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Abstract

For a bridgeless connected graph G, let D(G) be the family of strong
orientations of G; and for any D € D(G), we denote by d(D) (resp., d(G))
the diameter of D (resp., G). Define d(G) = min{d(D)|D € D(G)}. In
this paper, we study the problem of evaluating d (T'(sy, s, .. ., S»)), where
T(s1,89,...,8s) is a T vertex-multiplication for any tree T" of order n > 4
and diameter at least 3, and any sequence (s;) with s; > 2,7 =1,2,...,n.
We show that d(T'(s1, sa,.-.,5,)) < d(T)+1with d(T(s1,82,...,5,)) =
d(T) for most cases.

1 Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). For v € V(G),
the eccentricity e(v) of v is defined as e(v) = max{d(v, z)|z € V(G)}, where d(v, z)
denotes the distance from v to z. The diameter of G, denoted by d(G), is defined
as d(G) = max{e(v)|v € V(G)}. Let D be a digraph with vertex set V(D) and edge
set E(D). For v € V(D), the notions e(v) and d(D) are similarly defined.

An orientation of a graph G is a digraph obtained from G by assigning to each
edge in G a direction. An orientation D of G is strong if every two vertices in
D are mutually reachable in D. An edge e in a connected graph G is a bridge if
G — e is disconnected. Robbins’ celebrated one-way street theorem [25] states that
a connected graph G has a strong orientation if and only if no edge of G is a bridge.
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Efficient algorithms for finding a strong orientation for a bridgeless connected graph
can be found in Roberts [26], Boesch and Tindell [1] and Chung et al. [2]. Boesch
and Tindell [1] extended Robbin’s result to mixed graphs where edges could be
directed or undirected. Chung et al. [2] provided a linear-time algorithm for testing
whether a mixed graph has a strong orientation and finding one if it does. As another
possible way of extending Robbins’ theorem, consider further the notion p(G) given
below (see Boesch and Tindell [1], Chvétal and Thomassen [3], and Roberts [27]).
Given a connected graph G containing no bridges, let D(G) be the family of strong
orientations of G. Define

p(G) = min{d(D)|D € D(G)} — d(G).
The first term on the right side of the above equality is essential. Let us write
d(G) = min{d(D)|D € D(G)}.

The problem of evaluating d(G) for an arbitrary connected graph G is very difficult.
As a matter of fact, Chvétal and Thomassen [3] showed that the problem of deciding
whether a graph admits an orientation of diameter two is NP-hard.

On the other hand, the parameter d(G) has been studied in various classes of
graphs including the cartesian product of graphs (Plesnik [23], Soltés [32], McCanna
[21], Roberts and Xu [28-31], Koh and Tan [8], Koh and Tay [11-17], Konig et al.
[19]), complete graphs (Plesnik [22], Boesch and Tindell [1], Maurer [20] and Reid
[24]), complete bipartite graphs (Plesnik [23], Boesch and Tindell [1], Soltés [32] and
Gutin [5]) and complete n-partite graphs for n > 3 (Plesnik [23], Gutin [5-7] and
Koh and Tan [9, 10]). These optimal orientations can be used to provide optimal
arrangements of one-way streets (Robbins [25], Roberts and Xu [28-31], and Koh
and Tay [12]). They can also be used to solve a variant of the gossip problem on
a graph G where all points simultaneously broadcast items to all other points in
such a way that items are combined at no cost and all links are simultaneously used
but in only one direction at a time. In this problem, the time taken for the gossip
to be completed is bounded below by d(G) and above by min{2d(G), d(G)} (see
Fraigniaud and Lazard [4]). Thus the problem for a graph G is solved completely if
p(G) = 0.

In [18], Koh and Tay extended the results on the complete n-partite graphs by
introducing a new family of graphs based on a given connected graph as follows. Let
G be a given connected graph of order n with vertex set V(G) = {v1,v2,...,0,}.
For any sequence of n positive integers (s;), let G(sy, $2,...,s,) denote the graph

n
with vertex set V* and edge set E* such that V* = |J Vi, where V}’s are pairwise
i=1
disjoint sets with |V;| = s;, ¢ = 1,2,...,n; and for any two distinct vertices z, y
in V*, 2y € E* if and only if « € V; and y € V; for some 4,5 € {1,2,...,n}
with i # j such that vv; € E(G). Call the graph G(sy,s2,...,5,) a G vertex-
multiplication. Thus when G = K, the complete graph of order n, the graph
G(s1,82,-..,8,) is a complete n-partite graph. We call G a parent graph of a
graph H if H = G(s1, sa,- .., s,) for some sequence (s;) of positive integers.
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For convenience, we sometimes write, for t = 1,2,...,n, V; = {(p,9)|1 < p < s;}
and call (p,i) the pth vertex in V;. Thus two vertices (p,i) and (g¢,j) in V* are
adjacent in G(s1, s, ...,$,) if and only if ¢ # j and vv; € E(G). For s = 1,2,.. .,
we shall denote G(s,s,...,s) simply by G®. Thus GV = G, and it is understood
that the number of s’s in G(s, s, ..., s) is equal to the order of G.

