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Abstract

Let £ be a hyperoval in a projective plane 7 of even order n, and G the
collineation group of 7 preserving 2. If G acts transitively on the points
of Q, then € is a transitive hyperoval. By a deep result due to M. Biliotti
and G. Korchmaros [1], if €2 is transitive and |G| is divisible by 4, then
either n = 2,4 and 2 is a hyperconic, or n = 16 and |G| < 144. In this
paper, it is shown that the case n = 16 with |G| = 144 only occurs when
m = PG(2,16) and € is the Lunelli-Sce-Hall hyperoval.

1 Introduction

Let m be a projective plane of even order n. A hyperoval of  is a set of n + 2
points no three of which are collinear, see [9]. The classical example is the regular
hyperoval in PG(2, n) consisting of the points of an irreducible conic C together with
the nucleus of C. A hyperoval € of a projective plane 7 of even order n is said to be
transitive if the collineation group G of m preserving {2 acts transitively on the points
of Q. Transitive hyperovals in desarguesian planes are completely classified: They
only exist for n = 2,4 and 16. In both planes PG(2,2) and PG(2,4), hyperovals are
regular and transitive. In PG(2,16), besides regular hyperovals, there is one more
class of hyperovals. The latter were found by Lunelli and Sce [12] in 1958, but it was
M. Hall Jr. in 1975 who pointed out that the Lunelli-Sce hyperovals are transitive.
Later on G. Korchmdros [11] and (independently S. Payne and J.E. Conklin [13].)
showed that no transitive hyperoval exists in PG(2,n) with n > 16. In 1987 Biliotti
and Korchméros [1] raised the transitive hyperoval problem by asking whether a non-
desarguesian projective plane can contain a transitive hyperoval. They tackled this
problem by using deep results on irreducible collineation groups containing involutory
elations. Their main result was the following theorem

Theorem 1.1. Let w be a projective plane of even ordern > 8 containing a transitive
hyperoval ). If the order of the collineation group G preserving ) is divisible by 4,
then n =16 and |G| divides 144.
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In the present paper we set up a computer aided approach to decide whether the
only projective plane of order 16 containing a transitive hyperoval is the Desarguesian
plane.

Theorem 1.2. Let 7 be a projective plane of order 16 containing a transitive hyper-
oval ). If the order of the collineation group G preserving ) is equal to 144, then
m = PG(2,16) and Q is the Lunelli-Sce-Hall hyperoval.

In 1991 Cherowitzo [6] gave an exhaustive classification of hyperovals in each of
the 8 translation planes of order 16. Later on. in 1996, Penttila, Royle and Simpson
[14] extended this classification to each of the 22 known projective planes of order 16.
From [14, Table 2], the above Theorem 1.2 can be deduced for the known projective
planes of order 16 by observing that the only case in which the full collineation group
of the hyperoval has order 144 is the Lunelli-Sce-Hall hyperoval in PG(2, 16).

2 Transitive hyperovals in a projective plane of order 16

Let m be a projective plane of even order 16 containing a hyperoval 2. Let G be
a collineation group of 7 preserving  which acts transitively on 2. Assume that
4 divides the order of G. By [1, Lemma 2.9 and Proposition 3.1], the subgroup S
generated by the nine involutory elations in G is a Frobenius group of order 18 which
fixes no point, or line but preserves a subplane my of order 4 disjoint from Q. Let
K be the subgroup of G which fixes my pointwise. Then K is either trivial or it has
order 2. In the latter case, the Baer involution generating K acts on €) as an odd
permutation. Furthermore, one of the following two cases occurs, see [1, Section 3]:

i) K is trivial, and G = O(S) x E where E is isomorphic to a 2-subgroup of
PTU(3,4) of order at least 4.

il) K has order 2. Let Go = G N Altg. Then G = K x Go and Gy = O(S) x E
where F is either a cyclic group of order 2,4 or 8, or is a quaternion group.

If 7 = PG(2,16) and € is the Lunelli- Sce hyperoval, then ii) occurs with E a cyclic
group of order 8.

A deeper analysis requires some properties of the configuration C' of centers and
axes of the nine involutory elations in G. Clearly, C' is contained in the invariant
subplane 7y which is a desarguesian subplane PG(2,4).

