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Abstract

An isometric path, or geodesic, is merely any shortest path between two
vertices. The isometric path number is defined to be the minimum num-
ber of isometric paths required to cover the vertices of a graph. In this
paper, we consider its fractional analogue. For classes of graphs such as
trees, cycles and hypercubes, we determine the fractional isometric path
number exactly. For square grid graphs, we provide upper and lower
bounds. For grid graphs, finding the fractional isometric path number is
equivalent to solving a network flow problem involving two simultaneous
flows.

1 Introduction

An isometric subgraph of a graph G is defined to be a subgraph H of G such that
for all z,y € V(H), dg(x,y) = dg(x,y). Hence, an isometric path (also known as
a geodesic) is any shortest path between two vertices of a graph. A set of isometric
paths is said to cover V(G) if every vertex of G lies on at least one path in the set.
The isometric path number of G, denoted p(G), is defined to be the minimum
number of isometric paths required to cover the vertices of G.

The isometric path numbers of all grids (Cartesian products of two paths), were
found in [1]. For example, the n x n grid was found to have an isometric path number
of [2n/3]. In [3], the isometric path numbers of hypercubes were examined. It was
shown that when n + 1 is a power of 2, p(Q,,) = 2"'og2(n+1),
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The problem of finding the isometric path number of a graph can be formulated
as the following integer program:

minimize Z w(P)

PeP

such that Y w(P) >1 forallv € V(G)

P3UAPEP
w(P) € {0,1} forall P € P

where P denotes the set of all isometric paths of maximal length. Note that each
feasible solution corresponds to a cover where P is in the cover if and only if w(P) = 1.
We refer to w(P) as the weight of P and ) ., w(P) as the weight of the cover.

We obtain the linear programming relaxation of this integer program by replacing
the constraint w(P) € {0,1} with 0 < w(P) < 1. Any feasible solution to the result-
ing linear program is called a fractional isometric path cover. The minimum weight
of a fractional isometric path cover is the fractional isometric path number of
G, denoted pg(G). This is a typical approach, for other instances see [4].

It is also useful to consider the dual of the linear program since any feasible
solution to the dual problem serves as a lower bound on ps(G). The dual is formulated

as follows:
maximize Z c(v)

veV(G)

such that Zc(v) <1 forallPe?P

vEP

0<c(v)<1 forallveV(G)

where ¢(v) is referred to as the cost of vertex v. For brevity, let ¢(G) denote
2vev(a) €v)-

The next three theorems are extensions of previous results to the integer program.
In [1], it was shown that p(G) > [%L and that for each the graphs presented
in Theorems 1.2 and 1.3, p(G) = [ps(G)]. Although the results are similar, the
upper bounds are obtained by different means. Hence, we include the proofs for

completeness.

Theorem 1.1 Let G be any connected graph with vertex set V.. Then

V]
G) > .
P18 2 Gam(@) ¥ 1
Proof.  For each vertex v € V(G), let c(v) = 7diam(lG)+1' Since no isometric path has

more than diam(G)+ 1 vertices on it, this is a feasible solution to the dual problem.

V(@
Hence, pf(G) > %' O
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Theorem 1.2 Let C, and K, be the cycle and complete graph, respectively, on n
vertices. For anyn > 1

1. pf(Cy) = 2n/(n +2) for n even,
2. pr(Cp) =2n/(n+1) forn odd,

3. pr(Ky) =n/2.

Proof: For each of these examples, we give all non-diameter paths weight 0, and all
diameter paths weight m. Since every vertex is on exactly diam(G)+1 of the
diameter paths, we have a fractional cover. Since there are n diameter paths, the
weight of this fractional cover is m. Since this equals the lower bound given
in Theorem 1.1, we have a fractional cover of minimum weight. The result follows.

d

Although the lower bound provided in Theorem 1.1 proves to be exact for many
classes of graphs, this is not always the case. When considering trees, for example, a
different solution to the dual program, and thus a different lower bound, is required.

Theorem 1.3 If T is any tree and { is the number of leaves in T' then py(T) = £/2.

Proof: Suppose P is the set of all maximal isometric paths in a tree 7. Let w(P) =
1/(¢ — 1) for each P € P. Since every vertex of T lies on at least ¢ — 1 paths in P,
this is a fractional cover. Furthermore, every maximal isometric path in 7" has leaves
as both its endpoints, so there are ¢(¢ — 1)/2 paths in P. Hence the weight of this
cover is £/2, and ps(T) < £/2.

Now, for each vertex v in T, define ¢(v) as follows: if v is a leaf ¢(v) = 1/2,
otherwise ¢(v) = 0. This is a feasible solution to the dual problem. Hence, p;(T') >
¢/2 and the result follows. O

In [3], it was shown that for the hypercube @,, where n + 1 is a power of two,
the lower bound given in Theorem 1.1 is exact. Hence, it is also equal to ps(Qs,).
We now show that this fractional result can be extended to all values of n > 1.

Theorem 1.4 Let Q),, denote the hypercube on 2™ vertices. Then ps(Q,) = fjl.