In this paper, we shall study the case when G is a tree. Since trees of diameter
not exceeding 2 are parent graphs to complete bipartite graphs which have been
completely solved, we shall only consider trees of diameter exceeding 2. It was
shown in [18] that if s; > 2 for each i = 1,2,...,n where n > 3, then d(G) <
d(G(s1,82,...,8,)) < d(G)+ 2. From this fundamental result, all graphs of the
form G(s1, sa,- .., 8y ), where s; > 2 for 1 < i < n, can now be classified into 3 classes
C; in the following natural way:

C; = {G(s1, 52, .,52)|d(G(s1, 83, ..., 80)) = d(G) + 1},i = 0,1,2.

From now on, we shall assume that s; > 2 for 1 < i < n. In the subsequent
sections, we shall show that if T is a tree of order n and diameter exceeding 2, then
T(s1,89,---,8n) € CoUC; with T(sy, 8, ...,8,) € Co for most but not all cases.

2 Terminology and Notation

Let D be a digraph. A dipath (resp., dicycle) in D is simply called a path (resp.,
cycle) in D. For X C V(D), the subdigraph of D induced by X is denoted by D[X],
or simply [X], if there is no danger of confusion. Given F' € D(G(s1, sa, - - -, $n)), let
U R = Fl{lp. )l <p < 55,7 € ).

j

Let A be a subdigraph of F. The eccentricity, outdegree and indegree of a
vertex (p, 1) in A are denoted respectively by ea((p, 1)), sa((p,4)) and sa((p,i)). The
subscript A is omitted if A = F.

A digraph D; is said to be isomorphic to a digraph D,, written D; = D,, if
there is a bijection ¢ : V(D;) — V(D) such that wv € E(D,) if and only if
#(u)p(v) € E(D,).

For @,y € V(D), we write ‘@ — y’ or ‘y < &’ if x is adjacent to y in D. Also, for
A,B CV(D), we write ‘A — B’ or ‘B+«+ A if & —» yin D for all z € A and for all
y € B. When A = {z}, we shall write ‘@ — B’ or ‘B « 1’ for A — B.

For convenience, we shall denote a tree with diameter d by Tj.

For clarity, we introduce an alternative way of labeling the vertices of a tree.
Let Ty have a planar representation as follows: Choose a path P in Ty of length d
and draw it vertically. We call P the main path. Label the vertices on P from
(1) to (d + 1) starting with (1) at the top and the others numbered consecutively
downwards. If there is no ambiguity, vertex (7) may simply be written as i. A branch
from a vertex (v) on P whose label does not exceed ([4]) is drawn to the right and
upwards in such a way that the neighbours of (v) are placed from left to right at
the same height as the vertex (v — 1). A branch from a vertex (v) in P whose label
exceeds ([4]) is drawn to the right and downwards in such a way that the neighbours
of (v) are placed from left to right at the same height as the vertex (v + 1).
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2.1) 3,11) 31,2

(5,1) 4,1,1) (4,3,1) (4,32 4,3,3)

Figure 1

We shall now give an algorithm for labeling the vertices of Tj.
(1) The vertices of P from top to bottom have been labeled (1), (2),...,(d + 1).

(i) For 2 < i < d, if deg((7)) = k; > 3, then label from left to right the unlabeled
vertices adjacent to (i) as (¢,1),(4,2),..., (i, k — 2).

(iii) Suppose a vertex v has been labeled (ay,as,...,a,). Label from left to right
the unlabeled vertices adjacent to v as (ay, as, ..., a4, 1), (a1,02,...,a4,2), ...,
(a1, aq, ..., a4, deg(v) —1).
For a vertex v = (a1, as, ..., an), define its vertex number, n(v), as follows:

. d .
n(v) = a;+1—-—m if allg [$1;
a; +m —1 otherwise.

Denote by v? the i-th coordinate in v.

As an illustration, the labeling of a tree T with d =5 is shown in Figure 1.
For i = 1,2,...,d, we shall label the vertex v; as (i) according to the labeling
above.

3 Optimal orientations of Ty(s1,S2,...,8,), where
d=3,4

In this section, we shall obtain results on Ty(s1, $2, ..., S,), where d = 3 or 4. We
shall need the following lemma to prove our results in this and the next section. The
lemma has been proved in [18] but for completeness, we shall include the proof here.
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Lemma 1 Let t;, s; be integers such that t; < s; for 1 < ¢ < n. If the graph
G(ty,ta,...,t,) admits an orientation F in which every vertex v lies on a cycle of
length not exceeding m, then d(G(sy,ss,...,5,)) < max{m,d(F)}.

Proof. Given such an orientation F of G(ty,ts,...,t,), define an orientation F' of
G(s1, 582, .., 8y) as follows:

(i) for p < t; and ¢ < t;, (p,7) = (¢, J) iff (p,7) = (¢,j) in F;
(ii) for p < t; and q < t;, (p,1) = (q,7) ift (p,7) = (¢;,7) in F;
(iii) for p < t; and ¢ < tj, (p,i) = (¢, J) iff (¢;,3) = (¢, J) in F;
(iv) for p < t; and q < t;, (p,i) = (¢, 7) iff (¢;,1) — (¢;,7) in F;

We shall now prove that d(F') < max{m, d(F)} by showing that for any 2 vertices
(p,i) and (g,7) in F', d((p,1),(q,7)) < max{m,d(F)}. Indeed, if i # j or ‘i = j and
p < t;or ¢ <t then it is clear that d((p,?),(q,j)) < d(F). If i = j and p > ¢; and
q > t;, then d((p,1),(g,7)) < m. The result thus follows. O

Let P, be the path of order n.

