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Abstract

Consider a connected undirected graph G = (V, E), a subset of ver-
tices C' C V, and an integer r > 1; for any vertex v € V, let B,(v) denote
the ball of radius r centered at v, i.e., the set of all vertices linked to v by
a path of at most r edges. If for all vertices v € V'\ C, the sets B,(v)NC
are all nonempty and different, then we call C' an r-locating-dominating
code.

It is known that the cardinality of a minimum r-locating-dominating
code C in any connected undirected graph G having a given number, n,
of vertices satisfies the inequalities |C] < n — 1 and |C| + 2/l > n +1,
and that these lower and upper bounds can be achieved. Here, we prove
that any in-between value can also be reached by |C].

1 Introduction

Given a connected undirected graph G = (V, E) and an integer » > 1, we define
B,(v), the ball of radius r centered at v € V, by

B,(v) ={z €V :d(z,v) <},

where d(z,v) denotes the number of edges in any shortest path between v and .
Whenever d(z,v) < r, we say that  and v r-cover each other (or simply cover if
there is no ambiguity). A set X C V covers a set Y C V if every vertex in Y is
covered by at least one vertex in X.

A code C' is a nonempty set of vertices, and its elements are called codewords.
For each vertex v € V, we denote by

Ke,.(v) =CnN B, (v)

the set of codewords which r-cover v. Two vertices v; and v, with K¢ .(v1) # Ko r(va)
are said to be r-separated, or separated, by code C'.
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Figure 1: A graph G admitting no l-identifying code. Black vertices form a 1-
locating-dominating code.

A code C is called r-locating-dominating, or locating-dominating, if the sets
Kec,(v),v € V \ C, are all nonempty and distinct [8]. It is called r-identifying,
or identifying, if the same is true for all v € V [10]. In other words, in the latter case
all vertices must be covered and pairwise separated by C, in the former case only
the noncodewords need to be covered and separated.

Remark 1. For given graph G = (V| E) and integer r, there exists an r-identifying
code C C V if and only if

Vvl,v2 eV (Ul # U2)7 BT(Ul) 7é BT(UZ)-

Indeed, if for all vi,vy € V, B,(v1) and B,(vy) are different, then C = V is r-
identifying. Conversely, if for some vy,vy € V, B,(v1) = B,(v2), then for any code
C CV, we have K¢,(v1) = K¢, (v2). For instance, there is no r-identifying code in
a complete graph. See also Example 1 below.

Remark 2. For given graph G = (V, E) and integer r, an r-locating-dominating
code always exists (simply take C' = V'), and any r-identifying code is r-locating-
dominating.

Example 1. Consider the graph G in Figure 1. We see that B;(a) = {a,b,d, e},
By(b) = {a,b,c,e}, Bi(c) = {b,c}, Bi(d) = {a,d,e}, Bi(e) = {a,b,d,e}; conse-
quently, because B;(a) = Bj(e), there is no 1-identifying code in G (cf. Remark 1
above). On the other hand, C = {a,b} is l-locating-dominating, since the sets
Kei(c) = {b}, Kc1(d) = {a}, and K¢ 1(e) = {a, b}, are all nonempty and different.

Definition 1. A graph is said to be r-identifiableif it admits at least one r-identifying
code.

The motivations come, for instance, from fault diagnosis in multiprocessor systems.
Such a system can be modeled as a graph where vertices are processors and edges
are links between processors. Assume that at most one of the processors is mal-
functioning and we wish to test the system and locate the faulty processor. For
this purpose, some processors (constituting the code) will be selected and assigned
the task of testing their neighbourhoods (i.e., the vertices at distance at most r).
Whenever a selected processor (= a codeword) detects a fault, it sends an alarm
signal, saying that one element in its neighbourhood is malfunctioning. We require
that we can uniquely tell the location of the malfunctioning processor based only
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on the information which ones of the codewords gave the alarm, and in this case an
identifying code is what we need.

If the selected codewords are assumed to work without failure, or if their only
task is to test their neighbourhoods (i.e., they are not considered as processors any-
more) and we assume that they perform this simple task without failure, then we
shall search for locating-dominating codes. These codes can also be considered for
modeling the protection of a building, the rooms of which are the vertices of a graph.