Proof: Every maximal isometric path in @, is a diameter of @,, and there are
2"=1(n!) diameters in Q,. Furthermore, every vertex lies on (n+1)n!/2 = (n+1)!/2
diameters. Hence, if we let w(P) = 2/(n 4 1)! for every maximal isometric path P,
the result is a fractional cover with weight (2" *(n!)(2/(n+1)!) = 2"/(n+1). Hence,
(@) < f—:l By Lemma 1.1, we have pf(Q,) > f—jl, and the result follows. O
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2 Grids

Let G,, denote the Cartesian product P,0P,. The graph G, is also referred to as
an n x n grid. The vertices of G, can be labeled as coordinates on the grid. Unless
stated otherwise, we let V(G,,) = {(¢,)]|0 < 4,7 < n—1} where the distance between
vertices vy = (i1, j1) and vy = (ls, j2) is given by d(vy,ve) = |iy — is| + |71 — ja|. Using
this labeling, a vertex (7,j) is called a corner if ¢ and j are both in {0,n — 1}. We
say a vertex is on the boundary of the grid if 7 or j is in {0,n — 1}. Any edge
joining two such vertices is also considered to be on the boundary of GG,,. Finally, all
vertices or edges not on the boundary are said to be in the interior of G,,.

Lower bounds on ps(G,,) will be determined by considering the dual of the original
problem. We give two feasible sets of solutions: one that applies for all n > 3 and
another that applies when n is odd. The first gives all vertices within a certain
proximity of a corner a cost of zero, and all other vertices the same positive cost.
The second also gives a zero cost to those within a given distance to a corner, but
then assigns zero and non-zero costs to the remaining vertices in a “checkerboard”
pattern.

Upper bounds are obtained by finding a fractional isometric path cover. In G,
all maximal isometric paths extend from one corner of the grid to the diagonally
opposite corner of the grid. Hence, there are two basic types of isometric paths to
consider: those from (0,0) to (n — 1,n — 1) and those from (n —1,0) to (0,n — 1).
Furthermore, if vertex (i, j) lies on an isometric path from (0,0) to (n —1,n — 1), it
must be followed by either (i 4 1, 5) or (i,7+1). Hence, a maximal isometric path of
this type is also a maximal path in the directed graph with underlying graph G,, and
edges directed either left to right, or upward. A similar directed graph is associated
with isometric paths from (n —1,0) to (0,n — 1). As a result, the problem of finding
a fractional isometric path cover can be restated as a pair of simultaneous network
flow problems.

2.1 Lower Bounds

The first lower bound presented is obtained by assigning a cost of 0 to all vertices
within a certain distance of one of the corners of the grid, and a nonzero cost to all
others. In effect, this is equivalent to choosing a particular isometric subgraph of G,
and applying Theorem 1.1 to that subgraph.

Lemma 2.1 For any integers n and t such thatn >3 and 0 <t < 2,

n? —2t(t +1)

G,) > .
ps(Gn) 2 55

Proof: Given integers n > 3 and 0 <t < %, we let ¢(v) = 0 if v is distance less than
t from some corner. Otherwise, let ¢(v) =1/(2n — 2t — 1). We can see that this is a
feasible solution to the dual by considering a maximal isometric path P in G,,. The
path P contains 2n — 1 vertices of which at least 2¢ are distance less than t from
some corner. Therefore, > . c(v) <1 for all P € P.
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For any integer ¢ such that 1 <t < Z, there are exactly ¢ vertices distance ¢ — 1
from a particular corner of G,,. Furthermore, no vertex in G,, is distance at most t—1
from more than one corner when ¢t < . Since there are 4(1+24---41t) = 2t(t +1)
n? — 2t(t + 1)

2n -2t -1

While Lemma 2.1 applies to all n x n grids, the following Lemma provides an
improvement for the cases where n is odd. In this case, we again assign those vertices
within a certain distance of any corner a cost of zero. However, with the remaining
vertices, non-zero and zero costs are assigned alternately, creating a “checkerboard”
pattern.

vertices with cost 0, ¢(G,,) = . The result follows. O

Lemma 2.2 For any odd integer n > 3,

n—1

for any integer k such that 0 < k < m where m = 2=

1
24l yhenn =3 (mod 4),

n?+1—8k2
. ) > -2
Lopy(Gn) 2 —

whenn =1 (mod 4) and m =

\Y

2-1-8(+1
2. pr(Gy) > 712—4[(;_) for any integer | such that 0 < [ < m where
n— 4] —
n—1 n—3

n ="~ whenn=1 (mod4) andm = "> whenn =3 (mod 4).

Proof The graph G, is bipartite with bipartition (X,Y) where X = {(4,7)|(¢ +
j)mod2 = 0} and Y = {(4,5)|(i + j) mod 2 = 1}. Note that |X| = 2 and
|Y| _ n22—1.
1. Let X} denote the set of vertices in X that are distance less than 2k from any
corner. Let ¢(v) =0 for all v € Y U Xy, and ¢(v) = 1/(n — 2k) otherwise. This is a
feasible solution to the dual problem since any isometric path in G,, contains at most
n vertices from X, of which at least 2%k are in Xj. Hence, on any isometric path in
G, at most n — 2k vertices have a cost of 1/(n — 2k), and all others have cost 0.

