.
2
*

(f) Cor+1 X Porrys

13 %0003

*
2
*
.
.
.
3
*

(8) Cots1 X Poprta

l1x3*xeee 3%

2
3
*
.
.
.
1
*

(h) Cepg1 X Porrgs

12%1 0003

XN e @ @ XX

(1) Cor+s ¥ Porrt1

l1*3x 000 ] x

NOXCLW e & @ X Ihx»xw

(3) Csts X Perrgs

13 o000 3 x

2
*
1
*
o
o
o
2
*
1

(k) Corts X Porrgs

13 000 ] x

XN O 0 0 X% w

(1) Corts x Porrqs

l]x3 %0003 %

2
*
1
*
.
.
.
1
*

3

(m) Cog+s X Porr+s

]33 K x0002

XN e @ @ XX X

(n) Cor+s x Porr

134 xe0e0e]

*
*
1
*
°
°
°
1
*

3

(0) Cors X Porrt2

1x3 %0002 %

1
*
3
*
.
.
.
3
*
2

(P) Cokts X Porry1

l1x3 <0003

DX e @ @ X o X

(a) Cotas X Poriga

l1x3 <0003

XX W e 0 0 X DX

(r) Cor+s X Poprta
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