Lemma 2.1. C is a unital in my consisting of all points of a non-degenerate Her-
mitian curve. For any point A € my, the axis of the involutory elation in G whose
centre is A is the tangent to C' in my.

Proof. Let ¢; with ¢ = 1,2 denote the involutory elation whose centre is P;. The
conjugate 3 = Q19291 of o is another involutory elation in G. Its centre Pj is
the image of P, under ¢;. Hence P; lies on the line ¢ joining P; to P,. Note
that @3 = @219 also holds as ¢y, has order 3. Therefore, 3 is distinct from
both ¢; and ¢,. Further, ¢ is preserved by each of ¢1, ¢, and 3. In particular,
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the collineation group generated by (@1, @2, ®3) is a dihedral group of order 6 and
preserves . Note that every dihedral subgroup of order 6 is maximal in the Frobenius
group S of order 18 generated by all involutory elation in G. Hence, if G contained
another involutory elation preserving ¢, then S would preserve ¢. But then the centre
of every involutory elation would lie in ¢. Since ¢ has 5 points, and G contains 9
involutory elations, this would yield that some points in ¢ would be the centre of two
distinct involutory elations in G. A contradiction, because G preserves the hyperoval
Q). This proves the assertion. It turns out that every line of my meets C' in either 0, or
1, or 3 points. Actually, as C has size 9, no line of 7y is disjoint from C. Sets of size
9 meeting every line in either 1, or 3 points are unitals in PG(2,4). Therefore, C' can
be viewed as a Hermitian curve of 7y. Since every involutory elation in G induces an
involutory elation in mg, the second assertion follows of the basic properties of the
action of the projective unitary group, see [10, Theorem 2.49]. d

Theorem 2.2. Case i) does not occur.

Proof. By Lemma 2.1 G is a subgroup of PI'U(3,4) viewed as the collineation group
of m preserving C'. Since PI'U(3,4) has order 432, its Sylow 2-subgroups have order
16. In case i), G has order 144 and it acts on mo faithfully. Hence E is a Sylow
2-subgroup of PI'U(3,4). But this is impossible because PI'U(3,4) contains some
Baer-involutions, while in case i) every involution in G is an elation. Ol

Theorem 2.3. The group G has exactly 19 involutions, 9 are elations, and 10 are
Baer-involutions. For a point P € © let vp denote the number of involutions in G
fizing P. Then
7 for Pemy\C
vp =143 forPeC (2.1)
1 for P ¢ mq.

Furthermore, no point outside mq is fized by an element of G of order 3.

Proof. Let k € G be the Baer-involution fixing 7y pointwise. Note that the product
of k with a non-trivial element go € G has order 2 if and only if gy is an involution,
and if this is the case the product k' = kgo is a Baer-involution. Since Gy has 9
involutions, it turns out G has exactly 19 involutions, 9 of them are elations, say
e1,...,e9 and the others, that is k, key, ..., keg are Baer-involutions.

If P € C, then the stabiliser of G is either a cyclic group, or a quaternion group
of order 8. Hence, there is a unique involutory elation fixing P, say e;. Therefore,
the involutions in G fixing P are e;, k and ke;. Note that the Baer involution ke;
fixes each of the five points of 7y lying on the axis of e;, but no other point in 7.
Therefore, the Baer subplane m; of ke; meets 7y in five points.

If P € my but P € C, then the stabiliser of Gy is a dihedral group of order
six. Hence, there are exactly three involutory elations in G fixing P, say e;, €;, €m.
Therefore, the involutions in G fixing P are seven, namely, e;, €;, en,, ke;, kej, ke,
and k.

If P ¢ mq, let ¢ denote the unique line of 7wy through P, and ¢* the set of the point
of ¢ outside my. If ¢ contains only one point from C, then Lemma 2.1 shows that ¢ is
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the axis of an involutory elation in G. Clearly, such an involution fixes P. If ¢ meets
C' in three points, then the subgroup G, of G preserving ¢ has order 12, and it is the
direct product of a dihedral group D3 of order 6 by K. Let C5 the cyclic subgroup
of D3 of order 3. Since every non-trivial element in Cj is the product of two distinct
involutory elations whose centres are on ¢, the fixed points of C3 are also on ¢, see
[10, Exercise 4.21].