Given any corner in GG, and any k such that 1 < k£ < m, there are 1 +3 +--- +
(2k — 1) = k? vertices in X that are distance less than 2k from that corner. Since
no vertex is distance less than 2m from more than one corner, |Xj| = 4k? when

1<k < m. Hence, |X = X = 25 — 412, and o(Gy) = (2 — 482) (7). The

result follows.

2. Let Y; denote the set of all vertices in Y that are distance less than 2¢ + 1 from
any corner. Let ¢(v) = 0 for all v € X UY}, and ¢(v) = 1/(n —2¢—1) otherwise. This
is a feasible solution to the dual problem since any isometric path in G, contains at
most n — 1 — 2/ vertices from Y — Y.

There are 2 +4 + --- 4+ 20 = {({ + 1) vertices in Y that are distance less than
20+ 1 from (0,0). Since no vertex is distance less than 2¢ + 1 from more than one
corner when ¢ < m, there are exactly 4(¢? + ¢) vertices in Y, when ¢ < m. Hence,

W“—leﬂ%l—4@2+f%amide==(itl—4@2+@)(;%:) The result

2
follows. .
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Example 2.3 Consider the casesn =7 andn =9. Forn =17, the first lower bound
of Lemma 2.2 with k = 1 provides the best result. However, for the case n = 9,
the second lower bound with ¢ = 1 is best. In Figure 1, the vertices coloured black
are precisely those receiving a non-zero cost. For Gy there are exactly 21 vertices,
v, such that c(v) = 1/(7 — 2). For Gg there are ezactly 32 vertices, v, such that
c(v) =1/(9 —2 —1). Hence, Lemma 2.2 gives ps(G7) > 21/5 and ps(Gg) > 16/3.

Figure 1: The “checkerboard” patterns on G; and Gg.

2.2 Upper Bounds

As previously mentioned, we can categorize each maximal isometric path in G, as
one of two types: those from (0,0) to (n — 1,n — 1) and those from (n — 1,0) to
(0,n — 1). Hence, each maximal isometric path in G,, is a maximal directed path in
one the two orientations illustrated in Figure 2. The directed graphs containing the
two types of paths are denoted G) and G., respectively.

G G’
Figure 2: The directed graphs G!, and GY.

The problem of finding the fractional isometric path number on G, is equivalent
to solving two simultaneous network flow problems, one on the graph G!, with source
(0,0) and sink (n — 1,n — 1) and the other on the graph G’ with source (n — 1,0)
and sink (0,n — 1).
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Let f' and f” denote feasible flows on G, and G, respectively. We let f'(e)
denote the value assigned to every edge by f'. We will refer to the amount of flow
through a vertex (7, j). If the vertex in question is the sink, the flow through it equals
the flow into it, for all other vertices it equals the flow out of it. We will denote the
amount of flow f’ (respectively f”) through (i,7) as f'(i,j) (respectively f"(1,7)).
The values of f" and f” are given by val(f') = f/(0,0) and val(f") = f"(n — 1,0),
respectively.

Ultimately, we are interested in applying the flows f’ and f” simultaneously.
Hence, we define the combined flow, or co-flow, f, and let f(i,7) = f'(i, 7))+ f" (i, 7).
The value of the co-flow is given by val(f) = val(f') + val(f").

Now, the problem of finding a fractional isometric path cover of G, is equivalent
to solving the following problem: Find feasible flows f' and f" on G} and G,
respectively, so that the co-flow f has the property that f(i,j) > 1 for all vertices
(2,7) in G,. We will refer to such a co-flow as feasible. Our next task is to construct
feasible flows f’ and f”, with an eye toward minimizing valf.

The flow f’ will have symmetry about the diagonal running from (0,0) to (n —
1,n — 1), as well the diagonal running from (n —1,0) to (0,n — 1). Specifically, for
any 0 <i<n-—2and 0 <j <n-—1, the three following arcs all have the same flow
under f':

1. The arc from (7,7) to (i + 1, 7),
2. The arc from (j,4) to (j,i + 1),
3. Thearcfrom (n—1—jn—1—-1i)to(n—1—jn—1—(i+1)).

The flow f” is obtained by rotating f’ by 90 degrees. Specifically, we have f'(e;) =
f"(ea) where e, is the arc from (i, ) to (¢+1, j) and ey is the arc from (n—1—j,1) to
(n—1—-7,i+1), with the remainder of f” being determined by the same symmetries
that applied to f'.

The total co-flow through the vertex (7, 5) is given by f(i,7) = f'(¢,5)+ f"(i,j) =
'G5+ fGn—1—-14) = f(i,j) + f'(n — 1 —14,j). Hence, the co-flow f can
be determined in its entirety by simply defining f’ on the subgraph induced by
{)0<j<i<n—j—1}

For example, flows on the directed graphs G}, G}, ... G are provided in Figure
3. When these flows are combined with the symmetric flows on G/ forn =3,...,7,
the result is a feasible co-flow on each of the grids. Since the value of the co-
flow provides an upper bound on the isometric path number, we have pf(Gs) < 2,
pr(Ga) < 12/5, ps(Gs) < 3, pr(Ge) < 32/9 and ps(G7) < 21/5. When combined
with the lower bounds previously presented, we find that these upper bounds are in
fact the fractional isometric path numbers for these particular grids.