Locating-dominating codes were introduced in [8], identifying codes in [10], and they
constitute now a topic of their own: both were studied in a large number of various
papers, investigating particular graphs or families of graphs (such as planar graphs,
certain infinite regular grids, or the n-cube), dealing with complexity issues, or using
heuristics such as the noising methods for the construction of small codes. See, e.g.,
[3], [4], [5], [9], [11], [12], [13], and references therein, or [14].

In this paper, we concentrate on locating-dominating codes and continue the inves-
tigation started in [6]; it is known that, for all » > 1, the cardinality of a minimum
r-locating-dominating code C in any connected, undirected graph G having a given
number, n, of vertices satisfies the inequalities

|IC|<n—1and |C]+2I°>n+1,

and that these lower and upper bounds can be achieved, provided that n is large
enough, see [6, Sec. 6]. Here, we prove that any in-between value for |C/| can also be
reached. Note that allowing disconnected graphs would only make things easier.

2 Previous Results and Constructions

The bounds in themselves are easy to establish.

Theorem 1 Let r > 1 and n > 2 be two integers. Let G = (V, E) be a connected,
undirected graph with n vertices. If C C V is r-locating-dominating, then |C|+2!€1 >
n+ 1, and if C is minimum, then |C| <n — 1.

Proof. Because for all vertices v € V'\ C, the sets K¢, (v) must be nonempty and
distinct, we have: 2/l — 1 > n — |C|. The fact that not all vertices are necessary in
a minimum code is obvious, because G is connected. A

A complete graph on n vertices is one example of a graph where n — 1 vertices
are necessary for a locating-dominating code.

The following theorem states that, for n large enough with respect to r, the lower
bound on |C| can also be achieved. Its proof can be found in [6].

Theorem 2 Let r > 1 and n be integers such that n > 2*"*1 4 [logy(n +1)]. There
exists a connected graph with n vertices admitting an r-locating-dominating code C'
with size satisfying |C| + 2l¢1 = n 4 1.

The following lemma, also from [6], was used in the proof of Theorem 2. We shall
use it, together with Theorem 3, in Section 3.
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Lemma 1 Let G = (V,E) be r-identifiable, with V. = {vy,...,v,}, and C =
{¢1,-..sem} C V be a code. Let G* = (V*,E*) be defined as follows: C* =
{ci,...,c,} is a set of new vertices (not belonging to V), and

V*=vucC*, E*=EU{{c,v}:{c,v;} € E}U{{c,c}:1<i<m}.

The code C is r-identifying in G if and only if the code C* is r-locating-dominating
n G*.

Theorem 3 (Theorem 16 in [7]) Letr > 1 and ¢ > 5r®+5r+1. Forn between c+1
and 2 — 1, there exists a connected graph G with n vertices, such that any minimum
r-identifying code in G contains ¢ elements.

3 Achieving All Values

In this section we prove our main result: given an integer » > 1 and an integer
n sufficiently large with respect to r, for any integer ¢ satisfying ¢ < n — 1 and
c+2° > n+1, there exists a connected graph with n vertices admitting a minimum
r-locating-dominating code of size c. Or the other way round: given an integer » > 1
and an integer ¢ sufficiently large with respect to r, for any integer n between ¢ + 1
and 2¢ 4 ¢ — 1, there exists a connected graph with n vertices admitting a minimum
r-locating-dominating code of size c.

We will proceed in three steps: first from 2°+c—1 to 2c¢+ 1 (Theorem 4), second
from 2¢ to ¢ + 2r + 1 (Theorem 5), third from ¢+ 2r to ¢ + 1 (Theorem 6).

Theorem 4 Letr > 1 and c > 5r2+5r+1. Forn satisfying 2°+c—1 > n > 2c+1,
there exists a connected graph G with n vertices, such that any minimum r-locating-
dominating code in G contains ¢ elements.