Let A denote the (possibly empty) set of all fixed points of Cj lying on ¢*. Since
Cj5 is a normal subgroup of Gy, both A and its complementary set A* = ¢*\ A are
left invariant by Gy. Since G, has order 12, a subgroup of order 4 preserves both
A and A*. Hence, if neither A nor A* has size divisible by 4, P is fixed by some
involution in Gy. Since ¢ has 12 points outside mg, we also have that 12 — |A| is
divisible by 3.

If A is non-empty, A = ¢* follows. Then, C3 fixes at least 12 lines through the
pole of ¢ with respect to the unitary polarity associated to C. But this is impossible,
no chord of € is fixed by a collineation of order larger than 2.

Therefore, C'53 fixes no point outside 7y, and we are left with the case in which A
is empty.

If Gp be trivial, then the orbit o(P) of P under G has maximum size 144. On
the other hand, the number of the points of 7 outside my which are uncovered by the
axes of the involutory elations is equal to 144. This implies that Baer subplanes of
the Baer involutions in G are covered by mg together with the axes of the involutory
elations in G. To show that this cannot actually occur, denote by m; the Baer
subplane of ke;, for ¢ = 1,...,9. For a point P € 7; let e; be the involution whose
axis {; passes through P. Since {; is the unique line of 7y through P, ke; preserves
;. Therefore, keej = ejke;. Since k is in the center of G, this yields that e; and ¢;
commute, which is only possible when ¢ = j. Hence, P € ¢; which yields that the
points of 7; lie on ¢;. A contradiction, because m; a subplane.

If Gp is non-trivial, then P is fixed by an involution, as the only prime divisors
of |G| are 2 and 3, but no element of order 3 fixes P. Therefore, every point of 7 is
fixed by an involution of G.

As noted before, every Baer subplane m; meets my in five points, and hence it
has 16 points outside mp. Since G has 9 Baer involutions distinct from %, the total
number of points fixed by these 9 Baer involutions is at most 144. Actually, equality
holds since these 9 Baer-subplanes must cover each of the 144 points that do not lie
on either my or on the axes of the involutory elations in G. Therefore, every point
outside 7y is fixed by just one involution of G. O

Theorem 2.4. Let P € w be any point not lying either on my, or on the azes of the
inwvolutory elations in G. Then the stabiliser Gp of P under G has order 2.

Proof. By Theorem 2.3, Gp has order a power of 2. Let g € Gp be a non-trivial
collineation. If g is an involution, then Theorem 2.3 yields that g is the unique
Baer involution fixing P. Otherwise, a power h of g is an involution, but not an
elation as h € Gp while, by hypothesis, P is not fixed by any involutory elation in
G. Therefore, h is a Baer involution, and hence it has no fixed point on €. It turns
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out that h induces an odd permutation on {2 which is not possible as h is a power of
g. 1

A straightforward counting argument shows that 144 is the total number of points
which do not lie either on g, or on €2, or on the axes of the involutory elations in G.
Hence Theorem 2.4 has the following corollary.

Corollary 2.5. The points not lying either on my, or on €1, or on the axes of the
wnvolutory elations in G split into two orbits under G each of length 72.

Theorem 2.6. Let P be a point on the axis ¢ of an involutory elation e € G. If P
does not lie either on my, or ), then Gp has order either 2,0or 4, or 8. The latter
case occurs for exactly two points P on (.

Proof. There is just one elation axis through P. Hence Gp is a subgroup of the
stabiliser H of ¢ in G. Therefore, Gp = Hp. Since G has 9 involutory elations, H
has order 16. There are 10 points on ¢ which do not lie either on €2 or my. The subset
0 of ¢ consisting of such 10 points is left invariant by G,. Note that H contains
the Baer involution k. Since k is fix point free on ¢, no point on ¢ is fixed by H.
Therefore, H has at least an orbit of length 2 on ¢. If P is in such an orbit, then
Hp has order 8. The other possibilities for the size of an orbit of H are 4 and 8. In
the latter case, £’ splits into two orbits, one of size 2 and another of size 8. d

Now look at the action of G on Q. Let Symg, denote the symmetric group on €.
By Theorem 2.2, we may assume that case ii) occurs.