We now describe two methods for constructing feasible co-flows on the grid G,
for n > 5. Each method relies on using a known feasible co-flow on a smaller grid.

Method One

Let G, be an m x m grid where m > 5. Let V(G,,) = {(¢,4)|0 < 4,5 <m — 1}.
We will define a flow, fi, on G!,. As stated previously, we only need to define the
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0 12 0 5/45 35 0 4 172 34
0 3 2 o vy vy 3 0 4 4 4 34
2 12 15 5 15 14 va 14 iz
. v7 0 24 s vs) 29 14 V4 14 14 13
2 0 15 15 25 4 va iz 4
35| 14 2/ 0 12 4 14 14 14
a5 25 T4 4 T4 4
34 14| 14 v4 0
B 12 iz 0
R 0 V10 3/10 V2 710 21/20
0 5/45 20045 25145 ) 40/45
0 5/45 15/45 545 154§ 40/49 0 V1 v 1 v 712 2112
5/45 10/45 10/45 15/45 15/45 10 s va 3/10 7120 7120
5/45| 10/4 15/45 10/45| 1545 25/45 viq U5 4 14 va 7129 71
1545 |\ 15/45 1045 10145 1 5/45 5 va 14 V4 14 5
20/45) 10/4; 10/45 10/45) 10145 20149 3/10 14| v 4 v4 3/1( 17
75
545 I\ 10/45 10/45 15/45 15/45 a s a 14 5
25/45| 15/4 10/45 15/45| 10/45| 5/45 12| 3/10| 1/4| 4] 4 4 31
1545 1\ 15/45 1045 10145 | 545 U5 va 14 a 14 5
4045 15/ 5/45 15/4 5/45 7110 7121 va 14| v4 v V1
20145 " 25/45 20045 5/45 0 7120 7120 3710 va 15 V10
2120 712 15 15 g V1 0
2120 7110 2 3/10 V10 0

Figure 3: Flows on G, forn =3 to 7

flow on the subgraph, H, induced by the vertices {(t,J)]) <j<i<m-—j—1}
To begin, the flow from (0 0) to (1,0) will be 2. Then as the flow passes through
(1,0), a flow of 1/4 is directed upward while the remaining flow is directed to the
right. This repeats for each vertex along the bottom row of the grid. In each case
where a flow of 1/4 is directed upward, that flow continues along a “zig-zig” path of
right, up, right, up, etc. until the path can no longer continue in H. Hence, all of
the interior edge of H have a flow of 1/4.

We now give a more precise definition of fJ. In reference to fj, we let ro(4, )
denote the flow from (i, ) to (¢ + 1,7), and wuo(7,) denote the flow from (,5) to
(2,7 + 1). We define f; as follows:

ro(i,0) = 2==2 for all i = 0,1,...,m — 2,
2. ro(t,j)=1/4foralli>j>1,i+j<m-—1,
3. ug(i,j)=1/4foralli>j>0,i+j<m-—1

For example, the flow on G given in Figure 3 is the flow f§ for the case m = 5.
We now provide a recursive definition for the flow f;_, on the grid G/, 5, , k& > 0.
For integers k > 0, we define r4(4, j) and ug(¢,j) in a similar manner as ro(i, j) and
ug(i,7). Let f§ be defined as above, and let ag = 1/4. Note each subsequent flow
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formed has the same value as the previous flow. Hence, all flows formed using this
recursive definition have a value of (m — 2)/2.

Recursive Definition

We can observe that, for m > 5, when co-flow f; is used, the flow through every
vertex on the boundary of G,, is greater than 1. (This flow is actually (m — 1)/4.)
The recursive definition that follows relies on this observation. Suppose we embed
G, along with it’s co-flow fy into the interior of G,,45. The excess flow along
the boundary of the embedded G, is then redirected so that it flows through the
boundary of G,42. If there is excess flow on the boundary of G,,.» then it can be
embedded in G,,44 and the process can be repeated to obtain co-flow fy;. We can
repeat this until we obtain a grid with no excess flow on its boundary.

When this process terminates, the resulting grid G,, may not have sufficient flow
on its boundary. In such cases, we consider the co-flow obtained on G, when this
recursive process begins with the grid G,,+;. This co-flow turns out to have excess
flow on the boundary. We can, therefore, find a linear combination of these two
co-flows that is feasible on G,,.

We now specifically state the recursive definition of the flow.