Theorem 1 Tj(s1,5s,...,8,) € Co UCy, where i = 3,4.

Proof. It was shown in [18] that Ps(s1, sa, $3,54) € Co UCy. Note that T3(sq, s2, . .

Sp) =2 Py Y. sj,82,83, 2, S;). The result follows for ¢ = 3.
n(i;)=1 n(i;)=4

We shall now prove the result for ¢ = 4. Define an orientation F' of T4(2)
follows: for n(i) = 2 or 4, (1,7) — (1,3) = (2,7) = (2,3) — (1,7) and (2,i) —
1 if =2
500 i=4
As an illustration, the orientation F of a T4(2) is shown in Figure 2.

Observe the following facts about F':

9

{(1,7),(2,7)} = (1,1), where j is adjacent to ¢ in Ty and n(j) =

(i) for n(i) = 1,5 and p = 1,2, d((p,i),(1,3)) = d((1,3), (p, 1)) = 2;
(ii) for n(i) =1,5 and p= 1,2, d((p,?),(2,3)) = d((2,3),(p, 1)) = 4;

(iii) for n(i) = 2,4, d((1,4),(1,3)) = 1, d((1,7), (2,3)) = 3, d((1,3),(1,i)) = 3 and
d((2,3),(1,9) =

1;
(iv) for n(i) = 2,4, d((2,),(1,3)) = 3, d((2,7),(2,3)) = 1, d((L,3),(2,7)) = 1 and
d((2,3),(2,9) = 3;

(v) d((1,3),(2,3)) = d((2,3),(1,3)) =
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2.1) 3,11) 31,2

(5,1) 4,1,1) (4,3,1) (4,32 4,3,3)

Figure 2

We shall now show that d(F') = 5 by showing that for all u € V(F), e(u) < 5.
From observations (i)-(v), e((1,3)) = 3 and €((2,3)) = 4. For n(:) = 1,5 and
p=1,2,e((p,1) < dl(p,),(1,3)) +e((1,3)) = 2+ 3 = 5. For n(i) = 2,4,e((1,)) <
A((1,1), (1,3) +e((1,3)) = 1+3 = 4 and e((2,0)) < d((2,1),(2,3)) + e((2,3)) =
1 +4 = 5. All cases have been covered and so d(F') = 5. Since every vertex in F°
lies on a cycle of length 4, we have d(T4(s1,582,...,8,)) < 5 by Lemma 1. Thus
Ty(s1,82,..-,5,) € CoUC;. O To prove the next theorem in this section, we shall
need the following lemma.

Lemma 2 There is exactly one orientation of P5(2) with diameter 4 up to isomor-
phism.

Proof.  Suppose there exists an F € D(P(Z)) such that d(F) = 4. Since F is
strong, we may assume that (2,2) — (1,1) — (1,2) and (1,4) — (1,5) — (2,4).
Since d((1,1),(1,5)) < 4, there must be a (1,2)-(1,4) path of length 2. We may
assume that (1,2) — (1,3) (1,4). Since d((1,4),(1,1)) < 4, (1,4) — (2,3) —
(2,2). Since d((1,5),(1,2)) < 4, (2,4) — (2,3) — (1, ) Since d(( 1),(2,4)) < 4,
(1,3) = (2,4). Since d((1,5),(2,5)) < 4 and F is strong, (2,4) — (2,5) — (1,4).
Since d((2,2),(1,5)) <4, (2,2) — (1,3). Since d((1,1),(2,1)) < 4 and F is strong,
(1,2) = (2,1) — (2,2). Thus F is isomorphic to the orientation X' of Figure 3,
which is of diameter 4. 0O

(1
2)-
(1

Corollary Let Ty be a tree of diameter 4 which contains P : 415 .. .45 as a subgraph
such that degy, (i1) = degy, (i5) = 1, degy, (12) = degy, (i4) = 2 and degy, (i3) > 2. If
there exists F € D(T\”)) such that d(F) = 4, then F[V(P?)] = X1
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Figure 3

Figure 4

Proof. Observe that the proof of Lemma 2 is independent of whether there exist
any new edges incident with (1, 3) or (2, 3). The result thus follows. O

Call F € D(Péz)) a symmetric orientation if there exists an isomorphism ¢ :
F1 UF,UF; - F5U Fy U F; such that for p = 1,2, ¢((p,1)) = (p,6 — 7).

Consider the orientation X! of Figure 3. We observe that

(i) X' is not symmetric;

(i) sxzux3((1,3)) = sxpux;((2,3)) =0.
Theorem 2

(I) If deg((3)) = 2, then Tu(s1,s2,-..,,) € Co.