Theorem 2.7. Up to conjugacy in Symg, there are only two possibilities for G.

Proof. Since Sym(2) has only one class of fixed-point-free involutions, the Baer in-
volution in £ € G may be assumed to act on € as

2 =(9,10)(1,11)(2,12)(3,13)(4, 14)(5,15)(6,16)(7, 17)(8, 18).

The centraliser Z of z in Symg has order 185794560 = 217 -3*.5 -7, and a Sylow
3-subgroup S3 generated by the following permutations:

t, = (1,18,7)(8,17,11),
ty = (2,14,5)(4,15,12),
ts = (3,9,6)(10,16,13),
ty = (1,10,15,7,13,12,18,16,4)(2,8,6,14,11,9, 5,17, 3).

The normaliser N of S3 in Z has order 648. A computer aided exhaustive search
shows that N contains exactly 45 subgroups of order 18 up conjugacy in N, six of
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them transitive on {2, namely:

= ((1,18,7)(2,5,14)(3,9, 6)(4, 12, 15)(8, 17,11)(10 16,13),
2)(3,13)(4,17)(5 ,18)(6, 16)(7, 14)(8,15)(9,10)(11, 12),
1,16,4)(2,8,3)(5,17,9)(6,14,11)(7, 10, 15)(12, 18, 13))
1,18,7)(2,5,14)(3,9,6)(4, 12,15)(8,17,11)(10, 16, 13),
1
1

=
2)(3,10)(4,8)(5,7)(6,16)(9,13)(11,12)(14, 18)(15,17),
10,15,7,13,12,18,16,4)(2,8,6,14,11,9,5,17,3))
18,7)(2,5,14)(3,9,6)(4, 12, 15)(8, 17,11)(10, 16, 13),
2)(3,10)(4,8)(5,7)(6,16)(9,13)(11,12)(14, 18)(15,17),

1,10,15)(2,17, 3)(4,18,16)(5,11,9)(6, 14, 8)(7, 13, 12))

= ((1,18,7)(2,5,14)(3,9,6)(4, 12, 15)(8,17,11)(10, 16, 13),

1,3,4,8,16,2)(5,7,9,15,17,10)(6,12, 11,13, 14, 18))

= ((1,18,7)(2,5,14)(3,9,6)(4, 12, 15)(8,17,11)(10, 16, 13),

1,9,15,11,10,5)(2,7,3,12,17,13)(4,8, 16, 14, 18, 6))

= ((1,18,7)(2,5,14)(3,9,6)(4,12, 15)(8,17, 11)(10, 16, 13),

(1,9,15,17,13,2,18,6,4,11,10,5,7,3,12,8, 16, 14)).

(1,
(1,
(1,
(1,
(1,
(1,
= ((1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,

Further, Us and Us are abelian, while U, has a cyclic Sylow 3-subgroup. Therefore,
the Frobenius subgroup S of G of order 18 acts on €2 as one of the remaining sub-
groups, that is, Uy, Us, Uy up to conjugacy in N. As a matter of fact, U; and Uy
are conjugate in Z. Also, the normaliser of U; in Z has order 72 only. So, Us is
the only possibility for the action of .S on €2, up to conjugacy in the centraliser of &.
Therefore, the permutation group induced by G on €2 is a subgroup of the normaliser
M of Uz in Z.