If (m — 1)ag > 1 do the following:

1. The vertices of the grid Gy,1ox42 are labeled from (—k — 1,—k — 1) to (m +
E,m+ k).

2. On the grid induced by the vertices from (—k,—k) to (m+k—1,m+k—1)
place the flow fj,

3. For each i = 1,2,...,m — 2, remove a flow of ap.; = % from the
horizontal path that runs from (—k, —k) to (¢, —k) and add that flow to the
path that runs horizontally from (—k —1,—k —1) to (i, —k — 1) then vertically

to (i, —k),

4. For each i = —k +1,...,0, remove a flow of ug(i,—k) from the horizontal
path from (—k,—k) to (i,—Fk) and add that flow to the path that begins at
(—k—1,—k — 1), runs horizontally to (i, —k — 1) and then vertically to (i, —k)
(when k = 0, we omit this step),

5. Add necessary flow along the path (—=k — 1,—k — 1)(—k,—k — 1)(—k,—k) in
order to make f;, feasible.

Now, using the recursive definition, we wish to find explicit expressions for for
ag, 7, and uy, as well as determine the value of & for which the recursion terminates.

In order to form f;,, we require that (m — 1)ay > 1. If £(m) denotes the first
value of k such that (m — 1)ay < 1, then the flow fym) on the grid Guyoym) is the
last flow formed by this definition.
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Given that ap = 1/4 and a1 = %, we obtain
1 /m—-1\" 1 [Sm-1y
4 \m-3 m—3 P m—3

_ o Lfm=n\' o1 m -1\
- 4\m-3 2 |\m-3
1 1 (m-1\"
2 4\m-3
forall k =0,...,¢(m). This value of a;, will be used to define the co-flow f; through-
out the remainder of the paper.
Now that we have this formula for a; we can determine the exact value of ¢(m).
Solving the inequality (m — 1)aj > 1 results in
In2

M =D —mm—3

In2

In(m—1)—In(m—3) and

Hence, ¢{(m) <

tm) = {m(m - 1)11121n(m - 3)} -

We now turn our attention to 7 and ug. By induction, we assume the following:

e 79(2,7) and ug(i, j) are defined for all 0 < 4, j < m—1 according to the previous
definition of f{,

e For k>0,
(m—2)(ax —ap +1/4), i=—k,...,—1
re(t, —k) = (m—1i—2)ay, 1=0,...,m—3
0, i=m—2... m4k—2
(m —2)(aj — qij+1), ¢ =—-k+1,...,0
u(i, —k) = ag, 1=1,...,m—2

0, i=m-—1,...m+k—-2

e If k > 1, then for all remaining vertices (7, j) where r4(4, j) and ug(i, 7) are not
determined by symmetry, r(¢,7) = rr_1(¢,7) and wug(i, ) = ug—1(3, j).

We now show that 741(7,7) and ugy1(i,j) have the same form. The argument
that follows shows that the flow f; is feasible (Lemma 2.4), and that the co-flow f;
is at least one through all vertices, except possibly those on the boundary (Lemmas
2.5 and 2.6).
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Steps 3 and 4 of the recursive definition result in a transfer of flow from arcs of
the type (i, —k)(i + 1, —k) to those of the type (i,—k — 1)(i + 1, —k — 1). For each
i=—Fk,...,m+k — 2, the reduction in flow on the arc from (i, —k) to (i + 1, —k) of
the recursive definition is exactly equal to the increase in flow on arc from (i, —k — 1)
to (i +1,-k—1).

The value of the reduction on the arc (i, —k)(i + 1, —k) resulting from Step 3 is
as follows:

e For eachi=—k,...,—1, (m — 2)ag4, units,
e Foreachi=0,...,m—3, (m — i — 2)a4; units,
e Foreachi=m —2,...,m+k — 2, 0 units.

The value of the reduction on the arc (i, —k)(i + 1, —k) resulting from Step 4 is
as follows:

e Fori=—Fk,...,—1, exactly Z?:H»l ug(j, —k) = (m — 2)(1/4 — ajy) units,

e Fori=0,...,m+ k— 2, 0 units.

Hence,
me(i, —k) — (m — 2)(appr + ay — 1/4), i=—k,...,—1
rre1 (i, —k) = re(t, —k) — (m — 1 — 2)ags1, 1=0,....m—3
(1, —k), i=m—2,....m+k—2

Step 3 also results in an increase of (m — 2)ay4; units of flow on the arc (—k —
1,—k —1)(=k,—k — 1), and an increase of a4 units of flow on the arc (i,—k —
1)(¢,—k) foreach i =1,...,m — 2.

Step 4 also results in an increase of (m — 2)(1/4 — a;) units of flow on the arc
(=k —1,—k —1)(—k,—k — 1), and an increase of uy (i, —k) units of flow on the arc
(¢,—k = 1)(i,—k) for each i = -k + 1,...,0.

Finally, Step 5 of the recursive definition requires additional flow in order to make
the final flow feasible. After the first four steps, there is a flow of (m — 2)(ay — ag+1)
out of (—k, —Fk), but no flow into (—k, —k). Hence, we add this amount of flow along
the path (—=k — 1, —k — 1)(—k, —k — 1)(—k, —Fk).