(I1) If deg((3)) > 3, then T.") € C;.

Proof. We shall first prove (I). It is easy to see that every vertex in X! lies
on a cycle of length 4. Hence by Lemma 1, d(Ps(s1,52,53,54,85)) = 4. Let Ty
be a tree of diameter 4 such that deg((3)) = 2. Note that Ty(s1,s2,...,8,) =
Ps( > sj, 52,583,584, p, Sj). Thus we have d(Ty(s1,s2,...,5,)) = 4 and
n(i;)=1 n(i;)=5
T4(51, S92y ..y Sn) € Co.
We shall now prove (II). Let Ty be a tree of diameter 4 such that deg((3)) > 3.
Assume that there exist at least 3 vertices in T} such that the distance between
any two of them is 4. We need only consider T' of Figure 4.
Suppose there exists H € D(T?) such that d(H) = 4. By the corollary to
Lemma 27 H1 U H2 U H3 U H4 U H5 = H1 U H2 U H3 U H(S,l) U H(3,1,1) = H5 U H4 U
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Figure 5

H3 U H31)U Hgz 1) = X' But this is impossible since X' is not symmetric by the
above observation (i).

Assume now that there exist exactly 2 vertices in T, such that the distance
between them is 4. We need only consider 1" of Figure 5.

Suppose there exists H € D(T®) such that d(H) = 4. By the corollary to
Lemma 2, H; U H, U H; U H; U H; = X!'. By the above observation (ii), we
have sm,um,((1,3)) = smum,((2,3)) = 0. Since H is strong, s((1,(3,1))) = 1. If
(13,1) - (13), then d((1.3, D). (11) = d(1, 3,1, (2.9) + di(2.3)1.1) =
3+ 2 = 5, a contradiction. If (1, ( 1) — (2 3) then d((1,(3,1)),(1,5)) =
d((1,(3,1)),(1,3)) +d((1,3),(1,5)) = 3 + 2 =5, a contradiction again.

Hence d(T(”) > 5. By Theorem 1, d (T ”) =5 and result (II) follows. O

4 Optimal orientations of Ty(sy,s2,...,8,), where d > 5

In this section, we shall turn our attention to Ty(s1, S2,.-.,$,), where d > 5. We
shall divide our consideration into 2 cases, i.e., Ts and Ty with d > 6.
We shall need a few preliminary results on orientations of P5(2) and Pﬁ(z)

Lemma 3 There are exactly 3 non-isomorphic orientations of P6(2) with diameter 5.

Proof. Suppose there exists an F € D(P{*') such that d(F) = 5. We shall split our
argument into 2 cases by considering the orientation of F5 U Fg.
Case 1 (1,5) — (1,6) = (2,5) = (2,6) — (1,5).

Let u € V(Fy), v € V(F;) and w € V(F;). We have the following observations:

(la) since sp((1,6)) = s¥((2, )) 1, (1,5) — (1,6) and (2,5) — (2,6), we have
d(u,w) =4 and d(v,w) =

(1b) since sp((1,6)) = sp((2,6)) = 1, (1,6) — (2,5) and (2,6) — (1,5), we have
d(w, )—4and d(w,v) = 3.

Since F is strong, we may assume that (2,2) — (1,1) — (1,2). Since d((1,1),
(1,5)) = 4 by observation (1a), there must be a (1, 2)-(1, 5) path of length 3. We may
assume that (1,2) — (1,3) — (1,4) — (1,5). By observation (1b), d((1,5),(1,2)) =
3 and thus (1,5) — (2,4) — (2,3) — (1,2). We shall further divide our consideration
into 2 subcases.
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Xt
Figure 6
Xt
Figure 7
1.1. (2,2) = (2,3).
By observation (1b), d((1,5),(2,2)) = 3 and thus (2,4) — (1,3) — (2,2). By ob-

3)
servation (1a), d((2,2),(2,5)) = 3 and thus (2,3) — (1,4) — (2,5). By observation
(1b), d((2,5),(1,2)) = 3 and thus (2,5) — (2,4). Now either (1,2) = (2,1) — (2,2)

r (2,2) — (2,1) — (1,2). This gives rise to 2 orientations Y' and Y? with
d(Yl) = d(Y?) =5 as shown in Figure 6.
2.(2,3) = (2,2).

By observatlon (1a) d((2,2),(1,5)) = 3 and thus (2,2) — (1,3). Since d((1,1),(2,1))
< 5, we must have (1,2) — (2,1) and this in turn leads to (2,1) — (2,2) since
F is strong. Suppose (2,5) — (1,4). By observation (la), d(( 2),(2,5)) = 3
and thus (1,3) — (2,4) — (2,5). By observation (1b), d((2,5),( ,2)) = 3 and
thus (1,4) — (2,3). This gives rise to an orientation which is isomorphic to Y.
Now suppose (1,4) — (2,5). By observation (1b), d((2,5),(1,1)) = 4 and thus
(2,5) — (2,4). At this stage, we have a partial orientation Z of P\”. This partial
orientation Z gives rise to 2 non-isomorphic orientations Y3 and Y* as shown in
Figure. It is easy to check that d(Y3) =5 and d(Y*) = 6 (since d((1,1),(2,3)) = 6).
Case 2 (1,5) = {(1,6),(2,6)} — (2,5).
Let u € V(Fy) and v € V(F;). We have the following observations:

(2a) since sp((1,6)) = s¢((2,6)) = 1 and (1,5) — {(1,6),(2,6)}, we have
d(u,(1,5)) = 4 and d(v, (1,5)) = 3;

(2b) since sp((1,6)) = sp((2,6)) = 1 and {(1,6),(2,6)} — (2,5), we have
d((2,5),u) =4 and d(( ,5),0) =

Since F is strong, we may assume that (2,2) — (1,1) — (1,2). Since d((1,1),
(1,5)) = 4 by observation (2a), there must be a (1, 2)-(1, 5) path of length 3. We may



78 K.M. KOH AND E.G. TAY

Figure 8

assume that (1,2) — (1,3) — (1,4) — (1,5).
3 and thus (2,3) — (1,2). Slnce d((1,5),(1,1)) < 5, we have (1,5) — (2,4). Since
d((1,6),(2,6)) < 5, we must have (2,5) = (1,4). Since d((1,1), ( 5)) < 5, we have
(1, 3) (2,4) — (2,5). By observation (2b), d((2,5), (1, 1)) = 4 and thus (1,4) —
(2,3) — (2,2). By observation (2a), d((2,2),(1,5)) = 3 and thus (2,2) — (1,3).
Since d((1,5),(1,1)) < 5, we have (2,4) — (2,3). Since d((1,1),(2,1)) <5 and F is
strong, we have (1,2) — (2,1) — (2,2). This will result in orientation ¥® as shown
in Figure 8. However, note that Y = Y2,

We have considered all possible cases and obtained exactly 3 non-isomorphic
orientations of diameter 5, i.e., Y, Y? and Y3. O

Corollary Let T5 be a tree of diameter 5 which contains Py : 4145 - - - i as a subgraph
such that degy, (/1) = degy, (i6) = 1, degy, (i2) = degy, (i5) = 2, degTs(is) > 2 and
degy, (i4) > 2. If there exists F € D(TY) such that d(F) = 5, then F[V(P)] is
isomorphic to one of Y, Y2, Y3 or Y4

7

By observation (2b), d((2,5),(1,2)) =

Proof. Observe that the proof of Lemma 3, up to the partial orientation Z in Case
1.2 and in its entirety for the other cases, is independent of whether there exist any
new edges incident with (p,), where p = 1,2 and ¢ = 3,4. The result thus follows.
O

Lemma 4
(1) If F € D(P?) is symmetrical, then d(F) > 5

(II) There exists exactly one symmetrical orientation F € D(P;z)), up to isomor-
phism, such that d(F) =5

Proof. By Lemma 2, X' is the only orientation of P5(2), up to isomorphism, with
diameter 4. By the observation (i) following the corollary to Lemma 2, X! is not
symmetric. Result (I) follows.

Suppose there exists a symmetrical orientation F € D(P\*) such that d(F) =
Since F' is strong, we may assume that (2,2) — (1,1) — (1,2) and by symmetry,
(2,4) = (1,5) — (1,4). Since d((1,1),(1,5)) < 5, there must be a (1, 2)-(2, 4) path
of length 2. We may assume that ( ,2) = (1,3) = (2,4) and by symmetry, (1,4) —
(1,3) — (2,2). Suppose (1,2) — (2,1). Then since F is strong, (2,1) — (2,2); and
by symmetry, (1,4) — (2,5) — (2,4). Since d((1,1),(2,5)) < 5, (1,2) — (2,3) —
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Figure 9

(1,4), a contradiction to the symmetry of F. Thus (2,2) — (2,1) — (1
symmetry, (2,4) — (2,5) — (1,4). Suppose (2,3) — (2,4). Since d((2,
5,(1,4) — (2,3) — (1,2), a contradiction to the symmetry of F. Thus (2
and by symmetry, (2,2) — (2,3). If (1,4) — (2, 3), then by symmetry, (1,
and so d((2,2),(1,4)) = 6, a contradiction. Hence (1,2) « (2,3) — (1,
must be isomorphic to the orientation X? of P5(2) as shown in Figure 9. O

,2) and
,(1,2))
) = (2,
) = (2,
and so

4)
,4) —
2) =
4)

2 WIAT

Corollary Let T5 be a tree of diameter 5 which contains Ps : 4145 . .. 15 as a subgraph
such that degy, (i) = degy, (is) = 1, degp, (12) = degp (is) = 2 and degy, (i3) > 2.
If there exists F' € D(Téz)) such that d(F) = 5 and F[V(PéZ))} is symmetric, then
FIV(PP)] = X2

Proof. Observe that the proof of Lemma 4(II) is independent of whether there exist
any new edges incident with (1, 3) or (2, 3). The result thus follows. O
Remark Note that sy2,x2((1,2)) = 0. Thus, if F € D(P{?) with d(F) = 5 is such
that there is an isomorphism ¢ : F{UF,UF; = X2UXZUXZ with o((p,i)) = (p, 1),
then F = Y2

We are now ready to establish the following main result for T5.