By an exhaustive computer aided search [8], we find out that in the group M
there are, up to conjugacy in Symy,, just two groups of order 144 containing exactly
19 involutions, namely

=((1,8,6)(2,4,5)(3,7,9)(10,17,13)(11, 16, 18)(12, 15, 14),
(1,7,2)(3,5,6)(4,8,9)(10, 18, 14)(11,12,17)(13, 16, 15),
(1,17,6,10,8,13)(2, 12,5, 14,4, 15)(3,18,9, 16,7, 11),
(2,4,7,3)(5,6,9,8)(11,17,15,13)(12, 18, 16, 14),
(2,8,7,6)(3,5,4,9)(11,16,15,12)(13, 14, 17, 18))

Gy = ((1,8,6)(2,4,5)(3,7,9)(10,17,13)(11, 16, 18)(12, 15, 14),
(1,7,2)(3,5,6)(4,8,9)(10, 18, 14)(11,12,17)(13, 16, 15),
(1,17,6,10,8,13)(2, 12,5, 14,4, 15)(3,18,9, 16,7, 11),
(1,7,3,4,6,5,2,9)(10,18,16,12,13, 15, 14,11))
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Theorem 1.2 is a corollary to the following two results that will be proved in
Section 4.

Theorem 2.8. No collineation group of m preserving Q0 can act on Q as Gy,

Theorem 2.9. If a collineation group of m preserving 1 acts on ) as G, then 7 is
the desarguestan plane.

3 Abstract (or Buekenhout) hyperovals

The computational approach we apply to prove Theorem 1.2 is based on the following
generalisation of the concept of a hyperoval due to F. Buekenhout, see [3, 4, 5].

An abstract hyperoval is a pair (,F) where Q is a nonempty set of points
and F is a quasi sharply 2-transitive set of involutory permutations over ). Every
permutation in F is an involution of (2, F), and F is the involution-set of (2, F). If
2 has size n + 2 then the abstract hyperoval (€2, F) has order n. Note that n is even
and that |F| = n? — 1. Further, every involution is fixed-point-free.

Two abstract hyperovals (2, F) and (2, F') are isomorphic if there is a pair of
bijective maps (a, f) with a: @ — Q' and f: F — F’, such that

d(w) =w' ifand only if f(¢)(a(w) = a(w'),

for every w € Q and ¢ € F

There is a natural way to derive an abstract hyperoval from a projective hyperoval.
Let Q be a hyperoval in a projective plane 7 of even order n. Each point P € «
outside 2 defines an involutory permutation ¢p on €2 as suggested in Figure 1: two
distinct points @, Q' € £ correspond under ¢p, that is, ¢p(Q) = Q" and ¢p(Q') = Q,
if and only if P,Q, Q" are collinear. The point P is the centre of ¢p. Let F be the
set of all such involutory permutations ¢p. It is easily seen that (€, F) is an abstract
hyperoval of order n. There exist abstract hyperovals that cannot be obtained from
a projective hyperoval by means of the above procedure, see Faina [7]. On the other
hand, it has been conjectured that no abstract hyperoval can derive from two non
isomorphic projective planes. Actually, this conjecture has been solved so far only
for abstract hyperovals that derive from conics. Here the case of the Lunelli-Sce-Hall
is investigated.

Lemma 3.1. Let m be a projective plane of order 16 containing a hyperoval €.
If (Q,F) isomorphic to the abstract hyperoval deriving from the Lunelli-Sce-Hall
hyperoval, then m = PG(2,16) and § is the Lunelli-Sce-Hall hyperoval.

Proof. Let C be the Lunelli-Sce-Hall hyperoval in PG(2,16). We have to prove that
if each chord and each tangent of C' meets a point-set £ of size 18 in exactly one
point, then £ consists of all points of an external line to C. The key observation
is that every point in C' can be viewed as nucleus of £. Therefore, £ has at least
18 nuclei. Then the assertion follows from a result of Blokhuis and Wilbrink, see
[2]. |
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Q

Figure 1: The involutory permutation ¢p

Let J be the set of all fixed-point-free involutions in Sym,. Clearly, the invol-
ution-set of any abstract hyperoval is contained in J. However, sharply 2-transitivity
is inconsistent with many subsets of J, as the following lemma shows.

Lemma 3.2. Let i,5 € J be two distinct involutory permutations. Suppose that
their product ©j has more then two fixed points. Then no abstract hyperoval exists
whose involution-set contains both i and j.

Lemma 3.2 leads to a useful definition.

Definition 3.3. Two involutory permutations i,j € J are consistent if ij has at
most two fixed points.

An automorphism of (£2, F) is a permutation g € Symy, such that go fog™' € F
for every f € F. Set

G={g€Symg|gofog ' e€Fforevery f € F}.