Hence, we have the following values for 1 and wg4q:

(m—=2)(aper —ay +1/4), i=—-k-1,...,—1
rep (i, —k—1) = (m —i—2)ags1, 1=0,...,m—3
0, i=m-—2,...m+k—1

(m — 2)(a|i‘ - a‘i|+1), 1=—Fk,...,0
U]H_l(i,—k—l) = Ap+1, 1= 1,...,m—2
0, t=m-—1,....m+k—1
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Note that for all vertices (4, j) not specifically mentioned above and not deter-
mined by the symmetry of fi,, rey1(2,J) = 7%(4,7) and wgsr (4, §) = ug(i, J).
From the construction of f;_;, we now also have

(m —2)(ar, — agt1), i=—k,...,—1
rr (i, —k) = (m—2—1i)(ay —ags1), 1=0,...,m—3
0, i=m—2,.. . m+k—2.

We now must verify that each of fg, f1,..., fé(m) is a feasible flow. It suffices to
show that the flow on every arc is non-negative.

Lemma 2.4 For each k =0,1,...,0(m), fi(e) >0 for every arc e in Gpiay.

Proof: (By Induction) By definition, fj(e) > 0 for every arc in G,,. Assume f; has
the desired property for some k where 0 < k < ¢(m) — 1.

From the recursive definition, we have f;, (e) = fi(e) for every arc e with at
least one end point in {(i,5)| —k+1 < 4,57 < m+ k — 2}. Hence, by induction
fie1(e) >0 for all such arcs.

Since 1/4 = ag > a1 > -+ > aym)—1 > Qm) > 0, it is straightforward to show
that all of the values of ryy; and wg+; are non-negative. Hence, f;_,(e) > 0 for every
edge e of Gpyor42. By induction, the result follows. |

We now turn our attention to the co-flow f; formed by combining f; from the
recursive definition with its counterpart f}, k = 0,...,¢(m). In order for f; to be
feasible we must have fi(¢,7) > 1 for all vertices (i, 7). It turns out that fj is feasible
for all k = 0,...,¢(m) — 1. The co-flow fym) is not necessarily feasible. However,
feem)(4,7) > 1 for all interior vertices (¢, 7). We now verify these results.

Lemma 2.5 For each k = 0,1,...,¢(m), fi(i,7) > 1 for every vertex (i,7) in the
interior of Guyar-

Proof:  (By Induction) It is straightforward to show that fy(i,5) > 1 for all (4, j)
such that 0 < 7,7 < m—1. Now assume that for some % such that 0 < k < £(m)—1,
fr(i,7) > 1 for all (4, ) such that —k <4,j <m+k— 1.

Now consider the flow f;,; on Gpiogk41). By the recursive definition, f; (4, j) =
1., 4) for all (i,7) such that —k+1<i,j <m+k—2.

Due to the symmetry of f;,, and f;, we have

Qupsr (=K, —k — 1), i=—k
fora(i,—k) = § mera(i = 1L, =k) + rea(m — i = 2, —k)+
U1 (3, —k — 1) +up(m —i— 1, -k —1), i=—-k+1,..., 2L

Hence,

2(m — 2)(ax — ar41), i=—k
fk+1(i, —,l») = (m — 2)(ak — Qp+1 + aji| — a‘i|+1), i =—k+ ]., e, 0
(m—1)

m ag — (m — 3)ag41, i:l,...,mT_l.
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m

Since a = % — i (—)k for all £ =0,...,¢(m), it follows that

-1
m—3
1/

=

=ag > - > aym) >0,

—1\k - L)k
o~ =} ()" (323 -1) = ey (32
mZao—al<"'<a‘—1_al(m)'

From this we can easily verify that fi+i(¢,—k) > 1 for alli = —k,...,(m —1)/2.
Hence, by the symmetry of fiy1, we have that fyy1(é,7) > 1 for every vertex (i, j)
in the interior of Gya(r+1)- The result follows by induction. O

Lemma 2.6 For any m > 5 and each k = 0,...,0(m), fi(i,—k) > (m — 1)ay for
ali=—k, . ..om+k—1.

Proof:  (By Induction) The result is obviously true for f;. Assume it is true for fj
where 0 < k < ¢(m) — 1.
From the recursive definition and the symmetry of fr,.1, we have

(k= 1,—k—1), i=—k—1

fk+l(i7 —k — 1) = T]H—l(i - 17 —k - 1)+
rea(m—i—2,-k—1), i=—k,..., =1

Therefore,
(m —2)/2, i=-k—1
fk+1(i7—k—1) = (’I’)’L—2)(1/4"’@]@_'_1—am_._l)7 i:—k,...,O
(m — Dags1, i=12,...,(m—=1)/2.

Using the fact that (1/4 + A1 — a‘i|+1) > (ao —ay + ak+1) = (m + ak+1) >

3+ (m —2)ag1 > (m — 1)agy when —k <@ <0, it is straightforward to verify the
required result. |

The results of Lemmas 2.4, 2.5 and 2.6 have verified that the recursive definition
of fi, applied to G, provides a feasible co-flow for & = 0,1,...,¢(m) — 1 and an
almost feasible co-flow for k = ¢(m). These results are summarized in the following
theorem.