Let A = {z € V(T3)|d(z,u) =5 = d(z,v) for some u,v € V(T5),u # v}.

Theorem 3 Let Ts be a tree of diameter 5. Then
(1) T5(517 S9, ... ,Sn) € CyUCy;
(II) if |A| <1, then Ts(s1, Sa, - -, 8n) € Co;
(III) if deg(v) < 2 for allv & {(1,3),(2,3), (1,4),(2,4)} and |A] > 2, then T € ;.
Proof. ~ We shall prove (I) by defining an orientation (suggested by the remark
above) F € D(T{”) such that d(F) < 6 as follows:
(p,i) — (g,7) if and only if (p,n(i)) — (¢g,n(j)) in Y2

As an illustration, the orientation F of a TS(Z) with some vertices labeled is shown in
Figure 10.
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Figure 10

Let v and v be any 2 vertices in F'. Observe that the shortest path between u
and v lies on a digraph isomorphic to one of the following:

F'=FUFRUFUFUF;U Fg;
F'=FUF,UF;UF,UFuy);
F¢=F UF,UF3U F33);
F'=FUFRUFUF31UFg0;
F*=F UFUF;U Fq;

FI = Fi5UFUF,UF;U F;
F9=F39)UF;UF,UFua);

F" = F30)UF3U F33);

F' = Flus UF;UF, U F;U Fg;

FJ = Fu2UF,UF3U Fly;

F¥ = Fu11)U FayUF,UFUF U F.

It can be checked that F* to F7 have diameter not exceeding 5 (note that F* = Y
and F¢ = X?). It can also be checked that F* has diameter 6. Hence d(F) < 6 and
thus, by Lemma 1, we have result (I). Suppose |A| = 0. Then no subdigraph of F
will be isomorphic to F*. If |A| = 1, we may let (6) € A. Again, no subdigraph of
F will be isomorphic to F*. Thus, d(F) =5 and by Lemma 1, we have result (II).

Suppose |A| > 2. Label two of these vertices (6) and (4, 1, 1). Then
dr((1,(6)), (1,(4,1,1))) = 6 and thus d(F) = 6. Hence, for such a tree Tj, to

show that d(T52 ) = 5, we need to introduce an orientation of Ty different from F'.
We need only consider T of Figure 11.
Suppose there exists H € D(T®) such that d(H) = 5. Let

H'=H,UH,UH;UH,U H; U Hg,

H*=H UH,UH3; UH;UHu1)UHup,

H? = H;11)UHpUH;UH,UH; UHg  and
H* = H(3,1,1) U H(gql) UH3UH4U H(4,1) @] H(4!1!1).

Then by the corollary to Lemma 3, each of the H?, i = 1,2,3,4, must be isomorphic
to one of Y1, Y2 Y3 Y4,
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(1) ) 3) (4) () (6)
® ® o O

(3,1,1) (31 41 @41y

Figure 11

Suppose there exists an isomorphism ¢ : H! — Y3. By symmetry, we may
assume that ¢((p,7)) = (p,i) for all p and all 7. Observe that Y3 U Y} is not
isomorphic to any of Y U Y} Y2 U Y2, V' UY,! Thus, each of the HY, i = 2,3,4,
must also be isomorphic to Y. Hence H; U H, U Hy U Hz1) U Hz1,1) is symmetric
but not isomorphic to X2, a contradiction to the corollary to Lemma 4. Thus, by
symmetry, Y is not isomorphic to any of H*, i = 1,2, 3, 4.

Next, suppose there exists an isomorphism ¢ : H! — Y2, By symmetry, we
may assume that ¢((p,i)) = (p,i) for all p and all 4. Suppose H?* = Y2. Thus
HgUHsUHyUH41)UHq4, ) is symmetric but not isomorphic to X2, a contradiction
to the corollary to Lemma 4. Now H? cannot be isomorphic to Y because Y2 U Y3
is neither isomorphic to Y;* UY3 nor to Y3 UYg. The same argument can be used to
show that H? cannot be isomorphic to Y*. Hence d(H?) > 6, a contradiction. Thus,
by symmetry, Y2 is not isomorphic to any of H?, i = 1,2, 3, 4.

Now suppose there exists an isomorphism ¢ : H!' — Y!. By symmetry, we
may assume that ((p,i)) = (p,i) for all p and all i. Suppose H? = Y. Then,
HsUHsUH U H(4,1)UH4,,) is symmetric but not isomorphic to X2, a contradiction
to the corollary to Lemma 4. Thus H? = Y*. It follows that H> =~ Y'. Then,
H UH;UH3UH(31)UHg3, 1) is symmetric but not isomorphic to X2, a contradiction
to the corollary to Lemma 4. Thus, by symmetry, Y! is not isomorphic to any of
Hi=1,234.

Finally, we must have Y* = H? i =1,2,3,4. Hence H UH,UH3UH@31)UH (3 1)
is symmetric but not isomorphic to X2, a contradiction to the corollary to Lemma
4.