Clearly, G is a group. Note that if (€2, F) derives from a hyperoval §2 of a projective
plane 7, then every collineation of m preserving {2 gives rise to an automorphism
of (Q,F). Also, such a collineation is uniquely determined by the corresponding
automorphism, as the identity is the only collineation of 7 that fixes 2 pointwise. In
particular, any collineation group of 7 preserving {2 can be viewed as an automor-
phism group of (£, F).

If G is transitive on F, then (,F) is called a transitive abstract hyperoval.
Since G maps J onto itself, J is partitioned in G-orbits, that is, in orbits under
G. Such an orbit is either disjoint from F, or it is contained in F. Actually, some
G-orbits cannot be contained at all in the involution-set of any abstract hyperoval.
This follows from Lemma 3.2.

Lemma 3.4. Let i € J. Suppose that G contains an element g for which g(i) # i
but ig(i) has more than two fized points. Then the G-orbit of i is disjoint from the
wvolution-set of any abstract hyperoval whose automorphism group contains G.

Definition 3.5. Let i € J. The G-orbit of i is admissible if no element g € G exists
such that g(7) # ¢ but the product ig(i) has more than two fixed points.
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4 The computational approach

In this section a computer aided [8] proof of Theorems 2.8 and 2.9 is described. Set
Q={1,...,18}.

First, the case (G; is investigated. As we have seen in the previous section, G
can be regarded as a permutation group on 2. We begin by noting that the centre
of G; has order two being generated by

k= (1,10)(2,14)(3,16)(4, 12)(5, 15)(6, 13)(7, 18)(8,17)(9, 11)

which is a fixed point free involutory permutation. Further, the involutory permu-
tations in G; with two fixed points are:

e1 = (2,7)(3,4)(5,9)(6,8)(11,15)(12,16)(13,17)(14, 18),
e = (1,6)(2,3)(4,9)(5,7)(10,13)(11, 12)(14,16)(15, 18),
es = (1,8)(2,9)(3,5)(4,7)(10,17)(11, 14)(12, 18)(15, 16),
es = (1,9)(2,4)(3,6)(7,8)(10,11)(12,14)(13,16)(17, 18),
es = (1,7)(3,8)(4,5)(6,9)(10,18)(11,13)(12,15)(16, 17),
es = (1,3)(2,5)(6,7)(8,9)(10,16)(11,17)(13,18)(14, 15),
er = (1,5)(2,6)(3,7)(4,8)(10,15)(12, 17)(13, 14)(16, 18),
es = (1,4)(2,8)(5,6)(7,9)(10,12)(11, 18)(13, 15)(14, 17),
e = (1,2)(3,9)(4,6)(5,8)(10,14)(11, 16)(12, 13)(15, 17).
The remaining involutory permutations in G; are the products ke; for i = 1,...,9.

They form a single conjugacy class in Gj.

To prove Theorem 2.8, (G; is assumed to be a collineation group of a projective
plane 7 of order 16 which preserves a hyperoval acting on it transitively. This
hyperoval can be identified by the above set €2 such that the action of G is the same
as on 2. The collineations ej,...,eq are involutory elations in G;. Let ¢y,..., 0y
denote their axes. The pointset covered by these axes splits into three subsets which
are 2 and 7y together with a pointset £ of size 90. Also, key,...,keg are Baer
involutions whose Baer subplanes are denoted by m,...,m. Let T, = m; \ (m N mo);
then |7;| = 16. Note that m is invariant under G;. By Theorem 2.4, the pointset of
is partitioned into Q, £, 7wy, 71, . . . , Tg. Further, Corollary 2.5 states that 7, U. ..U,
coincides with two point- orbits @; and O, of G each of size 72 such that neither
O, nor O, contains any m; entirely. Hence both O; and O, take a point form
each m;, 1 < i < 9. Therefore, Ty contains two points, say P and (), such that
O,={P!|geG},and O, = {QY ]| g € G, }.