Theorem 2.7 Suppose m > 5. Then the co-flow fr on G421 given by the recursive
definition is feasible for k = 0,1,...,¢(m) — 1. Furthermore, the co-flow fym) on
Gm+20m) gives a flow of at least 1 through all interior vertices and a flow of at least
(m — L)agmy through all boundary vertices. Finally, for every k =0,1,...,4(m) the
value of the co-flow fi, on Gpior is m — 2.

We now provide an example of the construction of each flow according to the
recursive definition. In this case, we consider m = 9 and k = 0,1,2. (It is easily
verified that £(9) = 2.)
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Example 2.8 Let m = 9. The flow f} is demonstrated in Figure 4 (0). Only the
flow on one side of the boundary is provided, since the remaining flow is either 1/4,

or determined by symmetry. (For a similar reason we have omitted parts of f] and
15 as well.)

Starting with f}, we calculate a; = 1/2 — 1/4(8/6) = 1/6 and redirect some of
the flow through vertices of the form (i,—1). The resulting flow f| is seen in Figure
)

Once we have f], we calculate ay = 1/2 — 1/4(8/6)? = 1/18 and redirect some of
the flow through vertices of the form (i,—2). The result is f;, seen in Figure 4 (2).

va 4 va va va va V4
S R S U D S ©
(0,0)
. .
74 6/4 54 4/4 34 24 va 0

RS
(m¢¢“¢¢¢&¢$;”

va va e

N 512 412 312y 212, w2, o @
7/12f ue g usﬁ ué{ uef ueT ua¢ 0
. .

i 79 69 59 4 49 ) 39 29 9 ) 0
(2-2) 79 7/1f JJ1§ uﬁﬁ Ul% J./lsﬁ umf 1/14 umf 3 D/t
[ R * - - - o

714 35/36 718 618 518 418 318 2118 118 0 0 0

Figure 4: The flows f}, f{ and f} for the case m = 9.

As seen previously, there are vertices (7, 7) on the boundary of Gpia¢(m) such that
fem) (1, 7) = (m—D)agmy < 1. If (m—1)agm) < 1, then foum) is not feasible. In order
to create a feasible co-flow from fy(;,), we could simply add flow through each of the
four maximum isometric paths that run along the sides of the boundary. The second
(and better) option is to take a linear combination of fy,) together with a feasible
co-flow that has excess flow through the boundary. This second co-flow will also
result from the recursive definition using a different value of m. To avoid confusion,
we will use the notation fy,o,..., f}, ;) to denote the flows on G7, ..., G} oy
given by the recursive definition.

Now, suppose we wish to construct a feasible co-flow on the grid G,42¢(») for some
n > 5. We use the recursive definition to obtain the flow fn,l(n) on the grld Grr2t6(n)-
The resulting co-flow f, ¢n) has the property that some vertices on the boundary do
not have a total flow of 1 through them, but all other vertices have a flow of at least
1. However, we do know the minimum flow through a vertex on the boundary is
(n = Dagn = (n — 1)(1/2 = 1/4(2=3)“™) < 1. Note that valf, m) = (n — 2).

Now, we use the recursive definition to obtain the flow ﬂb+2,Z(n)—1 on the grid
G’n+2£ (n)- In this instance the minimum flow through a vertex on the boundary is

(n+1)(1/2 — 1/4(2£L)40-1) Note that valfy s m)-1 = n-
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Let f' = ffl,l(n) and ¢ = f7’L+2,l(n)_1. We can take a linear combination of these
two flows to form the new feasible flow A’ as follows: for every arc e in Gpiai(n), let
h'(e) = xf'(e) +yg'(e) for x and y such that 0 < x,y < 1. In order for the resulting
co-flow h to be feasible, we require the following constraints to be satisfied:

1 1 /n-1\™ 1 1 /n+1\™1
’”(”‘1><5‘1<n_3> roen (31 (G) )2

r+y2>1

The first constraint guarantees a co-flow of at least one through vertices on the
boundary, while the second does the same for the remaining vertices. The value of h
is given by valh = zvalf +yvalg = z(n — 2) + yn, and is minimized when both of the
above inequalities achieve equality. The resulting value of h gives an upper bound
on the fractional isometric path number. Hence, we have the following result:

Theorem 2.9 For any integer n > 5,

(b 42) (B2 ) (3) ) 44
RSO =

Example 2.10 Consider the case where m = 9. By using the recursive definition,
we can obtain the flow fg, on the grid G'3. The formation f' was demonstrated in
Figure 4. The resulting co-flow, f has a value of 7.
Now repeat with m = 11. In this instance, we obtain the flow f],, on the grid
Y5. Call the resulting co-flow g. In this case every vertex not on the boundary has
a co-flow of at least one through it, while the minimum flow through a vertex on the
boundary is at Zeast (m — 1)a; = 10(3/16) = 15/8. The value of g is 9.
If we let 2 sv+2y=1andx+y=1, we obtain v = 63/103 and y = 40/103. We
can now form the co -flow zf +yg whzch is feasible and has value Tz + 9y = 801/103.