Hence d(H) > 6 and result (III) follows from result (I). O

Finally, we shall consider trees of diameter at least 6. In Theorem 2, it was shown
that if d(G) > 4 and s; > 4 for each i = 1,2,...,n, then G(s1,52,...,8,) € Co.
Theorem 4 below extends this result to include the case that 2 < s; < 3 when G is
a tree of diameter at least 6.

Theorem 4 Let T; be a tree of order n and diameter d, where d > 6. Then
Td(sl, 89, ... ,Sn) [S C().

Proof. We shall consider 2 cases according to the parity of d.
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Figure 12

Case 1 d = 0(mod 2).

We shall first design an orientation for T4(2)7 and based on this, we shall then design

optimal orientations for T\”, d > 6. Let S = {i € V(Ty)|deg(i) = 1 and n(i) = 4}.
Define an orientation F' of T4(2) as follows:

(i) for iq & S, {(1,41),(2,i1)} — (1,2) — {(1,3),(2,3)} — (2,is) — {(1,15),
(2,i5)} = (1,44) = {(1,3),(2,3)} = (2,2) = {(1,41),(2,41)}, where n(i,) = v;

(i) for i € S, (1,4) = (1,3) = (2,4) = (2,3) = (1,4).

As an illustration, the orientation F of a T4(2) is shown in Figure 12.
Observe the following facts about F:

(1a) for uw = (p,i), where p=1,2, n(i) =2,4and i € S,

d(u, (1,3)) = d(u, (2,3)) < 3 and d((1,3),4) = d((2,3),u) < 3;

(1b) for u = (p,i), where p = 1,2 and n(i) = 1,5,
d(u’ (1’3)) = d(u’ (2’3)) = d((1,3),u) = d((2,3),u) =2;

We shall prove that d(F') = 6 by showing that e(u) < 6 for all v € V(F). We
shall consider 4 subcases.

1. u € V(F3).
By symmetry, we need only consider u = (1,3). By observations (1la), (1b)
and the fact that (1,3) — (2,7) — (2,3) = (1,¢) for i € S, we have e(u) = 3
if there exists ¢ € S. Otherwise, e(u) = 4 since {(1,3),(2,3)} — (2,2) —
(1,1) = (1,2) = {(1,3),(2,3)}.

2. uw € V(F;), where i € S.
By symmetry, we need only consider u = (1,1).

(1,4)(1,3)(2,i)(2,3) is a path of length 3.

2,. v € V(F}), where j € S.
(1,4)(1,3)(2,7)(2,3)(1,5) is a path of length 4.
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2;. v e V(F\(F3U U F)).

By (1), d((1,3), )<3 Since (1,7) — (1,3), we have d(u,v) < d(u,(1,3)) +
d((1,3), )<1+3—4

3. u € V(F;), where n(i) =2,4and i ¢ S.
From (1), d((1,3),v) < 3 for v # (2,3). By observation (1a), d(u,(1,3)) < 3.
Thus, d(u,v) < d(u,(1,3)) +d((1,3),v) < 3+ 3 =6 for v # (2,3). However,
by observation (1a) again, d(u, (2,3)) < 3. Hence e(u) < 6.

4. v € V(F;), where n(i) = 1,5.
By observation (1b), d(u,(1,3)) = 2. By (1), d((1,3),v) < 3 for v # (2,3).
Thus, d(u,v) < d(u, (1,3)) d((1,3),v) <243 =5 for v # (2,3). However,
by observation (1b) again, d(u, (2, 3)) = 2. Hence e(u) < 5.

We have covered all possible cases. Note that d(u,v) = 6 if and only if u = (2,1)
and v = (1,j) for distinct 4, j, where (n(i),n(j)) = (2,4),(4,2) or (4,4), and i # S.
Thus d(F) =

Now let Td be a tree of diameter d, d > 6. Denote by T(2) the induced subgraph
ode ,where V( D) ={(pi)lp=1,2and £ -1 <n(i) < $+3}. Let I € D(T4(2 )
where T,”) = T be as defined above. Define H € D(Té )) as follows:

(i) ¢ : F — H[V(T®)] is an isomorphism such that ¢(v) = u iff v' = u’ when
i#land o' =u! + 9 -2

(ii) for all other edges, (1,7) = (1,7) — (2,4) = (2,4) — (1,4) iff n(¢) < n(j).
For each u & V(T'@), let u' be the vertex in 7®) of minimum distance from u

and let u” be the vertex in T of minimum distance to u. Note that n(u') = £ -1
or 4+ 3 and n(u") = £ — 1 or 4 4+ 3. Observe also the following facts about H:

(2a) for u & V(T@), d(u,v’) < 5 and d(u”,u) < G2
(2b) for u,v ¢ V(T?), d(u/,v") = 4 (by observation (1b)).

Let uy,up € V(T?®) and vy,v, € V(T?). By observations (2a) and (2b) above,
d(uy,us) < d%‘l + 4+ d% =d, d(uy,v1) < d%+5 < d and d(vi,u;) <5+ d% <d.
In addition, since d(F) = 6, d(v1,vs) < 6 < d. Hence d(H) = d. Since every vertex
in H lies on a cycle of length 4, by Lemma 1, we have the result for d = 0(mod 2).
Case 2 d = 1(mod 2).