Now, we focus our attention on ¢p, the involution with centre P of the abstract
hyperoval (Q,F) that derives from Q. Clearly, kegdp = dpkeg. An exhaustive
computer search shows that keg commutes with exactly n; = 26785 involutory per-
mutations of J, and that ny = 26168 generate an orbit of length 72. But only a
few of these, namely n3 = 240, is consistent with Lemma 3.4, and the number of
admissible orbits generated by them is 30. Unfortunately, a test based on Lemma
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3.2 rules out the possibility of having a pair of consistent admissible orbits. This
completes the proof of Theorem 2.8.

The same procedure is used to investigate G's. The list of the involutory permu-
tations in G with two fixed points is:

er = (2,7)(3,4)(5,9)(6,8)(11,15)(12, 16)(13, 17)(14, 18),
es = (1,6)(2,3)(4,9)(5,7)(10,13)(11, 12)(14, 16)(15, 18),
es = (1,8)(2,9)(3,5)(4,7)(10,17)(11, 14)(12, 18)(15, 16),
es = (1,3)(2,5)(6,7)(8,9)(10,16)(11, 17)(13, 18)(14, 15),
es = (1,9)(2,4)(3,6)(7,8)(10, 11)(12, 14)(13, 16)(17, 18),
es = (1,7)(3,8)(4,5)(6,9)(10,18)(11, 13)(12, 15)(16, 17),
er = (1,4)(2,8)(5,6)(7,9)(10,12)(11, 18)(13, 15)(14, 17),
es = (1,2)(3,9)(4,6)(5,8)(10, 14)(11, 16)(12, 13)(15, 17),
es = (1,5)(2,6)(3,7)(4,8)(10,15)(12, 17)(13, 14)(16, 18),

and the above defined numbers are n; = 26785, ny = 26168, ny = 80. This time, two
pairs of consistent admissible orbits of length 72 are found. They are {O;, 0>} and
{0}, 0L} where
e O, ={p! | g€ Gy} with
b = (]w 2)(37 13)(47 10)(57 16)(67 7)(& 14)(9a 18)(117 15)(12a 17)a

e O, ={pi | g€ G} with
piz = (1,3)(2,13)(4,6)(5, 17)(7, 14)(8,11)(9, 18)(10, 15)(12, 16),

e O\ ={pi, | g€ G} with
por = (1,2)(3,14)(4,10)(5,9)(6, 15)(7, 11)(8, 16)(12, 17)(13, 18),

o Oy, ={pl | g€ Gy} with
o2 = (1,3)(2,18)(4,5)(6,11)(7, 15)(8, 14)(9, 17)(10, 13)(12, 16).

The normaliser of G in Sym, g is a group N(G2) of order 288 generated by G2 and
a = (1,9,4,7)(2,5,8,6)(10,11,12,18)(13,14,15,17). By straightforward computa-
tion, ps1 = a”'piia and a”'piea = g7 pawg with

g=1(1,9,6,8,4,7,5,2)(10,11,13,17,12,18,15, 14).

Therefore, it suffices to consider the pair {0y, Os}.