Proof. By Theorem 3, for ng satisfying
c+1<mng<2°-1, (1)

there is a connected graph G with ng vertices, such that any minimum r-identifying
code in G contains ¢ elements. Therefore, using Lemma 1, we can construct a
graph G* with n = ng + ¢ vertices, admitting an r-locating-dominating code C* of
size ¢* = ¢. In the construction of Lemma 1, for all couples (¢;,¢}), 1 <i <,

B (c;) = B,(c}),
so ¢; or ¢, must be a codeword; thus any r-locating-dominating code in G* contains

at least ¢ codewords, and we see that the code C* is minimum. Moreover, by (1),
2c+1<n<24c¢c—1. A

Theorem 5 Let r > 1 and ¢ > 2r + 1. For n satisfying 2¢c > n > ¢+ 2r + 1,
there exists a connected graph G with n vertices, such that any minimum r-locating-
dominating code in G contains ¢ elements.



POSSIBLE CARDINALITIES FOR LOCATING-DOMINATING CODES 27

Z

complete subgraph

Figure 2: A partial representation of the graph G of Theorem 5, with a minimum
r-locating-dominating code. Codewords are in black.

Proof. Let p € [2r + 1,¢], t = c—p > 0, and G(p,t) = (V(p,t), E(p,t)) be the
following graph (see Figure 2):

Vip,t) =Y,UZ with Y, = {v;1,v2: 1 <i<p},Z ={z:1 <1<t}

E(p,t) = {{vig,vin} : 1 <i <ppU
Hoirsvia b v, vir2 by {vig, vipin by {vig, i 2} : 1 < <p— 11 U
{{zi, 7} 1<i<j<tiu
o vp—1a} {2 vp—10h {2 vpa b {20, vp2} 1 1 < < E)

Note that the balls of radius r centered at the vertices in Z; U {v,1,v,2} are all and
the same set.

We claim that G(p,t) contains a minimum r-locating-dominating code of size
¢ = p +t. First, the code

C={viy:1<i<plUZ,

of size p + t, is r-locating-dominating, thanks to the inequality p > 2r 4 1.

Now let C' be a minimum r-locating-dominating code in G(p,t). The remark
following the definition of E(p,t) shows that in Z; U{vy1,v,2}, at least ¢+ 1 vertices
are codewords. But, since in Y}, \ {v,1,v,2} the vertices v; 1, v; 2 are “clones” of each
other, at least one of them must belong to C, for 1 < ¢ < p—1, whence at least p+¢
codewords in C.

Finally, G(p, t) has 2p +t = ¢ + p vertices, with 2r +1 < p < c. A

In order to prove Theorem 6, we need the following four lemmas, where, for ¢ > 1,
G, = (Vy, E,) is the tree defined by

Ey ={vivin}:1<i<g-13U{z, v}, {y, ui}},

and 7y, is the cardinality of a minimum r-locating-dominating code in G,.
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Lemma 2 For any q¢ > 1,
0<7Y+1—7% <1 (2)

Proof. 1) v, < 4,11. Let Cyy1 be a minimum r-locating-dominating code in Gyy1:
|Cys1] = Yg41- If vy41 € Cyyq, then Cyyq C Vj is r-locating-dominating in V,, and
Yg < Ygt1-

So we assume that v,y € Cyyq, and consider Cy = Cyyq \ {vg41}. Two things
can prevent C, from being locating-dominating in G:
— some vertex in V; which was covered by v,41 is not covered by Cj;
—or vy, and vg_,41, which were separated by v,.1, are not separated by any element
in C, (with a slight abuse of notation, v,_, can represent here x — or y); in this
case, q > r.

Now if ¢ > r, we can simultaneously meet these two requirements, by taking
Ug—rt1 as & codeword in C,. If ¢ < r, adding one arbitrary noncodeword to Cj is
sufficient.

2) Y441 < 7y + 1. Let C,; be a minimum 7r-locating-dominating code in G,. Then

Cy U {vg11} is r-locating-dominating in G- A
Lemma 3
(i) Ifr =1, 71 =2; (3)
: 2q
ifr=1, foranyq>1, v, <2+ S (4)
(it) If r > 2, foranyq<r, ~,=q+1. (5)
(iii) Ifr > 2, ifr+1<q<2r, v <q. (6)
() If r > 2, for any q > 2r+1, fng2+"(]—i-737r+6-" (7)

Proof. (i) The case ¢ =1 is trivial. In V \ {z,y}, which is a chain with ¢ vertices,
¢ > 1, it is shown in [12] that a minimum 1-locating-dominating code has size [25—q-|

(i) If r > 2, ¢ < r, all balls of radius r are all and the same set, therefore one
has to take as codewords all g + 2 vertices but one.