We shall first design an orientation for T5(2)7 and based on this, we shall then design
optimal orientations for Tf), d> Let S ={ieV(Ty|deg(i) =1 and n(i) = 2,5}.
Define an orientation F of T5(2) as follows:

(i) for ia,i5 € S, {(1,41),(2,71)} = (L,i2) — {(1,3),(2,3)} = (2,42) = {(1,%1),
(2,1)}, {(L,d4), (2,24)} = (2,45) = {(1,46), (2,86)} = (1, 85) = {(1,44), (2,44)}
and (1,3) = (1,4) — (2,3) = (2,4) — (1,3), where n(i,) = v;

(i) for i € S, (1,4) = (1,5) = (2,4) = (2,5) = (1,1), where ij € E(Ts).
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Figure 13

As an illustration, the orientation F of a T5(2) is shown in Figure 13.
Observe the following facts about F:

(3a) for u = (p,i), where p=1,2, n(i) =2 and ¢ ¢ S,

d(u, (1,3)) = d(u,(2,3)) < 3, d(u,( )) ( ,(2,4)) < 4, d((1,3),u) =
d((2,3), u) < 3 and d((1,4),u) =

d(u,(1,4)) = d(u,(2,4)) < 3, d
d((2,4), u) < 3 and d((1,3),u) =

5 q

gl’:;’)) = (u’ (2’3)) < 4, d((174)7u) =
2

d((1,3),u) = d((2,3),u) = 2 and d(u, (1,4)) = d(u,

6,
=d((2,4),u) = 2 and d(u, (1, 3)) = d(u,

We shall prove that d(F') = 7 by showing that e(u) < 7 for all v € V(F). We
shall consider 4 subcases. (The proof follows closely the proof of Case 1.)

By symmetry, we need only consider v = (1, 3). By observations (3a)-(3d) and
the facts that (1,3) — (2,i) — (2,3) — (1,4) or (1,3) — (1,4) — (2,i) —
(2,4) — (1,i) for 7 € S and that (1,3) — (I, ) (2,3) — (2,4), we have
e(u) = 4.

2. w e V(F;), where i € S.
By symmetry, we need only consider u = (1,4), where n(i) = 2.

21. v E V(Fg) @] V(F4)
(1,4)(1,3)(1,4)(2,3)(2,4) is a path of length 4.

2,. v € V(F}), where j € S.
If n(j) = 2, then (1,4)(1,3)(2,5)(2,3)(1,4) is a path of length 4.
If n(j) = 4, then (1,7)(1,3)(1,4)(2,)(2,4)(1, ) is a path of length 5.
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By observations (3a) (3d) d((1,3),v) < 4. Since (1,7) — (1,3), we have
d(u,v) < d(u,(1,3)) +d((1,3),v) <1+4=5.

3. u € V(F;), where n(i) =2,5and i ¢ S.
By symmetry, we need only consider the case when n(i) = 2. From (1),
d((1,3),v) < 4. By observation (3a), d(u,(1,3)) < 3. Thus, d(u,v) <
d(u,(1,3)) +d((1,3),v) <3+4=7. Hence e(u) < 7.

4. v € V(F;), where n(i) = 1,6.
By symmetry, we need only consider v = (1,1). By observation (1b), d(«, (1, 3))
= 2. By (1), d((1,3),v) < 4. Thus, d(u,v) < d(u,(1,3))+d((1,3),v) <2+4=
6. Hence e(u) < 6.

We have covered all possible cases. Note that d(u,v) = 7 if and only if v = (2,1)
and v = (1, 7) for distinct 4, j, where (n(i),n(j)) = (2,5) or (5, 2), and ¢ ¢ S. Thus
d(F)=T1.

Now let Ty be a tree of diameter d, d > Denote by T the induced subgraph
of T\, where V(T<2>) = {(p,i)lp = 1,2 and 42 < n(i) < &7} Let F € D(TY),

where T2 = T be as defined above. Define H € D(Td( ) as follows:

(i) ¢ : F = H[V(TW)] is an isomorphism such that ¢(v) = u iff v’ = v’ when
i#1and o' = u! + L2,

(ii) for all other edges, (1,i) = (1,7) = (2,4) — (2,7) — (1,1) iff n(i) < n(j).

For each u & V(T®), let v’ be the vertex in 7® of minimum distance from u
and let v be the vertex in 7®) of minimum distance to u. Note that n(u') = 42 or

U and n(u”) = 42 or LI, Observe also the following facts about H:
(4a) for u & V(T@), d(u,v’) < 52 and d(u”,u) < 52
(4b) for u,v ¢ V(T®), d(u’,v”) < 5 (by observations (3c) and (3d)).

Let uy,up & V(T?®) and vy, v, € V(T ) By observations (4a) and (4b) above
d(ul,ug)gd%+5+d2 =d, d(ul,vl)< +6<dandd(vl,u1)<6+ 5 < (.
In addition, since d(F) =7, d(vy,v2) <7 < d Hence d(H) = d. Since every vertex

in H lies on a cycle of length 4, by Lemma 1, we have the result for d = 1(mod 2).
d
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