The next step is to investigate ¢p centred at a point P lying on the axis of an
involutory elation in G,. Since such elations are conjugate under Gy, it suffices to
consider one of them, say eg. The above computer aided procedure gives the following
results: The number of elements in J commuting with eg is equal to ny = 5937. They
partitioned into 5937 Gs-orbits: 5448 of length 72, 404 of length 36, 32 of length 24,
26 of length 18, 24 of length 12, 2 of length 9 and 1 of length 1. Those consistent
with Lemma 3.4 are listed below. For each of them a representative is given.
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Length 72
a{™ = (1,2)(3,12)(4, 13)(5,6)(7,17)(8, 14)(9, 11)(10, 16)(15, 18),
al™ = (1,2)(3,13)(4,15)(5,6)(7, 14)(8,10)(9, 11)(12, 18)(16, 17),
al™ = (1,2)(3,14)(4,10)(5,6)(7,13)(8, 15)(9, 11)(12, 18)(16, 17),
al™ = (1,2)(3,15)(4, 16)(5,6)(7, 10)(8, 18)(9, 11)(12, 14)(13, 17),
al™ = (1,3)(2,12)(4, 10)(5,7)(6,17)(8, 15)(9, 11)(13, 16)(14, 18),
al™ = (1,3)(2,15)(4, 13)(5,7)(6,10)(8, 14)(9, 11)(12, 18)(16, 17);
length 36
al®™ = (1,2)(3,13)(4, 10)(5,6)(7, 14)(8, 15)(9, 11)(12, 16)(17, 18),
al’ = (1,2)(3,14)(4,15)(5,6)(7, 13)(8,10)(9, 11)(12,16)(17, 18),
al’® = (1,4)(2,10)(3,12)(5,8)(6, 15)(7, 17)(9,11)(13, 16)(14, 18),
af® = (1,4)(2,15)(3,17)(5,8)(6,10)(7,12)(9, 11)(13, 16)(14, 18),
al®® = (1,12)(2,16)(3,13)(4, 15)(5, 17)(6, 18)(7, 14)(8, 10)(9, 11),
ag® = (1,12)(2,18)(3,14)(4, 15)(5, 17)(6, 16)(7, 13)(8, 10)(9, 11);
length 18
al™® = (1,2)(3,4)(5,6)(7,8)(9,11)(10,17)(12, 15)(13, 18)(14, 16),
al™® = (1,4)(2,7)(3,6)(5,8)(9,11)(10, 13)(12, 18)(14, 15)(16, 17),
™ = (1,5)(2,13)(3,7)(4,17)(6, 14)(8,12)(9, 11)(10, 15)(16, 18),
a™® = (1,12)(2,15)(3,13)(4, 18)(5, 17)(6, 10)(7, 14)(8, 16)(9, 11),
al'® = (1,14)(2,16)(3,12)(4, 15)(5, 13)(6, 18)(7, 17)(8, 10)(9, 11),
al™® = (1,16)(2,12)(3,15)(4,13)(5,18)(6, 17)(7, 10)(8, 14)(9, 11),
al'™® = (1,16)(2,17)(3,15)(4,14)(5,18)(6, 12)(7, 10)(8, 13)(9, 11);
length 12
al"™ = (1,2)(3,16)(4,8)(5,6)(7,18)(9, 11)(10, 14)(12, 17)(13,15),
as™® = (1,3)(2,6)(4,12)(5,7)(8,17)(9, 11)(10, 16)(13, 14)(15, 18),
al'™ = (1,4)(2,6)(3,16)(5,8)(7,18)(9, 11)(10, 12)(13, 14)(15,17),
al™ = (1,10)(2,12)(3,18)(4,14)(5,15)(6, 17)(7, 16)(8, 13)(9, 11),
al™ = (1,10)(2,13)(3,12)(4, 16)(5, 15)(6, 14)(7, 17)(8, 18)(9, 11),
al™® = (1,10)(2,18)(3,13)(4, 17)(5, 15)(6, 16)(7, 14)(8, 12)(9, 11);
length 9

al” = (1,5)(2,6)(3,7)(4,8)(9,11)(10,15)(12,17) (13, 14)(16, 18),
al = (1,15)(2,13)(3,18)(4, 17)(5, 10)(6, 14)(7, 16)(8, 12)(9, 11);

length 1
al’) = (1,10)(2,14)(3,16)(4, 12)(5,15)(6, 13)(7, 18)(8, 17)(9, 11).

345

Now, all orbits which are not consistent with both ©; and O, are ruled out. There

remain only eight orbits namely those containing the involutions
72) (18) (12) (12) (12) (12) (9) (1
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It turns out that

0, =1{ad™ | geG,y},
0, ={a® | geG,y},
Os = {al” | g€ G},

together with one of the four orbits of length 12 contain all involutions of the abstract
hyperoval (Q, F). Actually, only one of the orbits of length 12 is consistent with O,
namely a'”. Setting Q5 = {aém)g | g € Gy}, we find that the involutions of the
abstract hyperoval are exactly those contained in the orbits O; for i =1,...6.

Therefore, there is only one abstract hyperoval (2, F) of order 16 whose auto-
morphism group contains G,. In [11] Korchméros proved that G, is the collineation
group of the Lunelli-Sce-Hall hyperoval. Lemma 3.1 completes the proof of Theorem
1.2.
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