(iii) We deliberately do not try to optimize the construction and simply take
C={z}U{v;:1<i<qg-1},

for an r-locating-dominating code in Gy, that is, all vertices but two.
(iv) In V;\ {z,y}, ¢ > 2r + 1, r > 2, it is shown in [2] (see also [1]) that a
minimum 7-locating-dominating code has size at most [<-0+2]. A

Lemma 4 The set {g+2 — v, : ¢ > 1} is equal to IN*.

Proof. By (5) and (3), ¢g+2 -y, =1forall ¢ <
by (2),for ¢ > 1, (¢+3 —7441) = (¢ +2—7,) =0or 1;
and by (7) and (4), g +2 =7, > ¢ — [#5* ] or g +2 -, > ¢ - [¥].
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Therefore the sequence (g + 2 — 7,) starts at one, possibly increases by one only, and
is bounded from below by a quantity going to infinity with q. A

Next, starting from G,, we construct the tree Gy = (Vg5, Ey5) in the following
way, for s > 0:

Vis =VoU{w; :1<i<s}, By =E,U{{v,w;}:1<i<s}.

Lemma 5 For g > 1, s > 0, any mimimum r-locating-dominating code in Gy s has
s1ze 5+ .

Proof. Let Cy be a minimum r-locating-dominating code in G, of size ,, and let
C1 = CoU{w; : 1 <i < s}. Obviously, C) is an r-locating-dominating code in G, g,
with size v, + s.

Now let C; be a minimum r-locating-dominating code in G,s. For any two
vertices 21, 2o in {z,y} U{w; : 1 <i < s}, we have: By(z1) \ {z1} = Bi(z2) \ {22} =
{v1}. Therefore, among these s+ 2 vertices in G, at least s+ 1 must belong to Cs,
and since they all play the same role, we can assume, without loss of generality, that
{w; : 1 <i<shu{z} CCy.

Let C5 = Cy \ {w; : 1 < i < s}. We claim that Cj is r-locating-dominating in G,:
the fact that the vertices w; € Cy \ C3 play exactly the same role as the codeword
z € CoNC5 with respect to the vertices in V, \ {z}, shows that the noncodewords in
V;, are still r-covered and r-separated by Cj.

Finally v, < |Cs| = |Cy| — s shows that |Cy| > 7, + s. A

We are now ready to prove Theorem 6.

Theorem 6 Let r > 1 and ¢ > 9”;—13. For n satisfying ¢ + 2r > n > ¢+ 1, there
exists a tree G with n vertices, such that any minimum r-locating-dominating code
in G contains ¢ elements.

Proof. Let j be such that 1 < j < 2r. By Lemma 4, there exists an integer m such
that j = m+2 —~,,. To prove that ~,, < ¢, we distinguish between two cases, r =1
and r #£ 1.

1) » = 1. In this case, by (4),

2 2 — 2 2 4 11 2

— . <5<11<e

2)r >2 Ifm < 2r, then v, <m+1<2r+1 < ¢ so we can assume that
m > 2r + 1. In this case, by (7),

Tr 46 : Tr 44 9r +13
<34 PEIED g I I AOAE Om T
3 3 3 3
SIS S

2
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Now that we have established that 7, < ¢, we set s = ¢ — v, § > 0, and we use the

construction of Gy s, just before Lemma 5, with ¢ = m. We obtain a graph with
n=m+2+s=0J-2+7m)+2+(c—m)=c+j

vertices, c+1 < n < ¢+ 2r, in which there is a minimum r-locating-dominating code

of size v, + s =c. A

Theorems 4-6 show that for ¢ large enough, all intermediate integer values be-
tween the lower and upper bounds can be achieved.

Theorem 7 Letr > 1 and ¢ > 5r* +5r + 1. For n between ¢+ 1 and 2° 4+ c — 1,
there exists a connected graph G with n vertices, such that any minimum r-locating-
dominating code in G contains ¢ elements.
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