Now, it is not the case that for any integer m there exists an integer n such that
m = n + 2¢(n). Hence, not all grids can be given a feasible flow in this manner. In
such cases, however, there is an n such that m = n + 2k where k& < ¢(n) — 1. By
Corollary 2.7, the co-flow f,, is feasible, and p;(G,,) < n —2

Method Two

The second method for constructing fractional isometric path covers is an ex-
tension of a construction appearing in [2]. The original result provides a means of
constructing an isometric path cover on the grid Gy, whenever a cover for G, is
known. The technique is easily modified for the fractional problem.

The first step is to map each vertex (i, ) in G, to a set of k? vertices in G,.
Specifically S(v) = {(ki + a, kj + B)|o, =0,1,...,k — 1}. For any isometric path
P in G,, there is a set of k parallel isometric paths P’ in G}, such that for every
vertex v on P, the vertices in S(v) each lie on exactly one of the corresponding paths
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a a a
a a a
a a, a,

Figure 5: An isometric path in G3 and the corresponding paths in Gy

in Gy,. Figure 5 demonstrates the map S, as well as the correspondence between
isometric paths, for the case k = n = 3.

Now consider any fractional isometric path cover, w, of G,. For each isometric
path P in G, a weight of w(P) is assigned to each path in Gy, that appears in the
corresponding set P'. All other isometric paths in Gy, are given weight zero. The
result is a fractional isometric path cover of Gy,. Hence, we have the following:

Theorem 2.11 If G, has a fractional isometric path cover of weight p then Gy, has
a fractional isometric path cover of weight kp.

Corollary 2.12 For any integers k > 1 and n > 3, pr(Grn) < k X pp(Gy).

Since the proof of Theorem 2.11 is almost identical to that of the analogous result
in [2], we leave the details to the reader.

2.3 Experimental Results

For each value of m in the following table, upper and lower bounds on p¢(G,,) have
been determined. For all values of n presented, lower bounds result from equations
presented in Section 2.1. For each odd value of n, the maximum of the three possible
lower bounds is presented.

For m = 3,4,5,6 and 7, the upper bounds were determined by constructing
feasible flows, as seen in Figure 3. For the remaining values of m, upper bounds
were determined using the two methods described in Section 2.2. In cases where
both methods could be used (that is, when m is not prime), the minimum of the two
upper bounds was chosen.

The table also shows the approximate ratio of the upper bound to the lower
bound. Note that for cases where the ratio is one, we have determined the fractional
isometric path number exactly.
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m 3 4 5 6 7 8 9 10 11
12 32 21 52 16 88 13

lower 2 5 3 9 B 11 3 15 o
12 32 21 24 27

upper | 2 ¥ 3 F % = = 6 7

ratio |1 1 1 1 1 1.01564 1.0125 1.0227 1.0769

m 12 13 14 15 16 17 18 19 20
64 801 9971 48 50659 90249 143903

upper 9 103 1198 9 5 5001 8432 12781 12

ratio | 1.0074 1.0144 1.0137 1.0206 1.0222 1.0130 1.0136 1.0094 1.0235

2.4 Asymptotic Results

We now compare upper and lower bounds on ps(G,,) for large values of m. First,
we consider the case where m = n + 2¢(n) and use the upper bound obtained by our
first method. In the next case, we consider m = kn where k& > 3 using the upper
bound from the second method. In both cases, the lower bound from Lemma 2.1 is
presented. (Asymptotically, for odd values of m, the two lower bounds from Lemma
2.2 provide the same result.) The infinite limits that follow were all evaluated using
the software package MAPLE.

Let m = n 4 2¢(n). The first lower bound on p;(G,,) is given by the following
function:

m? —2t(t+1)
=T
fm ) ===

When 0 < ¢ < m/2, f(t) is maximized at t = —1/2 +m — 1/2+/—1 +2m?2. Since
t must be integer, we consider f(m,t*) where t* = |-1/24+m — 1/2v/ -1+ 2m?].
We find o o

im L2 o e - va).

n—oo n

Now consider the upper bound on ps(Gpiae(n)) obtained by our first method. It

is given by the function

g(n) =

where ¢(n) = [1“72-‘ — 1. We find

In(n—1)—In(n—3)
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Hence, the ratio of these upper and lower bounds on ps(Gni2¢n)) as n approaches
infinity is
. g(n) 1
lim = ~ 1.0082.
oo f(n+20(n),t")  (In2+1)(2 - v2)
Now we consider m = kn where p;(G,,) is known. The lower bound is given by
f(m,t*) where f and t* are defined as in the previous case. We find

kn, t*
im L) 55
n—00 on
The upper bound is simply k(ps(G,)). Hence, as n approaches infinity the ratio of
these upper and lower limits is

k(p(Gn)) _ _ps(Gn)

lim = .
n—oo f(kn,t*) n(2 — \/5)
Using the flows in Figure 3, we can evaluate this limit for the specific cases n =

3,4,...,7. The results are (approximately) 1.1381, 1.0243, 1.0243, 1.0116 and 1.0243,
respectively.
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